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Abstract This paper focuses on feature selection for problems dealing with
high-dimensional data. We discuss the benefits of adopting a regularized approach
with L1 or L1–L2 penalties in two different applications—microarray data analysis in
computational biology and object detection in computer vision. We describe general
algorithmic aspects as well as architecture issues specific to the two domains. The very
promising results obtained show how the proposed approach can be useful in quite
different fields of application.
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1 Introduction

Feature selection constitutes one of the central aspects of the learning process and
in the last few years this question has been studied in depth, as demonstrated by
the increasing amount of publications on this topic. In particular, feature selection is
crucial for applications where the number of data available is small with respect to the
input space size. Examples of applications that may lead to very high-dimensional data
include signal processing in general (in particular audio and image processing), data
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26 A. Destrero et al.

mining and multimedia data retrieval, biology, and computer graphics. In these cases it
is particularly important to extract meaningful features, discarding noise or redundant
information. Obtaining a small set of useful data from high-dimensional descriptions
is important for a number of reasons, firstly to cope with the curse of dimensionality;
secondly, to obtain compact descriptions that allow for faster computation; thirdly to
obtain hints on the underlying processes producing a given output.

In this paper, after a brief account on the state of the art on feature selection methods,
we describe a regularized approach to feature selection that looks for the solution to
least squares problems with sparsity enforcing constraints. We then discuss how this
approach has been applied with success to two different applications: biological com-
puting and computer vision. We describe the specificities of the examined problems
and show how the general algorithm has been adapted to address such specificities.

The algorithm which we discuss and apply to two different scenarios combines the
so-called elastic net strategy (Zou and Hastie 2005) and an iterative soft-thresholding
algorithm (Daubechies et al. 2004). It has been first introduced in De Mol et al. (2007).
Its general form leads to a nonlinear iterative algorithm the solution of which minimizes
the objective function defined as the least-squares residual to which both L1 and L2
penalties are added. The L2-norm helps the classifier to select all elements belonging
to groups of correlated features, while the L1-norm enforces sparsity.

From the experimental viewpoint, the first application that we analyse consists
in extracting sets of meaningful features from gene expression data. Biological data
are high-dimensional data, but usually very few examples (in the order of tens or
hundreds) are available. In this case feature selection is particularly important, as it
can lead, not only to a more effective description of the data, but also to an explicit
account of the feautures relevant to the biological process. In this case a penalty
term combining L1 and L2 type penalties is used, where L1 enforces sparsity, while
L2 preserves correlation (De Mol et al. 2007). The second application is a classical
computer vision problem: object detection in digital images. In this case the size of
training data available can be relatively high, but the input space tends to be much
higher, in particular when overcomplete sets of features are available. In this context the
main issue is to limit the amount of redundancy derived from images autocorrelation
properties. Enforcing sparsity is a way to optimize the detection process at run time.
It will be shown that dealing with correlation issues is not of interest in such a case,
and therfore we will apply a pure L1 penalty.

1.1 State-of-the-art on feature selection

Feature selection is a problem of formidable complexity. Recently many learning
techniques have been proposed to solve the problem of feature selection. It is certainly
worth mentioning a number of trainable methods that have emerged empirically for
their effectiveness (Tibshirani 1996; Weston et al. 2003; Viola and Jones 2004; Zhu
et al. 2004).

A survey of the topic can be found in Guyon and Elisseeff (2003). This survey offers
a taxonomy of the methods proposed so far, that we briefly describe in the following.

Filters represent a preprocessing step completely disconnected from the learning
phase; some examples are ranking criteria (Forman 2003; Weston et al. 2003) where
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correlation, mutual information or performance of single variable classifiers are used
to assign a score to each feature. Instead, algorithms where the relevance of a feature
subset is determined according to prediction performance of a learning machine are
known in the literature as wrappers methods (Kohavi and John 1997). Notice that in this
case the learning machine is used as a black box which, given in input a feature subset,
returns a score according to its prediction performance. Differently from wrappers and
filters, where variable selection and training are two separate processes, embedded
methods are particularly interesting because they incorporate feature selection as part
of the training phase. Examples are decision trees (Breiman et al. 1984) or more
recent methods using sparsity-enforcing penalties. When such penalty is defined as the
L1-norm, and the error is the residual sum of squares, an algorithm known as LASSO
(Least Absolute Shrinkage and Selection Operator) has been proposed in Tibshirani
(1996) to find the minimizer of the corresponding objective function. Alternative
algorithms for solving this problem have also been proposed in the recent literature.

1.2 Outline of the paper

The structure of the paper is as follows. Section 2 describes the feature selection
approach that we adopt and introduces the two different penalties that we will con-
sider. Section 3 discusses implementation aspects. Sections 4 and 5 describe the two
applications upon which we base our analysis: microarray data analysis and object
detection. Section 6 is left for a final discussion.

2 Regularized feature selection

In this section, we describe the basic algorithm upon which our feature selection
method is built. We restrict ourselves to the case of a linear dependence between input
and output data, which means that the problem can be reformulated as the solution of
the following linear system of equations:

y = Xβ (1)

where y = (y1, . . . , yn)� is the n ×1 vector containing output values, X = {Xi j }, i =
1, . . . , n; j = 1, . . . , p is the n × p matrix containing the collection of features j
for each datum i and β = (β1, . . . , βp)

� the vector of the unknown weights to be
estimated. The data, or training set may represent different realizations of the problem
under analysis, for instance different patients in the microarray domain or a set of
images in computer vision. The output values may be a continuous real variable (such
as e.g. a measurement of some biological parameter) or a discrete class label, in the case
of classification. In standard regression problems the aim is to devise a rule relating
the variable or response y to the input contained in the matrix X .

Since in many practical applications X is large, the usual approaches to the solution
of the algebraic system (1) turn out to be infeasible. Moreover, usually the number
of features p is much larger than the training set size n, p � n, so the system is
hugely underdetermined. Finally, because of the redundancy of the feature set, which
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is common in high-dimensional problems, we also have to deal with collinearities
responsible for ill-conditioning. A classical way to remedy to these curses is provided
by regularization methods.

One of the best known strategies consists in adding a quadratic penalty, namely the
L2 norm of the coefficient vector (|β|22 = ∑

j |β j |2), to the loss function, i.e. to find
the minimizer of the following penalized least-squares objective function

Φridge(β) =
[
|y − Xβ|22 + µ|β|22

]
(2)

where µ is a positive parameter, called the regularization parameter, the role of which
is to balance properly the respective influence of the data-misfit and of the penalty. This
estimate is known as the ridge regression estimate in the statistical literature (Hoerl
and Kennard 1970; Hastie et al. 2001), as the Tikhonov regularized solution in the
deterministic inverse problem theory (see the general references, Engl et al. 1996 or
Bertero and Boccacci 1998), and as weight decay in the Neural Networks community
(Werbos 1988). Since the objective function (2) is strictly convex, it admits a unique
minimizer given by

βridge = (X T X + µ I d)−1 X T y (3)

where I d represents the (p × p) identity matrix. This is a regularized (stabilized)
version of the ordinary least-squares estimate.

Linear regularization methods select the relevant (stable) components of the solu-
tion and discard the others only on the basis of spectral properties of the matrix X T X ,
independently of the data or response vector y. It is only in the choice of the regu-
larization parameter µ, that the error level and therefore the output y is taken into
account. Moreover, since the eigenvectors are linear combinations of all the compo-
nents of β, such methods are unable to perform variable selection i.e. to select a few
coefficients that would account for the response. These drawbacks of linear methods
can be overcome when resorting to nonlinear techniques, involving thresholding or
nonlinear shrinkage; such methods will be described in the remainder of the section.

2.1 L1 penalization

A simple instance of a nonlinear regularization method is obtained when replacing in
the ridge objective function (2) the quadratic L2-penalty term |β|22 by the L1-norm of
the vector of the regression coefficients: |β|1 = ∑p

j=1 |β j |. Clearly, such modification
increases the penalty on the small coefficients (those for which |β j | < 1) whereas it
decreases the penalty on the large coefficients (those for which |β j | > 1). As a result,
it favors the recovery of a few large coefficients instead of many fairly small ones.
Moreover, the L1-penalty favors truly zero values instead of small ones, i.e. it favors
sparse solutions. To see this, let us consider the minimization of the resulting objective
function with regularization parameter τ

βlasso = argminβ

[
|y − Xβ|22 + τ |β|1

]
(4)
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in the special case where p = n and X is the identity matrix. The minimizer is then
easily seen to be

(βlasso) j = Sτ (y j ) (5)

where Sτ is the soft-thresholder defined by

Sτ (γ ) =
{

(|γ | − τ/2)sign(γ ) if |γ | ≥ τ/2
0 if |γ | < τ/2.

(6)

In the general case, however, the solution of the optimization problem is not so
simple and several algorithms have been proposed in the literature to actually com-
pute minimizers of (4). The Lasso (Least Absolute Shrinkage and Selection Operator,
Tibshirani 1996) has been proposed in a statistical framework whereas the Basis Pur-
suit (Chen et al. 1998), based on quadratic programming with interior points was
rather put in a signal processing context. More recently different algorithms for the
same problem have been developed under the name Lars (Least Angle Regression) in
Efron et al. (2004) and Dantzig Selector in Candes and Tao (2005).

In this work, we will adopt instead an iterative thresholding algorithm similar to
the one proposed in De Mol and Defrise (2002) and Daubechies et al. (2004) and
briefly described in the next Section. Before we move on to the description of the
algorithm, we discuss a different type of penalty that can be useful to deal with groups
of correlated features.

2.2 L1–L2 penalization

We consider now the case where we use both a lasso-type and a ridge-type penalty in
order to select groups of correlated variables. The minimization problem is then

βen = argminβ

[
|y − Xβ|22 + µ|β|22 + τ |β|1

]
. (7)

It has been originally proposed in Zou and Hastie (2005) under the name “Elastic Net”.
More precisely the estimator (7) is called the naïve elastic net whereas the so-called
elastic net is simply a rescaled version obtained by multiplying the naïve estimator by
(1 + µ).

With the pure L1 penalty, corresponding here to the case µ = 0, if X has a non
trivial null-space, the solution to (4) may be non unique. In particular, in the case of
correlated features, the Lasso estimator can produce very different solutions, either
by picking one of those with a great weight or picking a few of them or else picking
them all. Depending on the application of interest, as we will see in Sects. 4 and 5, this
phenomenon may be rather annoying. The situation is easily understood by examining
the case example where we artificially replicate some columns of the matrix X creating
perfectly correlated (replicated) variables. The lasso objective function is perfectly
indifferent to the way the appropriate weight is distributed among those predictors
since all situations yielding the same value for the L1-norm are perfectly equivalent.
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We can put the full weight on (an arbitrary) one of these predictors, or put equal weight
on all of them, or on some of them in many different ways. On the other hand, the L2
ridge penalty forces democracy in such cases since the L2-norm of the equal-weight
configuration is smaller than that of all other configurations. However, contrary to the
L1 penalty, the pure L2-penalty (τ = 0) does not allow to perform variable selection
at all, especially in the presence of noise, where we will have many small but non-
zero coefficients. It is the virtue of the combination of the two penalties that allow to
both select variables and, among groups of correlated variables, to force democracy
(see also, Zou and Hastie 2005). Notice, however, that for prediction purposes only,
different pairs of parameters will be perfectly equivalent if at least one representative
from each relevant group is selected and all the irrelevant features are discarded. In
fact, the surface of the generalization error versus the two parameters presents an entire
plateau of global minima as it has been empirically verified in the experiments, where
the generalization error is estimated through the cross-validation. Since we could do
well with one representative of each group of correlated genes, using the L1-norm
penalty could be the strategy of choice, leading to the sparsest among the solutions
with highest prediction power (Sect. 5). Nevertheless if we are interested in learning
all the features involved in the process, the addition of a L2-norm penalty with its
grouping effect will be preferable (Sect. 4).

3 An iterative algorithm for regularized feature selection

To compute the solution of the elastic net, we adopt a procedure which is a modification
of Landweber or gradient descent (Engl et al. 1996) iterative procedure used to compute
the least squares solution through the successive approximations scheme

β(l+1) = β(l) + X T y − X T Xβ(l), l = 0, 1, . . . (8)

With the addition of a soft-thresholding at each iteration we obtain the follow-
ing iterative algorithm which has been demonstrated in Daubechies et al. (2004) to
converge to a minimizer of the Lasso objective function (4)

β
(l+1)
lasso = S τ

C

(

β
(l)
lasso + 1

C

[
X T y − X T Xβ

(l)
lasso

])

; (9)

where the constant C is a strict upper bound for the norm of the matrix X : ‖X T X‖ <

C , and the thresholding operator acts on a vector componentwise by performing
the soft-thresholding operation defined by (6) ([Sτ (β)] j = Sτ (β j )). This operation
enforces the sparsity of the regression coefficients and the number of selected features
(corresponding to non-zero weights) is controlled by τ . Notice that if the null-space
of X is not trivial (in particular if n < p), the Lasso objective function is not strictly
convex, and therefore the minimizer of (4) is not necessarily unique.

Similarly, we can derive an equivalent iterative scheme for the objective func-
tion with combined penalties which is a damped and thresholded Landweber scheme
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(De Mol et al. 2007):

β(l+1)
en = 1

1 + µ
C

S τ
C

(

β(l)
en + 1

C

[
X T y − X T Xβ(l)

en

])

. (10)

To obtain a solution to the Elastic Net (as opposed to the so called naïve one) we have
to suppress the damping factor at the last iteration.

Equation (10) is a general form comprising the ones mentioned above: we recover
the case of ridge regression and of the damped Landweber iteration for τ = 0, whereas
pure lasso and thresholded Landweber correspond to the special case µ = 0. For
τ = µ = 0, we get the original Landweber iteration, that converges to a minimizer of
the unpenalized least-squares objective function.

We conclude by remarking that, as in all iterative processes, a stopping rule has to
be defined. When the L1–L2 algorithm is used as predictor, such rule can be simply
defined through a tolerance δ, that is the iterations stop when |β(l+1)−β(l)|2 ≤ δ|β(l)|2.
When the algorithm is used as feature selector, we are not interested in recovering the
coefficient vector β, but rather in determining its support; as a consequence it may be
the case to define a stopping rule depending on the stability of the selected features.

4 Microarray data analysis

4.1 The problem

A major application of feature selection is found in the analysis of high-throughput
biomedical data, such as gene expression arrays (microarrays), where thousands of
features are studied with comparably few training examples. In the context of gene
expression analysis, a main target of machine learning is to identify the set of genes
relevant to the underlying biological process and leading to accurate diagnosis. How-
ever the presence of correlated variables often combined with the small number of
examples causes most learning algorithms to achieve high prediction rates selecting
only a subset of the relevant variables. This is common in gene expression data where
the input is made of groups of correlated genes and only some representatives from
these groups are usually involved in the determination of the classifier. For this reason
the double penalty of the L1–L2 algorithm is extremely helpful in gene expression
analysis, being potentially capable of selecting all genes from such relevant groups.
Interestingly, appropriate tuning of the two parameters allows us to extract nested
sets of genes with equivalent prediction performance, but determined by a different
sparsity-correlation ratio. The lists of genes obtained varying µ, which differ for the
degree of correlation among genes in each list, represent a useful output for biologists
and geneticists; in fact, being each list almost perfectly nested in those with higher
correlation degree, the least correlated gene set can be interpreted as the smallest set of
biomarkers for the problem in study, whereas the other lists represent the same basic
set with the addition of correlated genes.

In the next subsections we describe a protocol for applying such learning algorithm
on microarray data analysis and then present some experimental results on benchmark
microarray data.
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4.2 The method

In order to exploit all the potentiality of the L1–L2 algorithm on gene expression data
we have designed a learning machine for gene selection which is a combination of the
doubly penalized least squares with ridge regression (see also De Mol et al. 2007).
The former is employed as gene selector, whereas the weights of the selected genes
are then estimated with ridge regression. The motivation of such choice is found in the
underestimating behavior of the L1-regularization when used as a predictor. In fact,
through some simulations, we observed that the algorithm often returns an output
vector β which has correct support, but its coefficients are strongly underestimated.
Such a behavior, which has already been mentioned in Candes and Tao (2005), provides
a hint that L1-regularization has a high accuracy as feature selector, but that it is much
less accurate as a predictor.

In more details, we first determine an estimator f1(X) = Xβ1 with the L1–L2
algorithm on all the features, we select the dimensions (genes) corresponding to the
non null coefficients of β1 and perform ridge regression on the selected dimensions,
hence determining a second estimator f2(X) = Xβ. The final classifier is given
by y = sign(Xβ). It is interesting to observe that no prescreening is performed to
reduce dimensionality of the input data, since the algorithm can easily handle high-
dimensional data-sets, provided that the training set size is sufficiently small.

The learning machine described earlier depends on three free parameters, τ and
µ from the L1–L2 algorithm as defined in the objective function (7), and another
parameter λ determining the degree of regularization in ridge regression. Notice that
for fixed τ and λ different choices of µ will lead to a different classifier determined
by a different grouping effect, but with equal prediction power.

Optimal choices for τ and λ are determined through minimization of the gener-
alization error of the L1–L2 algorithm with parameter µ set to zero. This procedure
returns the minimum number of genes needed to classify the samples; in order to select
also other relevant genes, which may be correlated with this basic set, we can run the
learning machine with increasing values of µ hence preserving correlation. Since the
generalization error cannot be empirically evaluated we determined the optimal choice
of the parameters through the minimization of an estimate of the generalization error
obtained via cross-validation. In order to avoid any over-fitting we follow a strict
validation protocol:

1. Split of the entire data set in training and test set.
2. Set µ = 0, then for different values of τ in a given range, determine with cross

validation the best parameters (τopt, λopt) leading to the smallest validation error.
3. Determine the final classifiers (one for each value of µ) by training the entire

training set with L1 parameter τopt, ridge parameter λopt and varying the L − 2
parameter µ.

4. Test the performance of the final classifiers.

As final result we obtain a different classifier for each value of the parameter µ.
From a theoretical point of view there seems not to be a motivation for choosing one
particular solution, unless we are asked to take the minimum L0 norm—the smallest set
of genes—which would lead to the choice µ = 0. However, when handling microarray
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data, geneticists may be interested not only in the smallest group of genes capable of
discriminating between the two classes but also in all the genes correlated to such
group. In fact, thanks to the grouping effect, the presence of the L2-norm in the
penalization term enforces the algorithm to select not only the genes strictly necessary
for good prediction (which will be selected with µ = 0) but also those genes correlated
with such basic group. We therefore expect each group of genes selected with fixed µ

to have an almost complete enclosure in the groups selected with bigger values of µ.

4.3 Experiments

We carried out experiments on publicly available data sets concerning classification
problems related to three different diseases: leukemia, lung cancer and prostate cancer.
The first one is the Golub data set Golub et al. (1999)1 which comprises expressions
of 7129 probe sets for 72 patients divided in two classes according to their diagnosis,
Acute Myoloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL). The
lung cancer data set Gordon et al. (2002)2 is made of 151 patients with 12533 probe
sets and each patient is either affected by malignant pleural mesothelioma (MPM)
or adenocarcinoma (ADCA). The last data set Singh et al. (2002)3 is again made of
12533 probe sets for 102 instances, tumor or normal tissue.

We run the L1–L2 algorithm with the protocol described above on the three datasets.
Figure 1 reports results related to step 1: the validation error is obtained varying the
L1 parameter τ (and setting µ = 0). Each value is obtained minimizing the validation
error with respect to the ridge parameter λ. In Table 1 are reported results related
to step 2: for increasing value of µ are listed the number of selected genes and the
test error.

Concerning prediction accuracy we can say that on these data sets performance
of the L1–L2 algorithm is comparable with other learning algorithms applied in the
original works to the same data sets. In fact, on leukemia data set we achieve 100%
accuracy on both classes, whereas in Golub original paper Golub et al. (1999) a
50-genes classifier is built which made predictions on the test set with 100% accuracy,
however only 29 of the 34 test instances had strong prediction. Concerning the lung
cancer data analysis in Gordon et al. (2002), different classifiers were obtained with
prediction accuracy ranging from 91 to 99% to be compared with the 99% achieved
with our algorithm. In the end for the prostate cancer in Singh et al. (2002), after gene
ranking with variation of signal to noise metric, k-NN algorithm is run on the test set
with a prediction accuracy ranging from 82.9 to 95.7% according to the number of
genes (4 or 6) used in the algorithm; with L1–L2 algorithm we achieve 94% accuracy.

We also run the learning machine on normalized data; that is for each split we
estimated the mean and the standard deviation of the data on the training set, and
recentered both training and validation sets with respect to these estimates, so that for
the training set we have

∑n
i=1(Xi

tr ) j = 0 and
∑n

i=1[(Xi
tr ) j ]2 = 1 ∀ j . We observed

1 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
2 http://www.chestsurg.org.
3 http://www-genome.wi.mit.edu/mpr/prostate.
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Fig. 1 Minimum cross-validation error (number of misclassified samples) with respect to ridge parameter
τ for leukemia (left), lung cancer (middle) and prostate cancer (right)

Table 1 Results of L1–L2+ ridge algorithm on microarray data sets

Leukemia Lung cancer Prostate cancer

µ Number of Test µ Number of Test µ Number of Test
sel. genes error sel. genes error sel. genes error

0 15 1/34 0 18 1/90 0 17 6/51
0.00025 21 1/34 0.0001 18 1/90 0.0001 19 6/51
0.0005 33 1/34 0.00025 23 1/90 0.0005 21 5/51
0.001 44 1/34 0.0005 31 1/90 0.001 26 5/51
0.0025 70 0/34 0.001 37 1/90 0.005 52 3/51
0.005 94 0/34 0.0025 59 1/90 0.01 75 4/51
0.01 126 0/34 0.005 85 1/90 0.025 101 3/51
0.05 211 0/34 0.01 113 1/90 0.05 123 6/51
0.1 237 0/34 0.025 191 1/90 0.1 148 5/51

that prediction performance is lower with normalized data, and we may explain such
effect by guessing a loss of information induced by across-array normalization on the
data sets we examined in this work.

5 Object detection in images

5.1 The problem

Object detection amounts at finding one or more instances of an object or a class in a
digital image. From the algorithmic point of view it boils down to classifying image
subregions. Usually it is modeled as a binary classifier, where we assign a positive
(1) or negative (−1) label to an image sub-region in accordance to the presence or
absence of the object of interest. A variety of object detectors of different nature
have been proposed in the literature. Here, for the sake of simplicity, we focus on the
widely studied face detection. In the last years face detection has been boosted by the
contribution of the learning from examples paradigm which helps to solve many well-
known problems related to face variability in images (Yang et al. 2002; Osuna et al.
1997; Schneiderman and Kanade 2000). In particular, component-based approaches
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highlighted the fact that local areas are often more meaningful and more appropriate
for dealing with occlusions and deformations (Mohan et al. 2001; Ullman et al. 2002).

Among the various ways of representing the image content, we consider the so called
rectangle features that have been used with success on a number of object detection
problems and on face detection in particular (Viola and Jones 2004). Rectangle features
“expand” the information carried by each image in a high-dimensional dictionary
of overcomplete features, describing various local patterns. The number of features
obtained is related to the image dimensions, and it is usually very large. For example in
a 19 x 19 pixel image, the number of rectangle features is about 64,000. Considering the
amount of redundant information contained in images, it is obvious that an automatic
feature selection step is necessary to obtain a small and compact set of features that
capture the most meaningful patterns for a given classification problem.

In the remainder of the section we describe a procedure to extract meaningful
features leading to an efficient face detection architecture. Notice that this architecture
may be applied to different object detection problems, simply by changing the training
set; here the main objective of feature selection is to obtain a very compact set of
features that allow us to build an effective real-time face detection system. To this
purpose, due to the high degree of redundancy of image features, we apply the L1
algorithm.

5.2 The method

Our face detection machine is a combination of a L1 feature selection and a cascade
of linear SV M classifiers. The SVM cascade follows a rather standard design for real
time object detection (Heisele et al. 2001; Viola and Jones 2004), while the feature
selection procedure has been implemented efficiently with a split&merge approach,
in order to deal with a high-dimensional matrix (Destrero et al. 2007). Thus, we look
for a solution of problem (1), where matrix X is built from a training set of positive
(faces) and negative (other patterns) example images, vector y represent the class labels
(1 for faces −1 for non faces), and β represents the unknown weight vector. In this
case the matrix X will become rather big: in the case of images it is common to have at
disposal thousands of images of the same class, each of which represented by a fairly
high-dimensional vector. For this reason applying the iterative algorithm described
in Eq. 9 directly to the whole matrix may not be feasible on all systems: the matrix
multiplication needs to be implemented carefully so that we do not keep in primary
memory the entire matrix X . One possibility is to compute intermediate solutions with
multiple accesses to secondary memory.

We implemented a different approach, based on resampling the features set and
obtaining many smaller problems, that can be briefly described as follows: we build S
feature subsets each time extracting m features from the original set of size p (m � p),
we then obtain S smaller linear sub-problems of the type: Xsβs = y for s = 1, . . . , S,

where Xs is a submatrix of X containing the columns relative to the features in s;
βs is computed accordingly. As for the choice of the number S of sub-problems and
their size we observe that the subset size should be big enough to be descriptive, small
enough to handle the matrix easily; thus, we consider subsets of features made up
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with a 10% of the original size. To choose the number of sub-problems S, we rely
on the binomial distribution and estimate how many extractions are needed so that
each feature is extracted at least 10 times with high probability. After we build the S
sub-problems we look for the S solutions running S iterative methods as in Eq. (8). At
the end of the process we are left with S overlapping sets of features. The final set of
features, say S1, is obtained choosing the features that have been selected each time
they appear in the subsets.

In order to obtain a smaller set of meaningful features we further apply the feature
selection procedure to the set S1 looking for a new, sparser, solution. The new data
matrix is obtained by selecting from X the columns corresponding to S1, and y(0)

S1
is initialized again to a vector of zeros. We call S2 the set of features obtained from
this further selection step. The final set of features S3 is obtained through a further
procedure that cleans the set from the presence of correlated features, applying the
Spearman’s test to this purpose.

The features in S3 is used are used to build a cascade of small SVMs that is able
to process video frames in real time. The cascade of classifiers analyses an image
according to a standard coarse-to-fine approach. Each image patch at a certain loca-
tion and scale is the input of the classifiers cascade: if the patch fails one test it is
immediately discarded; if it passes all tests a face is detected. Each classifier of the
cascade is built starting by three mutually distant features, training a linear SVM on
such features, and adding further features until a target performance is obtained on a
validation set. Target performance is chosen so that each classifier will not be likely to
miss faces: we set the minimum hit rate to 99.5% and the maximum false positive rate
to 50%. Assuming a cascade of 10 classifiers, we would get as overall performance:
HR = 0.99510 ∼ 0.9 and FPR = 0.510 ∼ 3 × 10−5 (Viola and Jones 2004).

5.3 Experiments

We carried out experiments to validate the quality of the selected features and, as a
consequence, the quality of the face detection machine. We started off with a publicly
available training set of frontal faces4 and with a set of faces and non faces images
acquired in our department.5 We start from measurement matrix X which is 4,000 ×
64,000, and if computed all in once would occupy about 1 Gb of memory. Therefore it
is advisable to apply our split & merge procedure. As for the number of subproblems
we observe that, if S = 200, such a probability is 99.6% which is good enough to our
purposes—in practice only 256 features over 64,000 are extracted less then 10 times.
Thus, we apply the various selection stages described above, tuning the parameter τ

in order to achieve a compromise between the number of selected features (that we
would like to be small) and the estimated error on a validation set. Table 2 reports how
the error and the number of features vary while changing the parameter τ . We observe
that the error is not too sensitive to the parameter choice, while the number of selected

4 http://cbcl.mit.edu/software-datasets/FaceData2.html.
5 This dataset contains 4,000 training and 3,000 validation images and over 20,000 test data. All images
are 19 x 19 pixel. The dataset is available upon request.
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Table 2 The trend of error and
features number while varying
the parameter τ

Number of Test
τ sel. features error

1 × 10e-8 4,636 0.022

1 × 10e-7 4,595 0.023

1 × 10e-6 2,219 0.022

2 × 10e-6 1,922 0.022

5 × 10e-6 1,813 0.023

1 × 10e-5 1,791 0.021

2 × 10e-5 1,303 0.020

5 × 10e-5 867 0.022

1 × 10e-4 581 0.023

2 × 10e-4 247 0.027

4 × 10e-4 66 0.135

5 × 10e-4 0 –

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1

0  0.005  0.01  0.015  0.02

2 stages feature selection

2 stages feature selection + correlation

Viola+Jones feature selection (big set of data + cascade)

Fig. 2 ROC curve comparing the classification results obtained with our approach and with an Adaboost
feature detector all trained with the dataset collected in our department

features depends critically from this choice. In this case we chose τ corresponding to
an error lower than 0.1 and leading to the smaller set of features: τ = 2 × 10e − 4.

For what concerns the prediction accuracy we validated the face detector archi-
tecture on a test dataset of over 20,000 images acquired by us. Figure 2 reports a
comparison between the results obtained with our method (with and without the final
step that leads to the minimal set of features) and Adaboost trained on our same set
of data. The ROC curves show how our approach is superior, when the size of the
training set is relatively small.

Currently our face detector is running as a module of a monitoring system installed
in our department (Destrero et al. 2007). Table 3 shows its detection performance in
two different situations. The first row of the table refers to the results obtained on
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Table 3 The performance of the face detection system on a controlled set of images (top row) and on a 5
hours unconstrained live video (bottom row)

Test data False pos rate (%) Hit rate (%)

Test images 0.1 94

5 h live 4 × 10−7 76

Fig. 3 Detection results on a selection of images from our monitoring system and from public datasets

images acquired in controlled conditions, while the second row refers to uncontrolled
detection: we manually labeled the events occurring in a 5 h recording of a busy
week day; the recording was entirely out of our control and it included changes of the
scene, people stopping for impredictable time, lateral faces. Notice that at run time,
the classifiers have been tuned so as to minimize the number of false positives. As a
final remark we observe that the amount of data analysed is huge since, on average,
the detector analyses 20,000 patches per image or frame.

We also tested our face detection method on benchmark datasets—test set A and C of
MIT-CMU and the BioID dataset—obtaining results consistently above an Adaboost
detector (Viola and Jones 2004) trained with our same dataset. Keeping the false
positive rate fixed, the hit rate gain with our approach is on average 8% on the various
test sets. Figure 3 shows a few detection examples, both obtained from our monitoring
system and from running the detector on publicly available datasets. See Destrero et al.
(2007) for more examples and details on the experiments.
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6 Discussion

In this paper we discussed feature selection for data living in high-dimensional spaces,
basing our analysis on two prototypical applications: microarray analysis and object
detection. We adopted a regularized scheme to feature selection and, in particular,
we considered both L1 and mixed L1–L2 types of penalties. The former does not
always lead to a unique solution in terms of the selected features, but it allows us to
keep the number of selected features minimal; it is therefore recommended in those
applications where features are not important per se, but for the information that they
carry. Also it is useful in such applications where a compact description of the data is
a requirement. L1–L2 penalty, instead, guarantees a unique solution, and guarantees
that groups of correlated features are all kept in the final set with comparable weights.
It may be adopted in applications were one wants to maintain all the expressive power
of the original representation simply discarding meaningless features. These schemes
can be applied to problems with huge underdetermination, as biological data tend to
be, and, with the help of ad hoc split and merge strategies, may be used even if the
matrix size grows.

From the application standpoint, the adopted scheme allowed us to achieve results
in line, and sometimes superior, to state-of-the-art solutions and, at the same time,
gain a deeper insight of the features which are significant for a given problem.
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