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Abstract This paper extends previous work on the use of stochastic linear
programming to solve life-cycle investment problems. We combine the feature of
asset return predictability with practically relevant constraints arising in a life-cycle
investment context. The objective is to maximize the expected utility of consumption
over the lifetime and of bequest at the time of death of the investor. Asset returns and
state variables follow a first-order vector auto-regression and the associated uncer-
tainty is described by discrete scenario trees. To deal with the long time intervals
involved in life-cycle problems we consider a few short-term decisions (to exploit any
short-term return predictability), and incorporate a closed-form solution for the long,
subsequent steady-state period to account for end effects.

Keywords Life-cycle asset allocation · Stochastic linear programming ·
Scenario trees · VAR(1) process

1 Introduction

The classical treatments of strategic asset allocation can be traced back to
Samuelson (1969) and Merton (1969, 1971). In the light of Markowitz’ seminal papers
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188 A. Geyer et al.

on single-period portfolio selection, the early literature focused on conditions leading
to the optimality of myopic policies, i.e., conditions under which portfolio decisions
for multi-period problems coincide with those for single period problems. In addition,
the lack of computing power lead to formulate models driven by the quest for closed-
form solutions. To achieve these objectives, rather restrictive assumptions were made,
and many of these models’ results turned out to be inconsistent with conventional
wisdom as expressed by the so-called Samuelson puzzle: whereas one of the main
results from early multi-period portfolio models is that the fractions of risky assets
are constant over time, this contradicts the advice obtained from many professionals
in practice that investors should hold a share of risky assets which declines steadily as
they approach retirement (often called the age effect). Since then, many researchers
have tried to resolve this puzzle which is mainly rooted in some of the (simplifying)
assumptions used in early models (fixed planning horizon, time-constant investment
opportunities, no intermediate consumption, etc.).

Research in the area of life-cycle asset allocation models regained momentum in
the early 1990s for two main reasons: first, a number of economic factors increased the
number of people with sizeable wealth to invest (the “generation of heirs”), coupled
with increased uncertainty about the security of public pension systems. Second, the
enormous increase in computer power enabled the solution of models with more real-
istic assumptions. A number of additional features have been added to the classical
models, in many cases with the goal of resolving the Samuelson puzzle: stochas-
tic labor income, time-varying investment opportunities, parameter uncertainty (with
and without learning), special treatment of certain asset classes (real estate), and habit
formation, to name just the most important developments.

In contrast to other approaches in the literature using non-linear optimization (see,
e.g., Blomvall and Lindberg 2002; Gondzio and Grothey 2007), we use multi-period
stochastic linear programming (SLP) to solve the problem of optimal life-cycle asset
allocation and consumption. This method has been explicitly chosen with the practical
application of the approach in mind. Many features which are considered important for
investment decisions in practice can be easily incorporated when using SLP. For exam-
ple, personal characteristics of the investor can be taken into account (e.g., mortality
risk, risk attitude, retirement, future cash flows for major purchases or associated with
other life events). Combined with the availability of efficient solvers, this explains
why the SLP approach has been successfully applied to a wide range of problems
(see, e.g., Wallace and Ziemba 2005). To nest classical analytical results from this
area within our model, we maximize expected utility of consumption over the inves-
tor’s lifetime and expected utility of bequest rather than other objectives which can
be implemented more easily (e.g., piecewise linear or quadratic penalty functions, or
minimizing CVaR).

The paper is organized as follows: in Sect. 2 we provide a classification of the
more recent life-cycle asset allocation models based on the type of available solutions.
Section 3 describes the stochastic programming model, in particular the formulation
of the objective, the optimization approach for its linearization, and the generation of
scenarios. In Sect. 4 results from the SLP are compared to those in Campbell et al.
(2003), and results for an extended setting are presented. Section 5 concludes.
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2 Overview of solution methods

Many papers try to extend the classic Merton framework along different lines while
maintaining analytical solutions (see, e.g., Bodie et al. 1992; Balvers and Mitchell
1997; Kim and Omberg 1996; Wachter 2002; Liu 2007). Analytical solutions are
available for restrictive assumptions on the utility structure and the planning hori-
zon. Another set of models obtain solutions which are exact only under (generally less
stringent) assumptions, and approximately correct if these assumptions are not exactly
met. In some cases, these approximate solutions are available in closed form, while
others must be solved numerically. Approximate analytical solutions are provided by,
e.g., Campbell and Viceira (1999, 2001, 2002), Campbell et al. (2004), and Chacko
and Viceira (2005). Approximate numerical solutions can be found in, e.g., Schroder
and Skiadas (1999) and Campbell et al. (2003).

To give some examples for the restrictive assumptions mentioned above, a number
of the models from this category assume either a deterministic or an infinite plan-
ning horizon. Some of the finite-horizon models define utility over terminal wealth
only. These assumptions are clearly problematic for individuals who face an uncertain
lifetime and derive their utility mainly from what they consume during their lives, and
not only from their bequest.

An important reference for the present paper is Campbell et al. (2003). They model
asset returns and state variables as a first-order vector autoregression VAR(1) and
consider Epstein–Zin utility with an infinite planning horizon. Additional assump-
tions include the absence of borrowing and short-sale constraints. Linearizing the
portfolio return, the budget constraint, and the Euler equation, they arrive at a system
of linear-quadratic equations for portfolio weights and consumption as functions of
state variables. This system of equations can be solved analytically, yielding solutions
which are exact only for a special case (very short time intervals and elasticity of inter-
temporal substitution equal to one), and accurate approximations in its neighborhood.
In Sect. 4, we replicate their results as far as possible and subsequently exemplify the
application of the SLP approach by investigating aspects beyond the scope of their
setting, such as constraints on asset weights, transaction costs, and labor income.

Two main types of numerical solution methods can be found in the literature: One
approach works via grid methods discretizing the state space, the other is based on
Monte Carlo simulation. Grid discretizations are used in, among others, Brennan et al.
(1997), Barberis (2000), Campbell et al. (2001), Cocco et al. (2005), and Gomes and
Michaelides (2005). The main drawback of this approach is that the reduction in the
state-space dimensionality, which is crucial for the solution in terms of computation
time, requires to restrict the investment opportunity set (usually to one risky and one
riskless asset). This may be inappropriate for many investors. Detemple et al. (2003)
and Brandt et al. (2005) use simulation-based approaches. Detemple et al. approximate
deviations from a closed-form solution, while Brandt et al. provide an approach that
is inspired by the option pricing algorithm by Longstaff and Schwartz (2001).

The SLP used in the present paper has been applied successfully to a number of
related problems. To cite only a few examples, there are applications in insurance
(Cariño and Ziemba 1994, 1998; Cariño et al. 1998), and the pension fund industry
(e.g., Gondzio and Kouwenberg 2001). Zenios (1999) surveys large-scale applications
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of SLP to fixed income portfolio management. General aspects of applying such
models in a strategic asset allocation context are discussed in Ziemba and Mulvey
(1998)), Pflug and Swietanowski (2000), Gondzio and Kouwenberg (2001), Wallace
and Ziemba (2005), and Geyer and Ziemba (2007). Particular aspects that are relevant
in a life-cycle portfolio context are discussed in Geyer et al. (2007).

3 Model description

We consider the consumption and investment decisions of an investor with uncertain
lifetime. We start by introducing our notation and key variables. N is the number of
assets the investor can choose from. t denotes stages (points in time) and runs from
t = 0 (now) to t = T . T is the number of time intervals. τt is the number of years
between stage t and stage t + 1 and the total number of years covered (the planning
horizon) is given by τ = τ0 + · · · + τT −1. Given the current age of the investor we
define the planning horizon such that his maximum age is 101 years (the mortality
tables we use assign a conditional probability of 1 for a person to die between age 100
and 101).

3.1 Variables

The following (decision) variables are used in the model formulation:

C0 ≥ 0, C̃t ≥ 0 (t = 1, …, T − 1). . . consumption in t ; e.g., C̃2 is the amount
set aside in t = 2 for consumption between t = 2 and t = 3.
R̃i

t (t = 1, . . . , T ; i = 1, . . . , N ) . . . gross return of asset i for the period that ends
in t .
Pi

0 ≥ 0, P̃i
t ≥ 0 (t = 1, . . . , T − 1; i = 1, . . . , N ) . . . amount of asset i purchased

in t .
Si

0 ≥ 0, S̃i
t ≥ 0 (t = 1, . . . , T − 1; i = 1, . . . , N ) . . . amount of asset i sold in t .

qi
p and qi

s . . . transaction costs for purchases and sales of asset i .

W i
0, W̃ i

t (t = 1, . . . , T − 1; i = 1, . . . , N ) . . . total amount invested in asset i in
t ; e.g., W̃ i

2 is the amount invested in asset i in t = 2; in t = 3 the value of this
investment will be W̃ i

2 R̃i
3.

wi
0 . . . initial value of asset i (before transactions).

B̃t ≥ 0 (t = 1, . . . , T ) . . . bequest in t given by B̃t = ∑
R̃i

t W̃ i
t−1.

τt (t = 0, . . . , T − 1) . . . the number of years between stage t and stage t + 1.
ϕy . . . the (conditional) probability to survive the year following year y.
Φ(yt , τt ) . . . the probability to survive the period of length τt starting at stage t at
an age of yt years; Φ(yt , τt ) = ∏yt +τt −1

k=yt
ϕk .

Λt (t = 1, . . . , T − 1) . . . the probability to be alive at stage t (at an age of yt );
Λt = ∏t−1

k=0 Φ(yk, τk).
Θt (t = 1, . . . , T ) . . . the probability to die between stage t − 1 and t ;
Θt = Λt−1[1 − Φ(yt , τt )].
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Lt (t = 0, . . . , T − 1) . . . labor income in t ; e.g., L2 is the present value of labor
income received between t = 2 and t = 3.
Ft (t = 0, . . . , T −1) . . . fixed cash flow paid or received in t ; e.g., F2 is the present
value of cash flows paid or received between t = 2 and t = 3.
r . . . the risk-free interest rate.
γ . . . the coefficient of relative risk aversion.
δ . . . the investor’s time preference rate, d = exp{−δ} is the time discount factor,
and Dt is the time discount factor applicable at stage t :

Dt = exp

{

−δ

t−1∑

i=0

τi

}

.

The stochastic returns R̃i
t describe the uncertainty faced by the investor. The proce-

dure to simulate their values and to construct the scenario tree is described in Sect. 3.5.
C0, C̃t , W i

0, P̃i
t , S̃i

t , W̃ i
t and B̃t are the decision variables of the problem and their

values are obtained from the optimal solution of the stochastic linear program.
Labor income is computed on the basis of initial labor income L0, the annual labor

growth rate �, the number of years until retirement yr , and the fraction of income during
retirement fr . The annual stream of income before retirement is given by (the index
y denotes years) Ly = L0 exp{y�} (y = 1, . . . , yr ) and by Ly = frLyr exp{(y − yr )

�r }(y = yr + 1, . . . , τ ) after retirement, where �r is the growth rate of labor income
after retirement. The present value of labor income used in the budget constraints (see
below) is defined as

Lt =
kt∑

y= jt

Ly[(1 − Φ(yt , y − 1)(1 − ϕy)) exp{−r(y − jt + 1)}], (1)

where

jt = 1 +
t−1∑

i=0

τi kt = jt + τt − 1.

Φ(yt , y − 1) is the probability to survive until the beginning of year y given age yt

at stage t , and (1 − ϕy) is the probability to die in the subsequent year. Labor income
Ly is thus reduced by an amount that corresponds to the premium of a fairly priced
life insurance (Richard 1975).

3.2 Constraints

The budget equations are given by

C0 +
N∑

i=1

Pi
0(1 + qi

p) =
N∑

i=1

Si
0(1 − qi

s) + L0 + F0
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C̃t +
N∑

i=1

P̃i
t (1 + qi

p) =
N∑

i=1

S̃i
t (1 − qi

s) + Lt + Ft t = 1, . . . , T − 1.

The value of investments accumulates according to the following equations:

W i
0 = wi

0 + Pi
0 − Si

0 i = 1, . . . , N

W̃ i
t = R̃i

t W̃ i
t−1 + P̃i

t − S̃i
t t = 1, . . . , T − 1, i = 1, . . . , N

W̃ i
T = R̃i

T W̃ i
T −1 i = 1, . . . , N .

To model restrictions on the portfolio composition we use the constraints

li ≤ W̃ i
t

∑N
i=1 W̃ i

t

≤ ui t = 0, . . . , T − 1, (2)

where ui is the maximum and li the minimum weight of asset i in the portfolio. Short
sales can be excluded by li = 0 or limited by setting li equal to minus the maxi-
mum leverage of asset i . In general the decision variables W̃ i

t can become negative.
However, total wealth must be positive in all periods:

N∑

i=1

W̃ i
t ≥ 0 t = 0, . . . , T .

3.3 Objective

The objective is to maximize the expected utility of consumption over the lifetime and
of bequest at the time of death of the investor:

U (C0) + E

[
T∑

t=1

ΘtU (B̃t )Dt +
T −1∑

t=1

ΛtU (C̃t )Dt

]

−→ max .

U is a power utility function with constant relative risk aversion γ . Θt is the probability
to die between stage t − 1 and t , and Λt is the probability to be alive in t .

The variable C̃t is defined as the amount of money set aside for consumption
between stage t and t +1. If a small number of stages is used to keep the problem size
manageable, the time intervals between stages must be very long to cover the lifetime
of an investor. When stages cover more than 1 year, we assume that the amount C̃t

is not consumed at once but in annual parts c̃t, j , j = 0, 1, . . . , τt − 1. To account
for the fact that U (C̃t ) �= ∑

j U (c̃t, j ), Geyer et al. (2007) derive a relation between

C̃t and c̃t, j by optimizing sub-period consumption c̃t, j for any given C̃t . This allows
replacing the original decision variables C0 and C̃t (which refer to consumption in an
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entire period) by the annual consumption variables c0,0 and c̃t,0. We define

αt, j = exp

{
r − δ

γ

}

Φ(yt , j)1/γ

and

αt =
τt −1∑

j=0

Φ(yt , j)1/γ exp

{
j (r(1 − γ ) − δ)

γ

}

=
τt −1∑

j=0

αt, j exp{− jr}.

αt can be interpreted as a kind of “annuity factor”, taking into account the risk-free
interest rate, mortality risk, and the optimal allocation of consumption to sub-periods.
The budget constraints are now formulated as

α0c0,0 +
N∑

i=1

Pi
0(1 + qi

p) =
N∑

i=1

Si
0(1 − qi

s) + L0 + F0

αt c̃t,0 +
N∑

i=1

P̃i
t (1 + qi

p) =
N∑

i=1

S̃i
t (1 − qi

s) + Lt + Ft t = 1, . . . , T − 1.

Utility of consumption in t is formulated in terms of c̃t,0

U (C̃t ) =
τt −1∑

j=0

Φ(yt , j) exp{− jδ}U (c̃t,0αt, j ).

Since we consider non-linear objective functions (power utility of consumption and
bequest), this may raise the question why we use SLP rather than non-linear optimi-
zation techniques. While good solvers for non-linear programs are quite expensive,
several (stochastic) LP solvers are available for free (e.g., from the COIN project).

3.4 Choice of breakpoints

To be able to use linear programming solvers, non-linear objective functions need to
be linearized. For that purpose a function f (x) is approximated by m linear segments
between the breakpoints b j ( j = 0, . . . , m). The argument x is defined in terms of
non-negative decision variables v j associated with each segment:

x =
m+1∑

j=0

v j

0 ≤ v0 ≤ b0 vm+1 ≥ 0

0 ≤ v j ≤ b j − b j−1 j = 1, . . . , m.
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The slopes of the linear segments are given by

∆ j = f (b j ) − f (b j−1)

b j − b j−1

and f (x) is approximated by

f (x) ≈ ∆1v0 +
m∑

j=1

∆ jv j + ∆mvm+1.

The linearization of the objective function requires choosing the number and the
position of breakpoints.

We define separate breakpoints for consumption and bequest to account for the
different orders of magnitude of the two variables. In addition, these variables may
show considerable variation across stages which requires using different breakpoints
for each stage, too.

To define the minimum and maximum breakpoints for consumption we use closed-
form solutions from (Ingersoll 1987, p. 238, 242) and (Duffie 2001, p. 210) as a
guideline. To determine minimum and maximum breakpoints of bequest we consider
a simplified version of the problem. For all nodes of a specific stage we assume that
the fraction of consumed wealth and the asset allocation is the same. We use the same
returns that are subsequently used to solve the SLP. Then we define a random grid
of consumption-wealth ratios and asset allocations which obey leverage constraints
and other bounds. We evaluate the objective function for each element of the grid,
whereby we can use the exact form of the utility function. The optimal solution pro-
vides a rough guess for the order of magnitude and the dispersion of consumption
and bequest in each stage. This guess is used to define the minimum and maximum
breakpoints required for the linearization of the utility function.

For the remaining breakpoints we follow Geyer et al. (2007), who use the curva-
ture of the utility function to position the breakpoints, allocating more breakpoints
to areas with a greater curvature. In contrast to other alternatives considered, this
approach is faster because it requires no optimization. The algorithm first divides the
interval between b0

t and bm
t into n equally wide segments separated by the points

β
j

t ( j = 0, . . . , n) where β0
t = b0

t and βn
t = bm

t . The curvature for each β
j

t is defined
as (for details see Hanke and Huber 2008)

κ
j

t = U ′′(β j
t )

(1 + [U ′(β j
t )]2)3/2

j = 0, . . . , n.

In contrast to the second derivative, this measure is invariant to the orientation of a
curve in the plane. Figure 1 illustrates the relation between two utility functions and
their curvature.
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Fig. 1 Utility functions for risk aversions γ = 2 and γ = 4 together with their curvatures

The average curvature in each segment is the arithmetic mean of two consecutive
curvatures

κ
j
t = 0.5

(
κ

j−1
t + κ

j
t

)
j = 1, . . . , n.

The relative average curvature is given by

κ̂
j

t = κ
j
t

∑
k κk

t

j = 1, . . . , n

and is used to compute the number of breakpoints in each segment n j
t = [m · κ̂

j
t ],

where [·] denotes rounding to the nearest integer (surplus breakpoints can be ignored).
The position of breakpoints bi

t in the segment j is defined by

bi
t = bi−1

t + (β
j+1

t − β
j

t )/n j
t j = 1, . . . , n; i = 1, . . . , n j

t .

3.5 Scenario generation and choice of intervals

The uncertainty associated with the consumption-investment problem and time-varying
investment opportunities are modeled by a K -dimensional VAR(1) process as in Bar-
beris (2000) or Campbell et al. (2003). The vector process consists of asset returns and
other state variables (e.g., dividend yields or interest rate spreads). The multivariate
return process evolves in discrete time, and the underlying probability distributions are
approximated by discrete distributions in terms of a scenario tree (see Fig. 2). For that
purpose, different approaches have been proposed in the literature. We consider two
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Fig. 2 Scenario tree with node
structure 2 × 2 × 3

established methods, namely, scenario reduction (Pflug 2001; Heitsch and Römisch
2003; Dupačová et al. 2003) and moment matching (Høyland and Wallace 2001).

These methods differ with respect to calculating the distance between the true
continuous probability distribution and its discrete approximation. Whereas scenario
reduction methods explicitly compute probability metrics such as the Kantorovich (or
Wasserstein) distance, moment matching methods, as their name implies, minimize
distance functions based on the first few (co-)moments of these two distributions.
Hochreiter and Pflug (2007) propose a scenario reduction method aimed at approxi-
mating the entire probability distribution and show that pure moment matching may
lead to strange results. However, Rasmussen and Clausen (2007) point out that arbi-
trage opportunities may arise when using scenario reduction in a financial portfolio
optimization problem.

Another approach for generating scenario trees (in the spirit of Høyland and Wallace
2001) matches the first few moments and the correlations of the simulated processes.
More nodes facilitate the matching of moments but increase the number of scenarios.
In the examples presented in Sect. 4 we set the branching factor nt = 2K + 2, ∀t
to match the first four (co)moments within reasonable time. The numerical results in
Geyer et al. (2007) show that available closed-form solutions can be replicated very
well with this method and this choice of nt . To exclude arbitrage opportunities in the
simulated returns, we apply the procedure proposed by Klaassen (2002).

The number of scenarios in the tree grows at a rate O(nt ), where t is the stage
index and n is the constant branching factor. Given the long period of time covered
by a life-cycle model, it is computationally infeasible to work with annual decision
(rebalancing) intervals over the entire lifetime of an investor. To keep the total number
of scenarios practically manageable (e.g., several thousand scenarios) only a rather
small number of stages (e.g., three to six) and a small number of nodes is usually
considered. For example, in Dempster et al. (2003) the first revision of the portfolio is
made after 1 year since the initial decisions are considered to be most important. The
remaining time intervals are much longer and serve to approximate the fact that further
portfolio revisions are possible until the planning horizon is reached. This approach
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A stochastic programming approach for multi-period portfolio optimization 197

implies that the investor is ‘locked in’ in the chosen asset allocation for a considerable
amount of time—possibly much longer than the planned or anticipated rebalancing
interval. This problem can be partly alleviated by using more stages and shorter time
intervals, but more scenarios and longer solution times would be required.

Therefore we also consider a different approach which consists of a sequence of
short (e.g., 1-year) periods followed by a long, steady-state period which lasts until the
maximum lifetime of the investor. This design accounts for the short-term dynamics of
the VAR model in the first few years, and the possibility of frequent rebalancing. For
modeling the subsequent steady state period we have considered three candidate mod-
els: Richard (1975), Campbell et al. (2003), and Jurek and Viceira (2005). Whereas
the latter two account for time-variation in investment opportunities, Richard (1975)
assumes a multivariate geometric Brownian motion for the risky assets. However,
this model accounts for mortality risk and intertemporal consumption, whereas the
other two ignore these issues by assuming either an infinite horizon Campbell et al.
2003 or a fixed, finite horizon Jurek and Viceira 2005 with utility defined over termi-
nal wealth. Since none of these alternatives fits our purpose exactly we consider the
relative importance of their assumptions. From the perspective of period t = 0 the
predictability of asset returns implied by the VAR model several periods ahead may
have little effect, given the rather weak short-term temporal dependence empirically
found for asset returns (we will look at this feature more closely in Sect. 4). Since we
consider mortality risk to be conceptually important in a life-cycle context, we use the
model of Richard (1975) to derive the utility from optimal consumption and invest-
ment decisions in the steady-state period. This amounts to reformulate the objective
function as follows:

U (C0) + E

[
T −1∑

t=1

ΘtU (B̃t )Dt +
T −2∑

t=1

ΛtU (C̃t )Dt

+ΛT −1 J (W̃ +
T −1, yT −1)DT −1

]
−→ max . (3)

J (W̃ +
T −1, yT −1) is the value function (4) defined in Appendix 5. It depends on avail-

able wealth W̃ +
T −1 (which includes the present value of future labor income or other

cash flows) and the age of the investor yT −1 at the beginning of the steady-state period.
As described in Appendix 5 the value function is derived in a continuous-time setting.
It accounts for optimal consumption and trading, the investor’s survival probability,
and it is based on geometric Brownian motions for the risky assets and power utility.
To implement the steady-state solution according to Richard (1975) we need to define
the tangency portfolio. To be consistent with his continuous-time setting the drifts of
the assets are defined as µ+0.5diag(C) (where µ is the vector of mean log returns and
C is their covariance matrix). An asset which earns the risk-free rate is added to the
set of traded assets. Its (constant) return r is also included in the check for arbitrage
opportunities in the scenario generation.

Using analytical results from a continuous-time framework in the discrete-time
optimization model has obvious advantages.We avoid the unrealistic implications
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associated with long rebalancing intervals, and we can reduce the number of stages
and the size of the scenario tree. It has to be admitted, however, that the value function
does not account for restrictions on asset weights or transaction costs. There is also
an inconsistency associated with combining 1-year decision intervals in discrete time
with continuous consumption and trading. In our opinion, however, the advantages
outweigh these drawbacks by far.

4 Numerical results

The framework described has been tested extensively against known closed-form solu-
tions in Geyer et al. (2007). Even a small number of scenarios with only three stages
and a low branching factor yield solutions which are very close to their analytic coun-
terparts. Any remaining deviations can in part be attributed to a small bias from model
error (most closed-form solutions have been derived in a continuous-time framework,
whereas the SLP model is formulated in discrete time), and sampling error (given the
fact that the tree representation is not unique).

Given that closed-form solutions can be replicated very well, we now analyze opti-
mal consumption and asset allocation over the life-cycle given time-varying investment
opportunities modeled by the K -dimensional VAR(1) process from Campbell et al.
(2003). They consider three asset return series (ex-post real T-bill rate, excess stock
returns, and excess bond returns) and three state variables (dividend-price ratio, nom-
inal T-bill yield, and yield spread). Using their annual data set covering the period
1893–1997 (rather than 1890–1998 as stated in their paper) we can replicate their
parameter estimates. We admit that there may be some finite-sample bias but share the
viewpoint of Campbell et al. (2003) who take estimated VAR coefficients as given and
known by the investor. Likewise we explore the implications of time-varying invest-
ment opportunities for optimal portfolios. We are well aware of the potential effects
associated with parameter uncertainty but do not explicitly address them here (see,
e.g., Barberis 2000).

The impulse-response function derived from the VAR parameters shows that after
about three or four years the impact of shocks on the asset returns has practically
vanished. The main response takes place after 1 year. This can be taken as evidence
to justify our approach of using a few 1-year periods followed by a long steady-state
period. Shocks to the state variables and stocks, however, remain statistically signif-
icant for up to 10 years. Although the associated effects may be economically small
we investigate the sensitivity of the SLP solution to the steady-state assumption.

The tangency portfolio required for the steady-state solution according to Richard
(1975) is based on the unconditional drifts µ + 0.5diag(C) (using the notation from
Appendix 5). The risk-free rate is set equal to the unconditional mean of real T-bill
returns without adding the variance term. The analysis in Campbell et al. (2003) is
based on the properties of stock and bond returns in excess of the real T-bill rate. In
our setting comparable results are obtained by estimating the VAR coefficients using
raw (as opposed to excess) stock and bond returns. The weight of the risk-free asset is
added to the weight of T-bills, and the resulting asset is labeled ‘cash’. Comparability
also requires to start simulating returns for period 1 using the unconditional means µ.
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We use scenario trees with four stages, starting with three 1-year periods, and fol-
lowed by a long period which lasts until the maximum age of 101 years. The node
structure is 14 × 14 × 14 which amounts to 2,744 scenarios. The linearization of the
objective function is based on the curvature approach using 40 breakpoints.

Table 1 shows SLP-based results for optimal consumption and asset allocation in
t = 0 for various assumptions about the investor’s current age and degree of risk aver-
sion. We find that consumption is decreasing in risk aversion, which is to be expected.
The more risky an investor’s asset allocation, the higher her expected returns, allowing
for more consumption today. Consumption is uniformly higher for older investors who
can afford to set aside less for their (shorter) future life span. We find that consumption
is very precisely measured, and the standard errors of asset weights are comparatively
large. As shown in Geyer et al. (2007), however, these could be reduced by using more
scenarios and/or more breakpoints.

Campbell et al. (2003) use Epstein–Zin utility and an infinite horizon. They obtain
numerical solutions based on linearizing the Euler equation and the budget constraint.
Although our setting is quite similar, it differs in the following aspects: We use time-
additive power utility and a finite horizon accounting for survival probabilities. The
only case which should yield comparable results is a very young investor with log util-
ity (Epstein–Zin and power utility coincide for γ = 1 if the elasticity of intertemporal
substitution—the second parameter of Epstein–Zin utility—is equal to one). Results
for cases which are comparable to Campbell et al. (2003) using the same time discount
factor d = 0.92 show hardly any differences (see Table 1). This not only supports the
use of our approach but also provides a sound basis to investigate cases beyond the
scope of their setting, such as constraints on asset weights, transaction costs, and labor
income.

Similar to Campbell et al. (2003) we find large stock and bond holdings financed
by short positions in T-bills (see Table 1). Their asset allocation for γ = 1 shows
220% in stocks, 242% in bonds and −361% in cash, which is very close to our results
(we obtain 215, 246 and −361%, respectively). The short positions decrease with risk
aversion, which is again to be expected and in line with their results.

Table 1 further shows that the asset allocation does not significantly change with
age. This seems to contradict results from the recent literature on asset allocation with
time-varying investment opportunities (see Barberis 2000; Wachter 2002; Brandt et
al. 2005). However, these models have two features in common: first, shocks to the
dividend yield are strongly negatively correlated to shocks associated with equity
returns. Second, the dividend yield itself (which is used as a state variable) exhibits
high autocorrelation. Barberis (2000) notes that the combination of predictability in
asset returns with extreme persistence in the dividend yield causes a substantial hedg-
ing demand. In Barberis (2000) and Brandt et al. (2005) these parameters are estimated
from monthly or quarterly data, while a residual correlation of −1 is assumed in the
analytical treatment of Wachter (2002). In contrast, we use the parameters estimated
from annual data given in Campbell et al. (2003), where persistence of the dividend
yield is weaker, and the correlation between shocks to the dividend yield and stock
returns is only −0.725. In addition, Wachter (2002) illustrates the impact of the utility
structure used in the optimization process: For utility defined over consumption (as
used here), time-horizon effects are much smaller than for utility defined over terminal

123



200 A. Geyer et al.

Table 1 Optimal consumption
and asset allocation in t = 0 for
a man at age 20, 40, or 60, with
risk aversion γ = 1, 2, 5 and 10,
and time discount factor
d = 0.92

The parameters for the VAR
process driving asset returns and
state variables are from
Campbell et al. (2003, p. 58).
We use scenario trees with four
stages where the first three
periods are each 1 year long. The
node structure is 14 × 14 × 14
which amounts to 2,744
scenarios. The results are
presented in terms of means and
standard errors (in parentheses)
from 100 solutions of the
problem. The same 100 scenario
trees are used for each pair of
age and γ

Age of investor 20 40 60

γ = 1

Consumption 8.2(0.0) 8.6(0.0) 10.7(0.0)

Cash −360.7(10.4) −358.5(10.4) −362.2(10.4)

Stocks 214.6(2.4) 213.8(2.4) 215.6(2.4)

Bonds 246.0(8.7) 244.7(8.7) 246.6(8.7)

γ = 2

Consumption 7.1(0.0) 7.4(0.0) 9.0(0.0)

Cash −150.8(5.7) −147.9(5.6) −150.4(5.7)

Stocks 113.5(1.3) 112.1(1.2) 113.2(1.2)

Bonds 137.3(4.6) 135.8(4.6) 137.3(4.6)

γ = 5

Consumption 4.0(0.0) 4.4(0.0) 6.0(0.0)

Cash 1.8(2.1) 2.4(2.1) 2.0(2.1)

Stocks 42.8(0.5) 42.8(0.5) 42.7(0.5)

Bonds 55.4(1.8) 54.9(1.8) 55.3(1.8)

γ = 10

Consumption 2.6(0.0) 3.2(0.0) 4.6(0.0)

Cash 51.7(1.2) 51.4(1.2) 51.5(1.2)

Stocks 20.7(0.3) 20.8(0.3) 20.7(0.3)

Bonds 27.6(1.1) 27.8(1.1) 27.8(1.1)

wealth (as in Barberis 2000; Brandt et al. 2005). Finally, Barberis (2000) argues that
the time-horizon effects found in the asset allocation may no longer exist if the investor
has a broader range of asset classes to choose from. This is the case for our model
with three risky assets compared to models with only one risky asset as in Barberis
(2000) or Brandt et al. (2005).

Although the aspects discussed in the previous paragraph provide plausible expla-
nations for the age-independence found in Table 1, one might argue that this result
is mainly due to the steady-state assumption for the final period. During this period
the risky assets are assumed to follow a geometric Brownian motion, and we use the
analytical solution of Richard (1975) which implies an age-independent asset alloca-
tion. The utility from this very long period dominates the utility from the few initial
1-year periods. This could possibly bias the asset allocation in t = 0 towards the one
which holds in the steady-state. A first piece of evidence against this objection is the
similarity of our results to those of Campbell et al. (2003): despite using the analytical
approximation by Richard (1975) (which assumes a geometric Brownian motion) for
the final stage, this does not bias our results away from those in Campbell et al. (2003)
(based on an infinite-horizon VAR model) for long planning horizons.

Second, we consider the case that the stochastic variables evolve according to the
unconditional moments implied by the VAR model from the very beginning. The
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Table 2 Optimal consumption and asset allocation based on the unconditional moments implied by the
VAR model for a male investor of age 20 and d = 0.92

Consumption Cash Stocks Bonds

γ = 1 7.9(0.0) −206.3(7.7) 187.9(2.1) 118.4(6.1)

γ = 2 6.7(0.0) −71.2(2.8) 104.2(0.7) 67.1(2.3)

γ = 5 3.7(0.0) 31.4(0.9) 41.7(0.2) 26.9(0.7)

γ = 10 2.5(0.0) 66.1(0.4) 20.60.1) 13.3(0.3)

Results are presented in terms of means and standard errors (in parentheses) from 100 solutions of the
problem

results from the unconditional case in Table 2 can be compared to the results from
the VAR model for stage t = 0 from Table 1. There is a substantial difference in the
asset allocation which reflects the impact of time-varying investment opportunities.
We note that investigating the unconditional case may also be justified from a differ-
ent perspective. The issue of return predictability and its impact on asset allocation
decisions has found considerable attention in the literature (see, e.g., Barberis (2000)
and the references cited there). Even though the empirical evidence cannot simply
be ignored, it has to be admitted that predicting asset returns out-of-sample is by no
means an easy task. Thus, it is not implausible that an investor is sceptical about the
precision of short-term forecasts obtained from a VAR model. There may be a certain
risk of having found spurious short-term dependence. In that case she may consider
investing according to the unconditional results presented in Table 2.

Despite the differences implied by using conditional and unconditional moments
the asset weights based on the VAR model may still be biased towards the uncondi-
tional results. To justify the steady-state assumption it is essential that the conditional
moments have approached the unconditional moments before the steady-state period
starts. Whether this is the case can be judged upon the impulse-response function of
the VAR model. Rather than making this judgement on the basis of statistical signif-
icance (as done above) we prefer to inspect the economic consequences in terms of
the SLP solution. We consider an investor at age 98 in a problem with three stages,
and solve the problem with and without the steady-state assumption. These two set-
tings only differ with respect to the properties of returns in the last period. Whereas
the former case is based on the conditional moments in the third period, the latter
uses unconditional moments. Table 3 shows that the results from the two problems are
rather similar, in particular regarding the weights of stocks and bonds. Therefore we
can assume that the difference in the moments is economically insignificant, and that
the returns from the VAR model have practically converged to their unconditional
moments. Overall we find no evidence to conclude that the results are biased by the
steady-state assumption.

In Sect. 3.5 we have argued that choosing rather long time intervals between stages
may distort results compared to the case of short-period rebalancing. In Table 4 we
show results for different rebalancing intervals which can be compared to the results
for 1-year intervals in Table 1. We analyze the effects for one example only (age 40
and γ = 5). We find only a slight drop in annual consumption. However, there are
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Table 3 Optimal consumption and asset allocation in t = 0 for a man at age 98 for γ = 5 and d = 0.92

Steady-state Consumption Cash Stocks Bonds

yes 30.8(0.0) 5.6(1.5) 39.8(0.4) 54.6(1.3)

no 30.3(0.0) 3.1(1.9) 42.0(0.4) 54.9(1.7)

The table compares results with (‘yes’) and without (‘no’) the steady-state assumption. Results are presented
in terms of the means and standard errors (in parentheses) from 100 solutions of the problem

Table 4 Optimal consumption and asset allocation in t = 0 for various choices of rebalancing intervals.
Consumption is expressed in annual terms

Rebalancing intervals Consumption Cash Stocks Bonds

Annual 4.4(0.0) 2.4(2.1) 42.8(0.5) 54.9(1.8)

Annual and bi-annual (twice) 4.5(0.0) −5.4(1.7) 52.3(0.5) 53.1(1.5)

Bi-annual 4.5(0.0) 33.6(1.7) 50.7(0.5) 15.7(1.5)

Three years 4.5(0.0) 33.5(1.7) 54.6(0.8) 11.9(1.3)

Results are presented in terms of means and standard errors (in parentheses) from 100 solutions of the
problem. We consider a man at age 40 with uncertain lifetime with γ = 5 and d = 0.92

significant changes in the asset allocation which reflect a complicated interplay of vari-
ous effects (e.g., being locked-in in the asset allocation for varying periods of time and
the annualization of consumption). These results indicate that the economic impli-
cations associated with time-varying investment opportunities will not be correctly
reflected if the rebalancing intervals used to construct the scenario tree are longer than
the interval represented by the underlying VAR process. Note, however, that results
from increasing the rebalancing intervals even further need not converge to those from
using unconditional moments in Table 2 which are based on annual rebalancing.

Closed-form solutions are usually derived by allowing for short sales and excluding
transaction costs. Very little is known about the effects of those aspects in the context
of time-varying investment opportunities (e.g., Barberis (2000) precludes short sales).
For the average investor extreme short positions as obtained in the Campbell et al.
(2003) setting have limited practical relevance. Since debt-financed stock investments
are usually strongly restricted or impossible for private investors we also consider
the case of excluding short sales altogether. In addition, we include 0.5% transaction
costs for buying and selling stocks or bonds. Table 5 shows that optimal consumption
levels are not affected by either of these aspects. Long positions in cash are obtained if
short sales are excluded, but the weight of cash is strongly increased at the expense of
bonds by adding transaction costs. In all cases, however, the asset allocation remains
rather unaffected by changing the age of the investor. Bodie et al. (1992) and Chen
et al. (2006) find a significant impact of human capital on asset allocation decisions
over the life cycle. We therefore also investigate the importance of labor income on
the age dependence of asset allocation decisions. As opposed to their models we have
to treat labor income as deterministic (unrelated to assets and state variables) to make
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Table 5 Optimal consumption
and asset allocation implied by
the VAR model under various
assumptions about short sales
and transactions costs (0.5% for
buying or selling stocks and
bonds)

Results are presented for a male
investor with risk aversion
γ = 5 and d = 0.92 in terms of
means and standard errors (in
parentheses) from 100 solutions
of the problem

Age Consumption Cash Stocks Bonds

Short sales excluded; no transaction costs

20 3.9(0.0) 55.7(0.2) 44.3(0.1) 0.0(0.0)

40 4.2(0.0) 55.7(0.2) 44.3(0.1) 0.0(0.0)

60 5.7(0.0) 55.8(0.2) 44.2(0.2) 0.0(0.0)

Short sales excluded; transaction costs

20 3.8(0.0) 59.6(0.1) 40.4(0.1) 0.0(0.0)

40 4.3(0.0) 59.5(0.1) 40.5(0.1) 0.0(0.0)

60 5.6(0.0) 59.7(0.1) 40.3(0.1) 0.0(0.0)

Short sales allowed; transaction costs

20 4.0(0.0) 52.7(0.9) 39.2(0.3) 8.1(0.8)

40 4.4(0.0) 52.8(0.9) 39.2(0.3) 8.0(0.8)

60 5.9(0.0) 52.9(0.9) 38.9(0.3) 8.1(0.8)

use of Richard (1975) closed-form solution. However, the uncertainty associated with
survival probabilities is accounted for as described in Eq. (1).

Table 6 shows optimal consumption and asset weights for various assumptions about
labor income. Compared to Table 1 there is a distinct age effect: the short positions
in cash and the long positions in stocks decrease with age. Overall the short positions
in cash (and long positions in stocks) are far more extreme than in Table 1 or the
bottom panel of Table 5 where labor income is ignored. Excluding short sales leads to
100% investments in stocks (and zero in the other assets). Higher labor income leads
to more consumption and makes the distribution of portfolio weights more uneven.
These results can be explained by the hedging effect associated with the certain stream
of income. The decreasing share of stocks with increasing age is consistent with the
results in Bodie et al. (1992) (we have replicated their results to the extent possible
given the differences in the two settings). They consider cases where initial labor
income is about 10–30% of initial wealth, and their results are also characterized by
extreme short positions in the risk-free asset. Despite the fact that age plays a role
as soon as labor income is included, we also observe a rather stable ratio of stocks
to bonds. This ratio is rather independent of age and slightly increases with labor
income. However, we hesitate to derive far reaching conclusions from this particular
case, since it depends on many aspects whose role has yet to be investigated more
thoroughly.

In summary, in the context of time-varying investment opportunities, constant rel-
ative risk aversion, and uncertain lifetime, the fractions invested in risky assets are
independent of age. This is the case even if short sales are excluded, and transaction
costs are included. Age-dependence is only found if labor income is taken into account.
We defer a closer examination of this finding to future research where we also intend
to include stochastic labor income.
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Table 6 Optimal consumption and asset allocation implied by the VAR model for various assumptions
about current, annual labor income L0

Income Age Consumption Cash Stocks Bonds

20 11.0(0.0) −35.5(2.3) 114.9(0.5) 20.7(2.1)

L0 = 5 40 11.0(0.0) −18.4(2.0) 99.7(0.4) 18.7(1.9)

60 11.7(0.0) 6.9(1.6) 78.2(0.4) 15.0(1.5)

20 18.3(0.0) −110.0(3.6) 178.5(0.8) 31.5(3.2)

L0 = 10 40 17.1(0.0) −82.5(3.2) 155.0(0.6) 27.5(2.8)

60 17.4(0.0) −38.9(2.4) 117.6(0.5) 21.3(2.1)

20 31.8(0.0) −187.6(6.1) 245.8(1.8) 41.8(5.2)

L0 = 20 40 29.3(0.0) −162.3(5.1) 227.0(1.4) 35.4(4.5)

60 28.3(0.0) −112.8(3.6) 182.8(0.8) 30.0(3.2)

Initial wealth is w0 = 100. Transactions costs are 0.5% for buying or selling stocks and bonds. The investor
is assumed to retire at age 65. After retirement he receives 65% of his pre-retirement income. Results are
presented for a male investor with risk aversion γ = 5 and d = 0.92 in terms of means and standard errors
(in parentheses) from 100 solutions of the problem

5 Conclusion

We have presented a SLP approach to obtain optimal consumption and life-cycle asset
allocation of an investor with uncertain lifetime in the context of a VAR model of asset
returns and state variables. The SLP approach is based on a discrete scenario tree with
only a few stages. To cover the very long time span required in a life-cycle context
we work with a few 1-year periods followed by a long, steady-state period. Thereby
the short-term dynamics of the VAR model and frequent rebalancing in the first few
years can be accounted for. The results of this approach compare well to existing
results from the literature. The SLP approach is a flexible tool that may also be used
to assess the importance of aspects such as time-varying investment opportunities,
short-sale constraints, transaction costs, and labor income. An interesting finding is
that the asset allocation seems to be independent of age even if asset returns and state
variables follow a vector autoregression model. To confirm this numerically derived
result analytically calls for further research, as well as the age-dependence we find if
labor income is taken into account.
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Appendix A: Closed-form solutions in case of uncertain lifetime

Richard (1975) obtains a closed-form solution for the consumption and investment
decisions of an uncertain lived investor in a continuous time model. He assumes
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geometric Brownian motions for the risky assets, one riskless asset, and power utility
for consumption and bequest of an investor whose current age is yt . Provided that
relative risk aversion γ is the same in both utility functions, the closed-form solution
for the value function J is given by

J (Wt , yt ) = ayt

1 − γ
(Wt + Ht )

1−γ . (4)

The value function is based on the following definitions:

ayt =
⎛

⎝

τ̄∫

yt

k(θ)
S(θ)

S(yt )
exp

{
1 − γ

γ
(v + r)(θ − yt )

}

dθ

⎞

⎠

γ

with

k(θ) = [h(θ)m(θ)]1/γ + m(θ)1/γ m(θ) = exp{−δ(θ − yt )} v = (νp − r)2

2γ σ 2
p

.

νp and σp are drift and standard deviation of the tangency portfolio (which only
consists of risky assets). S(yt ) is the survival function defined as

S(yt ) = P(θ ≥ yt ) =
τ̄∫

yt

ϑ(θ)dθ

τ̄∫

0

ϑ(θ)dθ = 1.

h(θ) is the conditional probability density for death conditional upon the investor
being alive at age θ , so that h(θ) = ϑ(θ)/S(θ).

Ht is the present value of labor income received until the final age of the underlying
mortality table τ̄ = 101. Ht assumes an actuarially fair life insurance of labor income
and is given by

Ht =
τ̄∫

yt

L(s)
S(s)

S(yt )
exp {−(s − yt )r} ds,

where L(s) is continuous labor income and S(s)/S(yt ) is the conditional probability
density to be alive at time s conditional upon the investor being alive at age yt . This
definition of Ht agrees with the continuous-time formulation of Richard (1975). The
results presented in Sect. 4 are based on the discrete-time version of labor income
defined in Sect. 3.1, Eq. (1).
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Since we work with discrete mortality tables where age is integer-valued we can
simplify the definition of ayt as follows:

ayt =
⎛

⎝
τ̄−1∑

θ=yt

k(θ)
S(θ)

S(yt )

θ+1∫

θ

exp {c(u − yt )} du

⎞

⎠

γ

c = 1 − γ

γ
(v + r)

ayt =
⎛

⎝
τ̄−1∑

θ=yt

k(θ)
S(θ)

S(yt )

[
exp{c(θ − yt )}(exp{c} − 1)/c

]
⎞

⎠

γ

.

Appendix B: VAR model for asset returns

To describe time-varying investment opportunities as in Barberis (2000) or Campbell
et al. (2003) we use a VAR(1) model

Ys = c + AYs−1 + es es ∼ N (0, Ce),

where Ys is a K×1 vector of asset returns and state variables, c is a vector of constants,
A is a K × K matrix of autoregressive coefficients and es is a vector of uncorrelated
normal disturbances. Assuming a normal distribution seems justified given the long
time intervals we consider.

Ce is related to the correlation matrix of disturbances Re and the standard errors se

by Ce = Re · (ses′
e). Mean and covariance of Ys are given by µ = (I − A)−1c and

C =
∞∑

i=0

Ai CeA′i

(see Lütkepohl 1993, p. 11). Asset returns are observed at a relatively high frequency
and parameter estimates refer to that data frequency. However, in our model asset
allocation decisions are made at only a few points in time which may be one or several
years apart. Therefore we have to consider the properties of multi-period returns, i.e.
the sum of Ys over h periods Yh

s = Ys+1 + Ys+2 + · · · + Ys+h . Yh
s can be shown

(see Barberis 2000, p. 241) to be normally distributed with mean (conditional on Ys)

µh =
h−1∑

i=0

(h − i)Ai c +
(

h∑

i=1

Ai

)

Ys

and covariance

Ch = Ce + (I + A)Ce(I + A)′

+(I + A + A2)Ce(I + A + A2)′

+ · · · + (I + A + · · · + Ah−1)Ce(I + A + · · · + Ah−1)′.
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For each time interval of length τt we simulate a sample of log returns Ỹτt such that the
τt -period moments µτt and Cτt are matched, and their skewness is zero and kurtosis is
three. The gross returns R̃i

t of asset i defined in Sect. 3.1 are related to the i th element
of the τt -period simulated returns by R̃i

t = exp{Ỹ τt
i }.

The simulated returns for period 1 are based on the unconditional means µ. These
simulated returns provide the conditioning information for subsequent periods. The
number of samples drawn depends on the node structure of the scenario tree, and
determines the actual dimension of the (stacked) vector of simulated returns.
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