
Comput Manag Sci (2009) 6:135–160
DOI 10.1007/s10287-008-0090-3

ORIGINAL PAPER

Exploiting structure in parallel implementation
of interior point methods for optimization

Jacek Gondzio · Andreas Grothey

Published online: 16 December 2008
© Springer-Verlag 2008

Abstract OOPS is an object-oriented parallel solver using the primal–dual interior
point methods. Its main component is an object-oriented linear algebra library designed
to exploit nested block structure that is often present in truly large-scale optimization
problems such as those appearing in Stochastic Programming. This is achieved by
treating the building blocks of the structured matrices as objects, that can use their
inherent linear algebra implementations to efficiently exploit their structure both in a
serial and parallel environment. Virtually any nested block-structure can be exploited
by representing the matrices defining the problem as a tree build from these objects.
OOPS can be run on a wide variety of architectures and has been used to solve a finan-
cial planning problem with over 109 decision variables. We give details of supported
structures and their implementations. Further we give details of how parallelisation is
managed in the object-oriented framework.

Keywords Interior point methods · Parallelism · Optimization ·
Structure exploitation · Object-oriented

1 Introduction

The aim of this paper is to give a detailed description of the object-oriented linear
algebra module used inside our interior point code OOPS: object-oriented parallel
solver. OOPS has been the subject of several reports (Gondzio and Grothey 2006a,b,
2007a,b). However, while these papers mention the underlying object-oriented design,
their main concern is with practical applications without giving much detail about the
actual implementation. The purpose of this paper is to fill this gap.

J. Gondzio · A. Grothey (B)
School of Mathematics, University of Edinburgh, Edinburgh, UK
e-mail: A.Grothey@ed.ac.uk

123

136 J. Gondzio, A. Grothey

The prime motivation behind the development of OOPS is our interest in truly large-
scale optimization: problems with upwards of one million variables and constraints.
In our observation these large-scale optimization problems are not merely sparse, but
also (block-)structured. Structure is not merely a byproduct of sparsity, but an essen-
tial feature of such problems: truly large-scale problems are by necessity generated by
some repeated process. Stochastic Programming is an obvious example where struc-
ture is introduced by the discretisation of the underlying probability space (Gondzio
and Grothey 2007a,b). Other examples include discretisation in time or space for con-
trol problems or repetitions of matrix blocks in reliability optimization for network
problems (Gondzio and Sarkissian 2003; Gondzio and Grothey 2003). As problem
sizes grow, increasingly problems display a nested combination of these structures:
such as network reliability problems with uncertain demands where a stochastic pro-
gramming structure is superimposed on the structure of the reliability problem. It is a
fair assumption that the knowledge of the process that generated the problem structure
can be passed on to the solver, to be used to its advantage. Furthermore structure is
usually nested: Matrices are made up of sub-matrices, which themselves can be further
divided.

The linear algebra operations to exploit all of these block-structures are well known
and could be exploited at every level in the problem. However this is hardly ever done
to its full capacity—except in special situations, like stochastic programming—due to
the prohibitive coding effort that would be needed.

OOPS provides a modular implementation of sparse, structured linear algebra oper-
ations that can exploit such nested structure in an efficient way. Since linear algebra
operations that exploit block-structure lend themselves to parallelisation, emphasis
has been placed on designing the package in such a form that all operations will be
efficiently performed in parallel, should more than one processor be available for
its computation. The design of OOPS follows object-oriented principles, treating the
blocks (and sub-blocks) of matrices as objects. We introduce a Matrix interface
that defines all linear algebra operations needed for an interior point method. Several
specialised classes provide concrete implementation of the Matrix interface, each
exploiting a different possible structure. The matrix blocks are represented by objects
of these classes, therefore every block of the matrix carries its own implementation of
linear algebra routines, specialised for the structure present in this block.

The advantage of this object-oriented approach over traditional linear algebra imple-
mentations lies in its flexibility: It provides building blocks from which any (exploit-
able) combination of nested block structures present in the problem can be constructed.
The layout of the package is such that this is only a concern at the modelling stage with
minimum coding effort. The exploitation of the structure in the various linear alge-
bra routines and their parallelisation will follow automatically. If additional “building
bocks” representing new structures are needed they can be added easily, extending the
capabilities of the solver.

A different interpretation of the object-oriented approach can be gained by introduc-
ing the concept of elimination trees: Elimination trees are a well known concept in the
context of parallelising linear algebra operations for symmetric matrices (Duff et al.
1987; George and Liu 1989). They carry information about dependencies between
rows for elimination operations of a matrix and hence guide the distribution of parts

123

Exploiting structure in parallel implementation of interior point methods for optimization 137

of a matrix among processors. Essentially it encodes the order of pivot operations for
factoring the matrix. A balanced elimination tree makes for a more efficient exploita-
tion of parallelism, however finding such a pivot order is non-trivial.

Elimination trees can be generalised to block-elimination trees, where each node
in the tree corresponds to a block of the matrix rows rather than a single row. The
elimination tree now encodes not only the “pivot” order but also what the applicable
“pivoting” operation at each step is. For block sparse matrices these are block pivot
operations, but structures such as low-rank updates require different operations. While
finding an efficient elimination tree for blocks is just as difficult as for sparse elements,
knowledge of the process that generated the block-structure can be easily exploited
to this purpose. In fact every generating process will imply a characteristic block-
elimination tree. As outlined before nodes in the block-elimination tree are treated
as Matrix-objects, each of which carries information about how to best exploit the
particular structure (elimination order) at this node.

The linear algebra kernel is used inside a primal–dual interior point solver targeted
at convex optimization problems. Interior point methods (IPMs) are well suited to
large-scale optimization since they feature a consistently small number of iterations
needed to reach the optimal solution of the problem as well as requiring fairly simple
linear algebra. Indeed, modern IPMs rarely need more than 20–30 iterations to solve
a small quadratic program, and this number does not increase significantly even for
problems with many millions of variables. The linear algebra requirements boil down
to factorisations and solves with the augmented system matrix of the problem. These
can however be costly operations performed on huge matrices, so a highly optimised
linear algebra is paramount to the design of an efficient IPM solver.

As far as we are aware our approach to an object-oriented linear algebra library is
unique. There are various object-oriented implementations of IPMs and more general
optimization algorithms reported in the literature: OOQP (Gertz and Wright 2003),
TAO (Benson et al. 2001), OPT++ (Meza et al. 2007) to name but a few (also see
Gertz and Wright (2003) for a summary of various ongoing efforts). However all
of these use object-oriented concepts on the level of the interior point method: they
aim to separate the logic of the interior point method from the used data-types and
linear algebra implementation. The linear algebra used in these codes is still a tradi-
tional problem dependent implementation. On the other hand several developments
deal specifically with exploiting stochastic programming structure in IPM (Blomvall
and Lindberg 2002; Blomvall 2003; Steinbach 2000), not to mention various decom-
position techniques which are also well suited to exploit parallelism (Linderoth and
Wright 2003). The advantage of OOPS is added flexibility to exploit nested structures
that do not fit into the usual stochastic programming frame such as stochastic network
optimization.

Throughout this paper we will use Java vocabulary to explain object-oriented
terminology such as classes, interfaces and methods. We also use syntax such as
object.method to refer to a method associated with a certain object. Generally
the typewriter font is used to refer to methods and structures actually present in
the implementation.

The paper is organised as follows: In Sect. 2, we briefly review the linear
algebra needed in interior point methods. Section 3 clarifies the concept of nested

123

138 J. Gondzio, A. Grothey

block-structured matrices and consequences to the design of OOPS. Section 4 is con-
cerned with the details of the object-oriented implementation of the linear algebra
routines, while Sect. 5 gives details of the implementations of supported matrix struc-
tures. Finally Sect. 6 is concerned with parallelisation aspects of OOPS and Sect. 7
summarises some key numerical results achieved by OOPS.

2 Linear algebra in interior point methods

Interior point methods provide a unified framework for optimization algorithms for
linear, quadratic and nonlinear programming. The reader interested in interior point
methods may consult Wright (1997) for an excellent explanation of their theoretical
background and Andersen et al. (1996) for a discussion of implementation issues.
We show in this section that all these algorithms require similar linear algebra oper-
ations. Consequently, subject to minor modifications, the same linear algebra kernel
may be used to implement interior point methods for all three classes of optimization
problems.

2.1 Linear and convex quadratic programming

Consider the quadratic programming problem

min cT x + 1

2
xT Qx s.t. Ax = b, x ≥ 0

where Q ∈ Rn×n is a positive semi-definite matrix, A ∈ Rm×n is a full rank matrix
of linear constraints and vectors x, c and b have appropriate dimensions (for linear
programming set Q = 0). The usual transformation in interior point methods consists
in replacing inequality constraints with the logarithmic barriers to get

min cT x + 1

2
xT Qx − µ

n∑

j=1

ln x j s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.

Ax = b, X Se = µe,

AT y + s − Qx = c, (x, s) ≥ 0, (1)

where X = diag{x1, . . . , xn} ans S likewise. The interior point algorithm for quadratic
programming Wright (1997) applies Newtons method to this system of nonlinear equa-
tions and gradually reduces the barrier parameter µ to guarantee the convergence to
the optimal solution of the original problem. The Newton direction is obtained by

123

Exploiting structure in parallel implementation of interior point methods for optimization 139

solving the system of linear equations:

⎡

⎣
A 0 0

−Q AT I
S 0 X

⎤

⎦

⎡

⎣
∆x
∆y
∆s

⎤

⎦ =
⎡

⎣
ξp

ξd

ξµ

⎤

⎦ , (2)

where ξp = b − Ax, ξd = c − AT y − s + Qx, ξµ = µe − X Se.
By elimination of

∆s = X−1(ξµ − S∆x) = −X−1S∆x + X−1ξµ,

from the second equation we get the symmetric indefinite augmented system of linear
equations

[−Q − �−1
P AT

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
, (3)

where �P = X S−1 is a diagonal scaling matrix. By eliminating ∆x from the first
equation we can reduce (3) further to the form of normal equations

(
A

(
Q + �−1

P

)−1
AT

)
∆y = bQ P .

2.2 Nonlinear programming

Consider the convex nonlinear optimization problem

min f (x) s.t. g(x) ≤ 0,

where x ∈ Rn , and f : Rn �→ R and g : Rn �→ Rm are convex, twice differentiable.
Having replaced inequality constraints with an equality g(x) + z = 0, where z ∈ Rm

is a non-negative slack variable we can formulate the associated barrier problem

min f (x) − µ

m∑

i=1

ln zi s.t. g(x) + z = 0

Following the same derivations as for the convex quadratic case we arrive at the
(reduced) Newton system

[−Q(x, y) A(x)T

A(x) �D

] [
∆x

−∆y

]
=

[∇ f (x) + A(x)T y
−g(x) − µY −1e

]
(4)

∆z = µY −1e − Ze − ZY −1∆y,

123

140 J. Gondzio, A. Grothey

where �D = ZY −1 is a diagonal scaling matrix and A(x) = ∇g(x), Q(x, y) =
∇2 f (x)+∑m

i=1 yi∇2gi (x). The matrix involved in this set of linear equations is sym-
metric and indefinite. For convex optimization problem (when f and g are convex),
the matrix Q(x) is positive semi-definite and if f is strictly convex, Q(x) is positive
definite. Similarly to the case of quadratic programming by eliminating ∆x from the
first equation we could reduce this system further to the form of normal equations

(
A(x)Q(x, y)−1A(x)T + ZY −1

)
∆y = bNLP.

2.3 Indefinite systems in interior point methods

The two systems (3) and (4) have many similarities. In (3) only the diagonal scaling
matrix �P changes from iteration to iteration; in the case of nonlinear programming
the matrix �D = ZY −1 and the matrices Q(x, y) and A(x) in (4) change in every
iteration.

To simplify notation in the following sections we will assume that A and Q are
constant matrices as if we were concerned with the quadratic optimization problems.

Every iteration of the interior point method for linear, quadratic or nonlinear pro-
gramming requires the solution of a possibly large and almost always sparse linear
system

[−Q − �−1
P AT

A �D

] [
∆x
∆y

]
=

[
b1
b2

]
. (5)

In this system, �P ∈ Rn×n and �D ∈ Rm×m are diagonal scaling matrices with
strictly positive elements. Depending on the problem type one or both matrices �P

and �D may be present in this system. For linear and quadratic programs with equality
constraints �D = 0. For nonlinear programs with inequality constraints (and variables
without sign restriction) �−1

P = 0. For ease of presentation we assume that we deal
with convex programs hence the Hessian Q ∈ Rn×n is a symmetric positive definite
matrix. A ∈ Rm×n is the matrix of linear constraints (or the linearization of nonlinear
constraints); we assume it has a full rank.

Note that the matrix in (5) changes numerically but not structurally at every iter-
ation. It is therefore advantageous to separate the symbolic factorisation phase that
determines a sparsity preserving pivot order from the numerical factorisation phase.
The symbolic factorisation phase only needs to be done once at the beginning of the
interior point algorithm. However the matrix in (5) is indefinite. The factorisation of
a general indefinite matrix into L DLT form requires the use of 2 × 2 block pivots
which appear on the diagonal of D (Arioli et al. 1989; Duff et al. 1987). The pivot
order and appearance of 2 × 2 pivots strongly depend on the numerical values of the
pivots, preventing the separation of symbolic and numerical factorisation.

However the augmented system matrix can be transformed into a quasi-definite

matrix. A quasi-definite matrix has the form
[−E AT

A F

]
, where E and F are sym-

metric positive definite matrices and A has full rank. As shown in Vanderbei (1995),

123

Exploiting structure in parallel implementation of interior point methods for optimization 141

quasi-definite matrices are strongly factorisable, i.e., a Cholesky-like factorisation
L DLT with a diagonal D exists for any symmetric row and column permutation of
the quasi-definite matrix.

We achieve this transformation by the use of a regularisation approach as in Altman
and Gondzio (1999). Namely, whenever a close-to-zero pivot is encountered we add
a small perturbation to the pivot. Consequently, we deal with the matrix

HR =
[−Q − �−1

P AT

A �D

]
+

[−RP 0
0 RD

]
, (6)

which is quasi-definite. The diagonal positive definite matrices RP ∈ Rn×n and
RD ∈ Rm×m can be interpreted as adding proximal terms (regularisations) to
the primal and dual objective functions, respectively. In the method of Altman and
Gondzio (1999) the entries of the regularising matrices are chosen dynamically: neg-
ligibly small terms are used for all acceptable pivots and the stronger regularisation
terms are used whenever a dangerously small pivot candidate appears. The use of dy-
namic regularisation introduces little perturbation to the original system because the
regularisation concentrates uniquely on potentially unstable pivots. The use of primal
and dual regularisations makes the factorisation of quasi-definite matrix numerically
stable and therefore viable for application in the context of interior point methods.

3 Exploiting nested block-structure

3.1 Elimination tree

Consider a sparse triangular matrix L ∈ R�×�. Following Duff et al. (1987) and
George and Liu (1989) we associate with this matrix an elimination tree T , a graph
with � nodes {1, 2, . . . , �} and � − 1 arcs connecting a given node j with its ancestor
node:

a = min{i > j | li j �= 0}.

If L is irreducible then T is indeed a tree; for a reducible matrix (decomposable to
block-diagonal form) T is a forest of trees associated with each irreducible diagonal
block. An example in Fig. 1 displays the sparsity patterns of a symmetric 8×8 matrix
Φ, its Cholesky factor L and the associated elimination tree T . The nonzero ele-
ments in the matrix are denoted with x and the fill-in elements in the Cholesky factor
with f .

The tree defines a precedence of elimination operations: if a is an ancestor of j
then column j has to be processed before column a. By analysing the elimination
tree one may deduce the best way to exploit parallelism in the computation of Chole-
sky factor. For the matrix presented in Fig. 1 the decomposition can be performed
independently for three buckets of columns: {3}, {1, 5} and {2, 4} corresponding to
independent branches of the tree. Then the last two contribute to the column 6 and

123

142 J. Gondzio, A. Grothey

5 4

1 2

6 3

7

8

Fig. 1 Matrix Φ, its Cholesky factor L and the associated elimination tree T

3 7

61 2 4 5

8

Fig. 2 Matrix Φ, its Cholesky factor L and the associated elimination tree T

this column together with the first bucket contribute to column 7, and eventually to
column 8.

The elimination tree changes when the matrix is re-ordered using symmetric row
and column permutations. Obviously a balanced elimination tree where all branches
have a similar length is better suited to parallelism, than one where most nodes are in
one long branch. However finding a re-ordering of the matrix that leads to a balanced
elimination tree is a non-trivial task.

In many situations however information about how to create a balanced elimina-
tion tree is readily available. As a motivating example we display the nested bordered
diagonal matrix in Fig. 2 with its corresponding elimination tree. No fill-in is cre-
ated by factoring this matrix and furthermore its elimination tree is balanced. Nodes
{1, 2, 3} can be eliminated independent of {4, 5, 6, 7} and then each of the leaf nodes
{1, 2, 4, 5, 6} is independent of the others. While recognising such a structure in an
anonymous sparse matrix might require a considerable effort, many real life problems
possess a block structure of this pattern which is known at modelling time and could
hence be passed to the solver to exploit. OOPS is an interior point solver aimed at
exploiting known block elimination trees.

3.2 Nested block-structured matrices

By a block-structured matrix we understand a matrix that is composed of sub-matrices.
This could be a matrix whose sub-blocks form a particular sparse pattern, such as a
bordered block-diagonal or block-banded matrix (Fig. 3).

Alternatively, this matrix could be a structured sum of two matrices, such as the
rank-corrector matrix Ã = A + V V T , where V ∈ R

n×k has a small number of
columns, so that V V T is a low-rank correction to A.

123

Exploiting structure in parallel implementation of interior point methods for optimization 143

T
VV

Fig. 3 Different exploitable structures: primal- and dual block-angular, bordered block-diagonal,
block-banded and rank-corrector

Fig. 4 Nested block-structured constraint matrix with its tree representation

By a nested block-structured matrix we understand a matrix where each sub-matrix
is a block-structured matrix itself. The particular structure of the sub-matrix might
well be different from the structure of the parent matrix. There is no limit on the depth
to which this nesting can be extended.

Nested block-structured matrices occur frequently in applications. Multistage
stochastic programming, where every modelled stage corresponds to one level of
nesting in the resulting system matrix is just one example. Other examples are various
network problems (joint optimal synthesis of base and spare network capacity,
multi-commodity network flow problems, etc) solved in telecommunications appli-
cations (Gondzio and Sarkissian 2003; Gondzio and Grothey 2003). Some formu-
lations of Support Vector Machines (Cristianini and Shawe-Taylor 2000; Ferris and
Munson 2003) have system matrices of rank-corrector structure, as have some convex
reformulations of Markowitz-type financial planning problems (Gondzio and Grothey
2007a,b). Rank-corrector structure also occurs when the Hessian matrix of a nonlin-
ear programming problem is not known explicitly but estimated by a quasi-Newton
scheme. Adding uncertainty to an already structured problem such as in stochastic
network optimization also leads to nested structure (Gondzio and Grothey 2006b;
Colombo et al. 2006). In most cases the structure of the problem (or at least the pro-
cess generating the structure) is known to the modeller. We therefore assume that the
structure is also known to the solver, we do not try to automatically detect the structure.

The nested block-structure of a matrix can be thought of as a tree. Its root is the
whole matrix and every block of a particular sub-matrix is a child node of the node
representing this sub-matrix. Leaf nodes correspond to the elementary sub-matrices
that can no longer be divided into blocks. With every node of the tree we associate
information about the type of structure this node represents. Figure 4 shows an example
of a nested block-structured matrix together with the tree that represents it.

The partitioning of the constraint matrix A into blocks induces a partitioning of
associated primal and dual vectors into subvectors. The tree representation of the

123

144 J. Gondzio, A. Grothey

matrix therefore implies a tree representation of vectors in the primal and dual spaces
(Fig. 4). OOPS uses VectorTree and StructuredVector classes to represent
the vector tree and a vector defined on this tree. We will discuss in detail the relations
between the matrix tree and the associated vector trees in Sect. 4.4.

3.3 Node-oriented linear algebra

Efficient linear algebra routines to exploit a certain known block-structure of a problem
are well known and a multitude of different implementations exist (Birge and Qi 1988;
Grigoriadis and Khachiyan 1996; Lustig and Li 1992). The reader interested in other
parallel developments for optimization should consult (De Leone et al. 1998; Migdalas
et al. 2003; Blomvall 2003; Linderoth and Wright 2003) and the references therein.
Every different structure however needs its own linear algebra implementation. In
principle nested structures could be exploited in the same way, however the coding
effort involved is tremendously magnified, as is the multitude of different combined
structures that would need to be covered.

The design of OOPS is based on the fact that any method supported by our linear
algebra library can be performed by working through the tree: At every node evaluat-
ing the required linear algebra operation for the matrix corresponding to this node can
be broken down into a sequence of operations performed on its sub-blocks (i.e. child
nodes in the tree). The exact sequence of these operations does of course depend on the
type of structure present at this node. The crucial observation is that at this particular
node the type of its child-node is of no importance, as long as they can perform the
operations they are asked to do. How the operations are performed on the children
nodes is of no concern to the parent.

This is the basis of the object-oriented design of OOPS: we introduce a Matrix
interface, a collection of linear algebra routines (methods) that need to be implemented
for all supported structures. Every node of the matrix tree is then represented by an
object of Matrix-type. When an implementation of a particular method needs access
to its subnodes, it does so by calling its subnodes Matrix methods, which will then
invoke an efficient way of performing the required operation on the child.

Clearly only one implementation of each method is needed for each type of struc-
ture that we want to exploit: For every such structure we have one implementation of
the Matrix interface. A nested block-structured matrix is represented in OOPS as its
tree (as in Fig. 4), where each node is an object of one of the classes that implement
the Matrix interface (Fig. 5).

3.4 Structured augmented system matrices

Since our library is designed for use in IPMs for quadratic or nonlinear program-
ming our main interest is in exploiting structure in the augmented system

matrix Φ =
[−Q − �−1

P AT

A �D

]
. The question of whether an exploitable nested

block-structure of the matrices A and Q can be combined into an exploitable structure
of Φ seems non-trivial. However, this can always be done in a generic way.

123

Exploiting structure in parallel implementation of interior point methods for optimization 145

Di

Bi

Rank corrector

implementations

D

R

general sparse

linear algebra

Schur complement

Implementations based on
M

at
ri

x
In

te
rf

ac
e

Fig. 5 The matrix interface and several implementations of it: building blocks for the tree-structure. Any
of BorderedBlockDiagonal, RankCorrector, SparseMatrix can be used as implementations
of the Matrix interface. BorderedBlockDiagonal and RankCorrector have submatrices which
in turn are declared as Matrix and need an implementation specified

Fig. 6 Dual block-angular A
and implied structure of Q
and Φ

To see this, note that since A and Q by necessity have the same column dimension,
we can force the use of the column vector tree implied by the nested block division of
A onto Q. This implies a nested block division of Q, i.e. the division of the rows and
columns of Q into blocks and sub-blocks is given by the division used for the columns
of A. It is conceivable that this process might lead to an undesirable block-structure
in Q, at worst every sub-block of Q might contain non-zero elements. However it is
often possible to move non-zeros of Q into a more convenient block by changes of
the model (Gondzio and Grothey 2007a). Note that these are changes that improve
the sparsity pattern of the augmented system matrix: they would be beneficial for any
solution algorithm and are not a peculiar requirement of our design approach.

Figures 6, 7, and 8 give examples of how a certain block structure of A would
impose a structure on Q and Φ. In these examples the shaded part of the Q matrix
indicates blocks in which nonzeros would not harm the structure of Φ that is imposed
by A. Should nonzeros occur in other blocks of Q then either the problem would
have to be re-modelled, or Q could be represented as a superimposition of several
structures (i.e. if Q had entries in the border blocks in Fig. 8, Q could be represented
as a bordered block-diagonal matrix with one diagonal block, which would then be of
banded structure).

Combining the structured A and Q matrices into a structured augmented system
matrix is equivalent to re-ordering the rows and columns of Φ. The result of this pro-
cedure is a matrix tree whose leaf nodes are generalised augmented system blocks of

the form

[−Q BT

A 0

]
where A, Q, B are unstructured sparse matrices (with B = A

123

146 J. Gondzio, A. Grothey

Fig. 7 Primal block-angular A
and implied structure of Q
and Φ

Fig. 8 Banded A and implied
structure of Q and Φ

in case of a diagonal block). We use a sub-interface AugSysMatrix of Matrix to
represent these blocks.

This combining procedure is generic: it does not depend on the types of the matri-
ces in question. It simply combines a block of the Q matrix with the blocks at the
corresponding position in the A and AT part. While the combining is generic, the type
of Matrix that is used to represent the structured augmented system depends on the
types of A and Q. The combining is therefore performed by a method makeAug-
System of the Matrix class. It will do the following operations:
From the input A, Q, B (=A if diagonal block).

– Determine the best combined Matrix-type given the types of A, Q and B.
– Create this block of the augmented System matrix, by combining the constituent

matrices.

This combining of the blocks is done by recursively calling the makeAugSys-
tem method for the sub-blocks of A, B and Q. This way sub-augmented system
blocks (like the ones in Figs. 6, 7, 8) that consists themselves of structured matrices
will be further re-ordered, until the whole augmented system matrix is a nested
block-structured matrix. In Gondzio and Grothey (2007a) we give an example of
how a block-structured augmented system with three levels of nesting is re-ordered
by this process.

It is worth noting that this procedure requires no further memory to store the reor-
dered augmented system matrix Φ. Its leaf node matrices are identical to those already
present in A and Q. No physical re-ordering of memory entries is done, the procedure
merely creates a new tree of matrix blocks re-using the already existing leaf-nodes.

4 Implementation

The primal–dual interior point method needs to access the system matrices A, Q and
the augmented system matrix Φ. In our implementation access to these matrices is
provided through two interfaces: SimpleMatrix representing a simple matrix
such as A or Q and AugSysMatrix representing an augmented system matrix Φ.

123

Exploiting structure in parallel implementation of interior point methods for optimization 147

The difference between these two classes is that SimpleMatrix in essence only
provides matrix-vector operations, whereas AugSysMatrix provides factorisation
and back-solve routines in addition to the matrix–vector operations. AugSysMatrix
is assumed to have SimpleMatrix components AB and Q and a Structured-
Vector component � = (�P ,�D) in the form

[−Q − �−1
P BT

A �D

]
.

An AugSysMatrix can either be a diagonal block (in which case it is symmetric and
B = A) or non-diagonal in which case � is not present. Both the SimpleMatrix
and AugSysMatrix interfaces are sub-interfaces of Matrix.

4.1 Flow of control

Constructor routines exist to build the matrices A and Q from their constituting
blocks for different implementations of SimpleMatrix. Once matrices A, Q are
constructed A.makeAugSystem(Q,B,Theta) is called to create the augmented
system matrix. makeAugSystem determines from the types of its two input
SimpleMatrix the appropriate type of the AugSysMatrix and constructs a cor-
responding object by calling its constructor recursively with the appropriate children
of A and Q. Note that this process merely sets up pointer structures: The actual
SparseMatrix leaf nodes that make up Φ are identical to those that make up A
and Q; these leaf nodes are re-used when building Φ.

It would be possible and worthwhile to automate the construction by the use of a
modelling language that allows the modeller to encode information about the problem
structure into the model. The modelling language would need to support the creation
of leaf node matrices (probably from a common core matrix), and provide support for
various structure generating processes, such as stochasticity and discretisations over
time and space. Further it would need to support nonlinear problems. We are not aware
of any modelling language that satisfies these conditions. SMPS (Birge et al. 1987)
(the stochastic programming extension of MPS) goes some way towards it, and an
SMPS interface to our solver exists.

4.2 The SimpleMatrix interface

The SimpleMatrix interface provides routines to construct the structured prob-
lem matrices A and Q and to do simple matrix-vector-type operations on them. The
interface defines the following methods

– SimpleMatrix Constructor(...)
– StructuredVector matrixTimesVector(StructuredVector)
– StructuredVector matrixTransTimesVector

(StructuredVector)
– StructuredVector getColumn/Row(int)

123

148 J. Gondzio, A. Grothey

– StructuredSparseVector getSparseColumn/Row(int)
– VectorTree getPrimal/DualTree(void)
– AugSysMatrix makeAugSystem(SimpleMatrix Q,

SimpleMatrix B, StructuredVector theta)

It thus includes the capability of performing matrix-vector products, retrieving a
dense or sparse row or column from the matrix and setting up further structures like
the primal/dual and the augmented system matrix. In OOPS the following classes
implement the SimpleMatrix interface:

SimpleSparseMatrix general sparse matrix
SimpleDenseMatrix general dense matrix
SimpleNetworkMatrix arc-node incidence matrix
SimpleBlockDiagonalMatrix block-diagonal
SimpleBorderedBlockDiagonalMatrix block-diagonal with dense

row and column border
SimplePrimalBlockAngularMatrix block-diagonal with dense

row border
SimpleDualBlockAngularMatrix block-diagonal with dense

column border
SimpleRankCorrectorMatrix A + V V T , where V has

small number of columns

4.3 The AugSysMatrix interface

The AugSysMatrix interface is intended to represent an augmented system matrix

of the form Φ =
[−Q − �−1

P BT

A �D

]
. It consists of references to its constituting parts

A, Q, � and B (identical to A if symmetric). The interface supports the same methods
as SimpleMatrix but in addition also factorisation and back-solve routines (the
latter in sparse and dense modes):

– void symbolicFactorization(void)
– void computeCholesky(void)
– StructuredVector solveCholesky(StructuredVector)
– StructuredVector solveL/D/Lt(StructuredVector)
– StructuredVector solveSparseCholesky

(StructuredSparseVector)
– StructuredSparseVector solveSparseL/D/Lt

(StructuredSparse-Vector)

Generally the implementations of this interface breaks down the computations of
matrix–vector type methods into computations on its sub-parts, calling the appropriate
method of the SparseMatrix representing A, B and Q. The method
symbolicFactorization determines a sparsity preserving row/column
re-ordering and creates data-structures to store the re-ordered augmented system ma-
trix and its factorisation. computeCholesky performs the numerical phase of the

123

Exploiting structure in parallel implementation of interior point methods for optimization 149

factorisation: building the (re-ordered) augmented system matrix and finding a repre-
sentation of its Cholesky factors. Not all implementing classes use an implicit factori-
sation that can be represented in the L DLT format. Therefore some classes might not
implement the solveL/D/Lt-methods. Accordingly some of the implementations
of the methods might offer different alternatives depending on whether its children sup-
port the solveL/D/Lt-methods. In addition some implementations (such as those
using an iterative solver) might not use a Cholesky-type factorisation at all. In this case
computeCholesky builds a preconditioner for the system and solveCholesky
performs the iterations of a preconditioned conjugate gradient scheme.

The AugSysMatrix interface is implemented in OOPS by

SparseAugSysMatrix sparse leaf node
augmented system matrix

DenseAugSysMatrix dense leaf node
augmented system matrix

BlockDiagonalAugSysMatrix block-diagonal
BorderedBlockDiagonalAugSysMatrix block-diagonal with dense

row and column border
RankCorrectorAugSysMatrix Q of the form Q̃ + V V T

For both the SimpleMatrix and AugSysMatrix interface, the implementing
classes can be classified as either leaf node classes such as Dense, Sparse or
Network or the complex classes, such as BorderBlockDiagonal or Rank-
Corrector. The latter are constituted from sub-matrices which themselves are of
type SimpleMatrix or AugSysMatrix. The crucial idea on which the design of
our library is based is that an efficient implementation of all methods for a complex
class can be reduced to a sequence of methods performed on its constituents. The
top-level class here does not need to know the exact type of its constituent objects nor
whether they themselves are of leaf-node-type or complex, it merely needs to know
that they support the methods of the interface and assumes that they do so in a way
most efficient for their particular structure (Fig. 5).

4.4 The VectorTree and StructuredVector Classes

Most of the Matrix operations need to be performed on (or with) vectors. In this sec-
tion when talking about vectors we generally mean the primal/dual iterates (xk, yk, sk)
of the interior point method. These will be dense vectors, hence we present this section
as applicable to dense vectors (represented by the StructuredVector class) For
certain sub-tasks of the factorisation or back-solve routines, sparse vectors are prefera-
ble: hence we have also a mirror implementation of aStructuredSparseVector
class.

Since the implementations of the Matrix-methods generally break operations
down to a sequence of operations on sub-blocks of matrices, we need to be able
to break vectors down into sub-vectors in a compatible fashion. This is further
complicated by the requirement that the implementation should also work in

123

150 J. Gondzio, A. Grothey

Fig. 9 Primal and dual vector
tree derived from structured
matrix

6
0

1

2

3

4

5

7

8

9

1

2

0

1 2

3 4

5 6 7 8 9 10 11

primal tree

dual tree2
1

parallel, where each processor only knows (and has memory allocated for) a part
of the vector.

The information of what is a compatible vector to a particular block-structured
matrix is carried in the VectorTreeclass. The VectorTreeclass is constructed
from the corresponding Matrix by its getPrimalTree, getDualTreemethod.
Note that rectangular matrices usually have different primal and dual VectorTrees.

Figure 9 gives an example of the primal and dual tree corresponding to a
block-structured matrix. Every node of the VectorTreecarries information on the
structure of this node and on how this node fits into the complete vector:

1. number of children, array of children (array of VectorTrees),
2. start and end of this node in absolute indices,
3. index number (of this node in the tree).

The StructuredVector class represents a vector corresponding to a given
VectorTree. That is it supports the necessary operation to access the sub-vector
corresponding to every node of the VectorTree. Note that this is true even if the
actual values of the vector are distributed among several processors. The representa-
tion of a vector as a StructuredVector consists essentially of two layers. The
bottom layer is simply an array of doubles storing all the vector elements that are
known on this processor. Keeping all the dense elements of the vector consecutively in
memory has obvious cache advantages. The second layer has the necessary informa-
tion to access these elements by nodes of theVectorTree. An example of the primal
VectorTreeassociated with the structured matrix in Fig. 9 is displayed in Fig. 10.

This second layer is an array ofStructuredVector objects (one corresponding
to each node of the tree). Note that the sub-vector corresponding to a particular node of
the VectorTreeis a StructuredVector as well, so it is sensible to represent it
by the same structure that represents the complete vector. Each StructuredVec-
tor object in the second layer has the following instance variables

– node in VectorTreecorresponding to this StructuredVector,
– pointer to dense element information (if on this processor),
– pointer to the complete array of StructuredVectors.

123

Exploiting structure in parallel implementation of interior point methods for optimization 151

Layer 1: Dense Vector Elements

Layer 2: StructuredVector Elements with Tree

105 6 7 8 9 11

2

4

0

1

3

Fig. 10 The two layers of the vector representation: the ovals represent the StructuredVector nodes
together with a pointer to the start of this node’s dense elements in memory

Fig. 11 Building the
augmented system tree from
primal and dual tree: solid lines
show the augmented system tree
and dashed lines the primal/dual
trees

Augmented System Tree

Primal Tree Dual Tree

Note that all other information (such as data on this processor, length of data cor-
responding to this subvector, children if any, and indices of these children in the
StructuredVectors array) can be obtained from the corresponding node in the
VectorTree.

Since the interior point solver OOPS is working with the augmented system we
need to be able to access the primal and dual vectors together as one vector structure.
In this case the subvectors of the augmented system vector should not be the primal
and dual vectors, but again augmented system vectors corresponding to submatrices
of the augmented system consisting of interleaved primal and dual vector parts. This
layout can be achieved by combining the equivalent nodes of the primal and dual
VectorTrees into augmented system nodes and building a separate augmented
system VectorTreefrom these (Fig. 11).

Note that in our implementation we go the opposite route (for reasons of cache
efficiency): The VectorTreecorresponding to the augmented system is created
first—by calling the appropriate method of the Matrix interface. During this pro-
cess nodes are labelled depending on whether they belong to the primal or dual part

123

152 J. Gondzio, A. Grothey

of the vector. Based on this information separate VectorTrees can be created later
to access only the primal or dual nodes of the augmented system vector when needed.

OOPS is written largely in C/C++. Some bottom level routines that implement the
elementary sparse matrix factorisation and back-solves are written in FORTRAN for
efficiency reasons.

The parallel implementation of OOPS is targeted at a distributed memory archi-
tecture and uses message passing via MPI. This choice offers flexibility concerning
the choice of platform. OOPS has been run on a variety of platforms ranging from a
network of PCs to dedicated massively parallel machines.

5 Implementations of the Matrix interface

5.1 The BorderedBlockDiagonalAugSysMatrix class

This class represents an augmented system matrix with symmetric bordered
block-diagonal structure:

Φ =

⎛

⎜⎜⎜⎝

Φ1 BT
1

. . .
...

Φn BT
n

B1 · · · Bn Φ0

⎞

⎟⎟⎟⎠ , (7)

where Φi ∈ Rni ×ni , i = 0, . . . , n and Bi ∈ Rn0×ni , i = 1, . . . , n. Note that since
this is a complex class it does not use references to its constituent A, Q and � blocks.
It therefore can represent any matrix of the above form. Matrix Φ has N = ∑n

i=0 ni

rows and columns. Blocks of this structure are created when merging the components
A and Q of mixed block-diagonal and/or block-angular structure. We can obtain a
block-Cholesky type decomposition of the matrix

Φ = L DLT

by employing the Schur-complement mechanism as

L =

⎛

⎜⎜⎜⎝

L1
. . .

Ln

Ln,1 · · · Ln,n Lc

⎞

⎟⎟⎟⎠ , D =

⎛

⎜⎜⎜⎝

D1
. . .

Dn

Dc

⎞

⎟⎟⎟⎠ (8a)

where

Φi = Li Di LT
i (8b)

Ln,i = Bi L−T
i D−1

i (8c)

123

Exploiting structure in parallel implementation of interior point methods for optimization 153

C = Φ0 −
n∑

i=1

BiΦ
−1
i BT

i = Lc Dc LT
c (8d)

Formula (8b) needs some additional comments. As will become clear further down,
Li and Di are only ever accessed in the form L−1

i b, D−1
i b, L−T

i b, that is through
Φi ’s solveL/D/Lt methods. The only constraint placed on the form of Li , Di is
that the sequence of calls solveL, solveD, solveLt is equivalent to a call
to solveCholesky (i.e. formula (8b) holds). Should the class representing Φi use
an implicit factorisation that does not support a solveL method, we can simply set
Di = Φi and Li = I . With these settings the rest of the analysis below stays cor-
rect. For the implementation, a class (such as RankCorrectorAugSysMatrix)
that does not support solveL can set solveD as a synonym for solveCholesky
and solveL/Lt as do-nothing (i.e. return the input vector). If solveL is sup-
ported the back-solve routine below is slightly more efficient (requiring 3 calls to Φi.
solveL/Lt rather than the equivalent of 4 (2 times solveCholesky) otherwise.

Representation (8) can be used to compute the solution to the system

Φx = b,

where x = (x1, . . . , xn, x0)
T , b = (b1, . . . , bn, b0)

T as follows

zi = L−1
i bi , i = 1, . . . , n (9a)

z0 = L−1
c

(
b0 −

n∑

i=1

Ln,i zi

)
(9b)

yi = D−1
i zi , i = 0, . . . , n (9c)

x0 = L−T
c y0 (9d)

xi = L−T
i

(
yi − LT

n,i x0

)
, i = 1, . . . , n. (9e)

Note that the matrices Ln,i are only used in (9b, 9e) for two matrix-vector multiplica-
tions each. On the other hand the computation of Ln,i by (8c) would require ni solves
with matrix LT

i . In certain situations it is more efficient not to compute Ln,i explicitly,
but evaluate (9b, 9e) as

z0 = L−1
c

(
b0 −

n∑

i=1

Bi L−T
i D−1

i zi

)
(9b′)

xi = L−T
i

(
yi − D−1

i L−1
i BT

i x0

)
, i = 1, . . . , n (9e′)

replacing the matrix–vector product with a back-solve involving Li . Because of this
Li , Di , Lc, Dc can be seen as an implicit Cholesky factorisation of Φ.

123

154 J. Gondzio, A. Grothey

Further the sum to compute C in (8d) is often best calculated from terms (L−1
i BT

i)T

D−1
i (L−1

i BT
i), which in turn are best calculated as sparse outer products of the sparse

rows of L−1
i BT

i .
Formulae (8) and (9) rely on the ability to factorize Φi and the resulting

Schur-complement matrix Lc in a stable manner. This is guaranteed within the IPM
framework by the use of primal–dual regularization as in (6). See also Altman and
Gondzio (1999) for a discussion of these issues.

All these computations are done naturally in our object-oriented environment:
(8b) requires a call to computeCholesky for each of the diagonal parts Φi of Φ.
The sum in (8d) is formed by B[i].getSparseRow(...) followed by Φ[i].
solveSparseL/D(...) and an outer product ofStructuredSparseVector
objects to create C as a SimpleDenseMatrix. The back-solves can also be broken
down into AugSysMatrix methods performed on Φi , Bi and C .

5.2 The RankCorrectorAugSysMatrix class

This class represents a matrix Φ = Φ̃ + V V T that is a combination of an (easily
invertible) part Φ̃ ∈ R

n×n plus a low rank update V V T , where V ∈ R
n×k and k is

small. Its implementation is based on the Sherman–Morrison–Woodbury formula

Φ−1 = Φ̃−1 − Φ̃−1V (I + V T Φ̃−1V)−1V T Φ̃−1

which implies that the system Φx = b can be alternatively solved by

W = Φ̃−1V (10a)

C = I + V T W (10b)

y = Φ̃−1b (10c)

x = y − WC−1V T y (10d)

W and C−1 can be seen as an implicit representation of the inverse of Φ. The
factorisation and back-solve routine therefore consist of the following steps:

computeCholesky:

C = DenseMatrix.identity(k,k)
Φ.computeCholesky
for i=1,k

u = V.getSparseColumn(i)
W[i] = Φ.solveCholesky(u)
for j=1,k

v = V.getSparseColumn(j)
C[i][j] += v.dotProd(W[i])

end
end
C.computeCholesky

solveCholesky(b):

y = Φ.solveCholesky(b)
tmp1 = V.matrixTransTimesVector(y)
tmp2 = C.solveCholesky(tmp1)
tmp3 = W.matrixTimesVector(tmp2)
y.subtract(tmp3)

123

Exploiting structure in parallel implementation of interior point methods for optimization 155

As pointed out above, the implicit factorisation in this class does not support the
concept of separate solveL/D/Lt methods. As suggested solveD is therefore
equivalent to solveCholesky and solveL/Lt are empty methods.

5.3 Sparse elementary matrices: the SparseAugSysMatrix class

In any sparse nested block-structured matrix the leaf nodes are eventually represented
by sparse matrices. It is therefore important to include an efficient implementation
of a SparseMatrix class in our linear algebra library. The implementation of this
class follows very closely traditional sparse linear algebra implementations for inte-
rior point methods including separation of symbolic and numerical factorisation and
regularisation to avoid two-by-two pivoting for augmented systems (Sect. 2.3).

6 Parallelisation

Due to the block-structure of many of the classes implementing the Matrix inter-
face, their methods lend themselves naturally to parallelisation. There are two main
advantages in parallelisation. Firstly there is a speed gain by distributing compu-
tations among several processors. This is especially the case with block structured
operations where the computations break down into sub-tasks that can be computed
independently. The second advantage concerns memory requirement: If computations
are shared between different processors, a significant amount of problem data is only
required on a subset of processors. This leads to less memory needed on each pro-
cessor (thereby enabling the solution of problems that might otherwise not fit into the
memory of a single machine). Spreading the data between processors further leads to
more efficient caching on every processor and hence a further speed gain.

In OOPS parallelism is implemented as follows: Every node i of the matrix tree has
a set of processors P(i) assigned to it. These processors between them share all the
work needed to perform any of the Matrix methods on this node and its children.
Data is organised in memory in such a manner that the processors in P(i) between
them have all the data necessary to perform these operations. OOPS addresses both
these issues in a manner consistent with its object-oriented design: the responsibil-
ity for distribution of computations and data lies with each class implementing the
Matrix interface.

The distribution of processors to child nodes is performed by a method
allocateProcessors which is part of the Matrix interface. allocatePro-
cessors(int[] procs) allocates a set P(i) of processors to node i . It takes
a range of processors and allocates them to its children in whatever way is sensi-
ble for the matrix-type that the implementing class represents, by calling the child’s
allocateProcessors method.

If the number of processors allocated to a node does not exactly match the num-
ber of blocks/children, the Matrix object in question will decide on how to pool
resources and computations in an optimal way for the required tasks.

Where the parent can allocate more processors than it has children (nodes high
up in the tree) more sophisticated strategies can be used that determine which child

123

156 J. Gondzio, A. Grothey

can benefit most from additional processors. Allocation of nodes to processors in a
nested-structure can therefore also be performed by working recursively on the tree.

Communications between processors are coordinated by the parent class (since
only this class has the necessary information on which processors are allocated to
which parts of the task).

Consider the example of the computeCholesky and solveLmethods from the
BorderedBlockDiagonalAugSysMatrix class discussed in Sect. 5.1.

Φ.factorise:

Φ1.factorise V1 = Φ1.solveL(BT
1) C1 = V T

1 D−1
1 V1 C1.add(Φ0)

.

.

.
.
.
.

.

.

. idle

Φn.factorise Vn = Φn.solveL(BT
n) Cn = V T

n D−1
n Vn idle

C
=

∑
C

i

C
.
f
a
c
t
o
r
i
s
e

x = Φ.solveL(b):

x1 = Φ1.solveL(b1) v1 = −Φ1.solveLt(D−1
1 x1) c1 = B1.times(v1) c1.add(b0)

.

.

.

.

.

.

.

.

. idle

xn = Φn.solveL(bn) vn = −Φn.solveLt(D−1
n xn) cn = Bn.times(vn) idle

c
=

∑
c i

x 0
=C

.
s
o
l
v
e
L

(c
)

The factorisations of the diagonal blocks Φi and the subsequent computations of
matrices Ci = Bi L−T

i D−1
i L−1

i BT
i are independent of each other, and are distrib-

uted among available processors. The computation of the Schur complement C =
Φ0 − ∑

i Ci requires communications between the processors and the result of the
final factorisation of C needs to be known on all processors allocated to the node. To
save on communications the factorisation of C is computed on all processors, implying
that the forming of C from the Ci ’s and Φ0 requires a global reduce operation.

Once the computation tasks are assigned to processors, the appropriate distribution
of problem data and child nodes can be derived on a ’need-to-know’ basis. In the
above example diagonal blocks Φi are distributed among the processors. The same
holds for the border blocks Bi . Φ0 is strictly speaking only needed on one proces-
sor, however it shares the same spatial location as the Schur complement C which is
needed everywhere, hence Φ0 is also allocated to all processors.

The distribution of VectorTreenodes follows the distribution of the correspond-
ing matrix nodes: Nodes xi are distributed, whereas the node corresponding to the
border blocks x0 is stored on all processors.

Figure 12 illustrates the allocation of problem data to processors for a nested bor-
dered block-diagonal matrix. It should be read by comparing it with the matrix and
vector tree representations from Figs. 4 and 9. Each level of Fig. 12 corresponds to
one level of nodes in the trees. The bottom-most layer corresponds to the whole matrix
(vector), the root node of each of the trees which is allocated to all processors. The
topmost layer corresponds to the leaf nodes describing elementary matrices and vector

123

Exploiting structure in parallel implementation of interior point methods for optimization 157

Fig. 12 Allocating matrix and
vector blocks to processors

11

2

3 3

2

1

5

6 6

5

654

1 2 3 1−3 4 5 6 1−6

6

5

3

2

4

4−6

4−6 4−6

1 2 3 1−3 1−3

44

1 2 3 1−3 4 5 6 4−6 1−6

1−6

4−6

6

5

4

1−3

3

2

1

parts. Since the matrix and vector data is held only in the leaf nodes this layer also
indicates on which processors different parts of the problem data are kept.

6.1 Loading the matrix: parallel program flow

Since the allocation of processors to nodes is done by a Matrix method, there is an
obvious bootstrapping problem: For the recursive allocation of processors to nodes,
the whole Matrix tree needs to be known to all processors. On the other hand as little
problem data as possible should be kept on each processor. To overcome this OOPS
implements the following bootstrapping procedure:

The complete matrix tree is kept on all processors. This includes the Matrix
objects containing the implementations of the linear algebra methods and pointers to
the child nodes (but no information about the problem data). Since this information
consists exclusively of pointers, very little memory is required.

On all processors not in P(i), node i in the matrix tree is replaced by a Fake
Matrix object. FakeMatrix is an implementation of the SimpleMatrix and
AugSysMatrix interfaces, that defines all methods to be empty. It has no data asso-
ciated with it and no children. It is a dummy node in the tree that causes all tree
operations to stop at this point.

In a second stage a recursive call to fillLeafNodes sets up the required prob-
lem data (i.e. sparse matrix entries, right-hand side and objective vectors) on each leaf
node. Due to the use of FakeMatrix this is done only on those processors that need
the data. This of course implies that every part of the problem data could be generated
on every processor. Either appropriate C/C++-routines must be present on all proces-
sors, or a modelling system is required to run on all processors. This is clearly not
desirable either. In a separate project (Grothey et al. 2009) we suggest a parallelisable
modelling system that generates problem data only on those processors that need the
data.

A useful side-effect of this setup is that most of the parallelisation of the linear
algebra methods is done automatically. A computation such as (8) and (9) is coded

123

158 J. Gondzio, A. Grothey

on every processor as written (indeed as it would be in a serial implementation). The
implementation trick used inFakeMatrix guarantees that every processor only does
those computations for which it has the required data. In effect a sum such as (9b)
or (8d) is distributed among all processors that can perform a part of it. All that is
needed differently from the serial implementation, is to sum up processor contributions
using the provided MPI Communicators. When working on complex matrix trees, this
layout ensures that complete branches that are allocated to a different processor are
skipped, since already the top-node of the branch is a FakeMatrix. Occasionally,
in summations such as C = Φ0 + ∑n

i=1 Ci we need to add an explicit test to make
sure that the matrix Φ0 is only added on one processor.

Below we give an overview of the bootstrapping phase:

1. Build the Matrix-tree on all processors. Data for sparse leaf matrices is not gen-
erated yet.

2. Call allocateProcessors recursively to allocate nodes in the tree to proces-
sors. On processors not in P(i) the Matrix object is replaced by FakeMatrix.

3. Create primal and dual VectorTreerecursively. They inherit their processor
allocation from the corresponding Matrix object in the associated augmented
system tree.

4. Another recursive call to Matrix method fillLeafNodes generates the data
describing matrix and vector parts in the leaf nodes on the appropriate processors
only.

5. Start interior point algorithm.

7 Numerical results

The power of the structure exploiting interior point solver has been demonstrated in a
wide range of applications. OOPS has been used to solve multistage stochastic port-
folio optimization problem on the UK High Performance computing facility HPCx
and the BlueGene/L machine at EPCC, Edinburgh with 1280 and 1024 processors
respectively. The largest of these problems solved had over 12 million scenarios and
1.01 × 109 decision variables (Gondzio and Grothey 2006a).

Good parallel scaling and superiority over commercial non structure exploiting
solver CPLEX has been demonstrated on a range of nonlinear variants of the portfolio
optimization problem (Gondzio and Grothey 2007a,b). Further OOPS has been used
to solve stochastic utility distribution problems (Gondzio and Grothey 2006b) and
stochastic network optimization problems (Colombo et al. 2006).

Acknowledgments We wish to thank the anonymous referee for the valuable comments. This paper was
supported by the Engineering and Physical Sciences Research Council of UK, EPSRC grant GR/R99683/01.

References

Altman A, Gondzio J (1999) Regularized symmetric indefinite systems in interior point methods for linear
and quadratic optimization. Optim Methods Softw 11(12):275–302

123

Exploiting structure in parallel implementation of interior point methods for optimization 159

Andersen ED, Gondzio J, Mészáros C, Xu X (1996) Implementation of interior point methods for large
scale linear programming. In: Terlaky T (ed) Interior point methods in mathematical programming.
Kluwer Academic Publishers, New York, pp 189–252

Arioli M, Duff IS, de Rijk PPM (1989) On the augmented system approach to sparse least-squares problems.
Numerische Mathematik 55:667–684

Benson S, McInnes LC, Moré JJ (2001) TAO users manual. Tech. Rep. ANL/MCS-TM-249, Argonne
National Laboratory

Birge J, Dempster M, Gassmann H, Gunn E, King A, Wallace S (1987) A standard input format for multi-
period stochastic linear programs. Comm Algorithms Newslett 17:1–19

Birge JR, Qi L (1988) Computing block-angular Karmarkar projections with applications to stochastic
programming. Manage Sci 34:1472–1479

Blomvall J (2003) A mulitstage stochastic programming algorithm suitable for parallel computing. Parallel
Comput 29:431–445

Blomvall J, Lindberg PO (2002) A Riccati-based primal interior point solver for multistage stochastic pro-
gramming. Eur J Oper Res 143:452–461

Colombo M, Gondzio J, Grothey A (2006) A warm-start approach for large-scale stochastic linear programs.
Technical Report MS-06-004, School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ,
Scotland, UK, August

Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel based
learning methods. Cambridge University Press, London

De Leone V, Murli A, Pardalos P, Toraldo G (eds) (1998) High performance algorithms and software in
nonlinear optimization. Kluwer Academic Publisher, New York

Duff IS, Erisman AM, Reid JK (1987) Direct methods for sparse matrices. Oxford University Press,
New York

Ferris MC, Munson TS (2003) Interior point methods for massive support vector machines. SIAM J Optim
13:783–804

George A, Liu JWH (1989) The evolution of the minimum degree ordering algorithm. SIAM Rev 31:1–19
Gertz EM, Wright SJ (2003) Object-oriented software for quadratic programming. ACM Trans Math Softw

29:58–81
Gondzio J, Grothey A (2003) Reoptimization with the primal–dual interior point method. SIAM J Optim

13:842–864
Gondzio J, Grothey A (2006a) Direct solution of linear systems of size 109 arising in optimization with

interior point methods. In: Wyrzykowski R (ed) Parallel Processing and Applied Mathematics. Lecture
Notes in Computer Science, vol 3911. Springer, Berlin, pp 513–525

Gondzio J, Grothey A (2006b), Solving distribution planning problems with the interior point method.
Technical Report MS-06-001, School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ,
Scotland, UK, February

Gondzio J, Grothey A (2007a) Parallel interior point solver for structured quadratic programs: Application
to financial planning problems. Ann Oper Res 152:319–339

Gondzio J, Grothey A (2007a) Solving nonlinear portfolio optimization problems with the primal–dual
interior point method. Eur J Oper Res 181:1019–1029

Gondzio J, Sarkissian R (2003) Parallel interior point solver for structured linear programs. Math Program
96:561–584

Grigoriadis MD, Khachiyan LG (1996) An interior point method for bordered block-diagonal linear pro-
grams. SIAM J Optim 6:913–932

Grothey A, Hogg J, Woodsend K, Colombo M, Gondzio J (2009) A structure-conveying parallelisable
modelling language for mathematical programming. In: Ciegis R, Henty D, Kågström B, Žilinskas J
(eds) Parallel scientific computing and optimization: advances and applications. Springer optimization
and its applications, vol 27. Springer, Berlin, pp 147–158

Linderoth J, Wright SJ (2003) Decomposition algorithms for stochastic programming on a computational
grid. Comput Optim Appl 24:207–250

Lustig IJ, Li G (1992) An implementation of a parallel primal–dual interior point method for multicom-
modity flow problems. Comput Optim Appl 1:141–161

Meza J, Oliva R, Hough P, Williams P (2007) OPT++: An object oriented toolkit for nonlinear optimization.
ACM Transactions on Mathematical Software 33, p. 12. Article 12, 27 pages

Migdalas A, Toraldo G, Kumar V (2003) Parallel computing in numerical optimization. Parallel Comput
29:373–373

123

160 J. Gondzio, A. Grothey

Steinbach M (2000) Hierarchical sparsity in multistage convex stochastic programs. In: Uryasev S,
Pardalos PM (eds) Stochastic optimization: algorithms and applications. Kluwer Academic Publishers,
New York, pp 363–388

Vanderbei RJ (1995) Symmetric quasidefinite matrices. SIAM J Optim 5:100–113
Wright SJ (1997) Primal–dual interior-point methods. SIAM, Philadelphia

123

	Exploiting structure in parallel implementation of interior point methods for optimization
	Abstract
	1 Introduction
	2 Linear algebra in interior point methods
	2.1 Linear and convex quadratic programming
	2.2 Nonlinear programming
	2.3 Indefinite systems in interior point methods

	3 Exploiting nested block-structure
	3.1 Elimination tree
	3.2 Nested block-structured matrices
	3.3 Node-oriented linear algebra
	3.4 Structured augmented system matrices

	4 Implementation
	4.1 Flow of control
	4.2 The SimpleMatrix interface
	4.3 The AugSysMatrix interface
	4.4 The VectorTreeandStructuredVector Classes

	5 Implementations of the Matrix interface
	5.1 The BorderedBlockDiagonalAugSysMatrix class
	5.2 The RankCorrectorAugSysMatrix class
	5.3 Sparse elementary matrices: the SparseAugSysMatrix class

	6 Parallelisation
	6.1 Loading the matrix: parallel program flow

	7 Numerical results
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

