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Abstract This paper investigates optimal maintenance of equipment under uncer-
tainty and the options of scrapping versus keeping the equipment as a back up (at
a cost). This set up is used to analyze three points. The first observation is that the
continuous, deterministic and even the unconstrained stochastic problem allow for
closed form analytical solutions, realistic constraints require numerical means to solve
the corresponding stochastic managerial problem. Second, the possibility to switch at
negligible costs between different modes (here running or mothballing the equipment)
depending on current states requires a condition in addition to the familiar value match-
ing and smooth pasting conditions, namely continuity of the second derivative of the
value function (or super contact). Equipped with these findings the analysis turns to the
third point of quantifying numerically the value of keeping equipments as a back-up
instead of scrapping.

Keywords Itô-process · Stopping · Switching · Super contact · Real option

1 Introduction

This paper addresses the following points within managerial decisions requiring
dynamic and stochastic optimizations:

1. Theoretical analysis and computation are often complementary. More precisely,
in the context of stochastic dynamic optimization brute force numerics (i.e., trying
to solve numerically directly the partial differential equations resulting from the
Hamilton–Jacobi–Bellman equations) fails. On the other hand, analytical solutions
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380 F. Wirl

are often of less use than it appears at the first sight due to the complexity of the
solution. This point is demonstrated indirectly in Lyasoff (2004) for one of the most
famous and celebrated analytical results of economics, business and finance, the
Black-Scholes formula. Lyasoff (2004) shows that the explicit analytical expres-
sion of the value of a call option offers little compared with the description of
this value as a path integral (in the sense of Feynman). The latter approach can be
readily implemented e.g. in Mathematica (even symbolically) and is more general
because it applies to arbitrary nonlinear payoffs.

2. Many management decisions are not constrained to using or scrapping an equip-
ment but have often the possibility to keep (at a cost) without using some equipment
before mustering it out (e.g., old power plants that are mothballed for possible
future supply shortages); or in partnerships, investments terminate before ulti-
mately breaking up (or not, if prospects improve due to unforeseen events). The
two transitions between these three modes—operation, on hold, and scrapping—
differ. While the last action is irreversible (a scrapped, or sold machine cannot
be used in the future) the others are reversible. Now if the costs of re-installing
and also in the other direction, moving a machine from operation to back up, are
negligible, then the familiar conditions of value matching and smooth pasting are
insufficient and super contact provides the remaining condition.

3. An investigation of the managerial problem of maintenance, mothballing and
scrapping of an equipment or another profit generating unit (the activity is labelled
‘maintenance’ throughout the paper although it can cover a variety of efforts such
as advertising). Numerical examples are used to determine the value and sensitivity
of this option.

The basic framework is introduced in Sect. 2. This paper focuses inter alia on revers-
ible stopping—an action (here ‘maintenance’) can be suspended for some time without
precluding future operation—while most of the related literature considers stopping
decisions that are irreversible (killing the option). In fact, such an irreversible stopping
(i.e. scrapping, in the application of this paper) is sometimes assumed even if a later
re-entry is actually optimal (almost for sure e.g. in the global warming model in
Pindyck 2000). Re-entry decisions associated with costs have been studied in Dixit
(1989) emphasizing hystereses effects (associated with real option decisions) and
drawing attention to the two different kinds of options: to enter and to exit. Section 3
analyzes the optimal use of an equipment differentiating between operation, mainte-
nance, back up and scrapping for discrete maintenance (e.g., you can change the oil in
your car or not). This section discusses the limits of theoretical analysis (documented
in detail for an example in the Appendix), numerical difficulties and gives exam-
ples including a sensitivity analysis. Section 4 sketches the extension to continuous
maintenance.

2 Model

The firm chooses a maintenance strategy, {m (t) ∈ M}, M is the admissible set of
maintenance strategies, at each point in time (t) that maximizes the expected net
present value of profits over costs generated by this equipment,
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F (π0) ≡ max{m(t)∈M}E
∞∫

0

e−r t�(t) dt. (1)

The current period profit �(t) consists of the net revenues (π (t), i.e. the operating
costs are already subtracted) if the unit is operating, the costs for maintenance and
mothballing if the equipment serves only as a backup, but is not scrapped; the further
possibility of upgrading an existing equipment at a cost is a further possibility but is
left out of the analysis in order to reduce the number of cases. In order to simplify and
to facilitate analytical solutions where possible, the following assumptions are made:
costs of mothballing are constant, h > 0, per period, maintenance costs are assumed
to be quadratic, which is not crucial except for a short discussion in Sect. 5. In addi-
tion it is assumed that maintenance is restricted to operating units. This gives in total
four cases (allowing for maintenance of back up units adds a fifth case and a further
stopping decision yet without additional insights) with the following instantaneous
payoffs:

�(t) =

⎧⎪⎪⎨
⎪⎪⎩

π (t) − c
2 m2 (t)

π (t)
−h
0

if equipment is

operating and maintained
only operating but m = 0

on hold, not operating
scrapped

⎫⎪⎪⎬
⎪⎪⎭

. (2)

Assuming that expected depreciation is linear (a) and that the noise is Brownian (dz
is the increment of a standardized Wiener process z), the net revenues π are stochastic
processes evolving in the above four different regimes according to,

dπ =

⎧⎪⎪⎨
⎪⎪⎩

[m (t) − a] dt + σdz
−adt + σdz

σdz
0

if equipment is

operating and maintained
only operating but m = 0

on hold, not operating
scrapped

⎫⎪⎪⎬
⎪⎪⎭

, (3)

with the initial condition, π (0) = π0. That is, the net revenues (π) from an equip-
ment/outlet/factory/etc. are expected to depreciate by the amount a which can be
reduced by maintenance m.

This framework can be interpreted easily despite its mathematical set up with the
help of practical examples, even personal ones, like owning a car. First of all the benefit
from a car (π) is random, because it depends on the urgency, importance and benefit
(e.g. weather) of trips and on the availability of the car, which will diminish over time
due to repairs and other reasons for outages (unexpected damages either mechanical or
due to accidents). For concreteness assume that the annual benefit of a brand new car
is $10,000 (above insurance and other related costs) and that the car would last 5 years
without any maintenance, which implies for linear depreciation that the expected
benefit declines by, a = $2,000; this depreciation may include beyond the mentioned
outages, less fun and less comfort as the car ages. Maintenance, say a regular service
at the cost C(m) reduces this annual expected depreciation of benefits by m = $ 1,000
(and increases expected lifetime to 10 years). Mothballing means in this case that the
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car is moved into a garage (at the cost h per year covering the expenses for the garage
and the insurance). The car is only used if needed (either as a back up, as a second
car, or not used at all, if individual service demand and thus the benefit from a car has
drastically shrunk), i.e., if the associated benefit π justifies this. The stochastic process,
dπ = σdz, describes the hypothetical profit off-line (while the car is in the garage,
potential benefits from driving change), but clearly, the car in the garage delivers no
instantaneous benefit (and does not age from a benefit perspective). The uncertainty
results from conditions outside the control of the individual. Finally, the additional and
simplifying assumption that operation and maintenance go only hand in hand means
that a car in the garage will receive no service, which seems to be plausible.

Within this set up, the firm has in addition to operation and maintenance, the first
line in (3), three different stopping options not all of them always economical:

1. To suspend maintenance but keep operating, m = 0.
2. To suspend operations and maintenance but to keep the machine as a back up and

for potential reuse if profit opportunities improve sufficiently. This case, labeled
mothballing, reduces revenues and depreciation to zero and causes costs h per
period. In this case, π describes the hypothetical profit off-line (and dπ = σdz its
evolution) that can be only realized after bringing the unit back into the production.

3. To scrap the machine/plant at no cost except that all future uses and benefits are
sacrificed. This stopping is irreversible, i.e., �(t) = 0 for all t > T = scrapping
date, once this option is executed in contrast to the above two stopping decisions
that only suspend actions.

Continuous dynamic programming implies that the value function F must satisfy
the Hamilton–Jacobi–Bellman equation across the four different cases (in the same
sequence as in (2) and (3) and omitting the function arguments t as well as π )

r F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
m∈M

{
π − c

2 m2 + F ′ (m − a) + 1
2σ 2 F ′′}

π − aF ′ + 1
2σ 2 F ′′

−h + 1
2σ 2 F ′′
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4)

Since the above framework involves switching (at points 1 and 2) and only one
conventional stopping condition (to scrap in 3), additional boundary conditions are
necessary to solve the problem. The derivation of such boundary conditions is the
content and objective of the next section.

3 Constant maintenance ( m )

Assuming a binary control, M = {0, m}, i.e., maintenance can be applied or not (e.g.
a car can get the oil changed or not) allows to apply the apparatus of real options
documented in Dixit and Pindyck (1994); the extension for continuous maintenance
is briefly addressed in the following section.
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3.1 Operation and maintenance

Substituting the interior policy, m = m, into the Hamilton–Jacobi–Bellman equation
(4) implies the following linear differential equation,

r Fi = π − c

2
m2 + Fi ′ (m − a) + σ 2

2
Fi ′′. (5)

The general solution of (5) consists of a particular solution
(

Fi
p

)
and of the general

solution
(
Fi

h

)
of the homogeneous part of the differential equation (5) according to

the principle of superposition. The particular solution is

Fi
p = π − c

2 m2

r
+ m − a

r2 = E

∞∫

0

e−r t
(
π (t) − c

2
m2

)
dt, (6)

which is easily verified. This particular solution is the fundamental term, because
it determines the expected net present value of profits of running and maintaining
the equipment forever [see the right hand side in (6)]. The general solution of the
homogenous part of (5) is

Fi
h = c1eβ1π + c2eβ2π , β12 = a − m ±

√
(a − m)2 + 2rσ 2

σ 2 (7)

in which β12 are the roots of the characteristic equation of the homogeneous part of
(5). The general solution, Fi

p + Fi
h , accounts for the fundamental term and the value of

the option to stop using the equipment. This possibility of stopping is clearly valuable
if operation yields a negative cash flow. Yet as the profits are large, the probability of
near future stopping is unlikely, which reduces the value of this option. This is only
possible if the coefficient of the positive exponential vanishes, c1 = 0, so that the
solution of the interior part of the value function becomes

Fi = π − c
2 m2

r
+ m − a

r2 + c2e
a−m−

√
(a−m)2+2rσ2

σ2 π
. (8)

3.2 Scrapping

This part of the solution is trivial. With scrapping at date T all future profits terminate,
i.e., the stochastic process evaporates (dπ = 0) and the corresponding payoff (Fs) is
simply

Fs = 0 ∀t > T . (9)

Suppose that scrapping is the only option, i.e., operation and maintenance are
Siamese twins (either for technical or economic reasons such that maintenance is not
sufficiently profitable) and mothballing is not possible or too costly such that scrap-
ping is optimal. Let π s denote the scrapping threshold (i.e., the profit level at which
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scrapping is optimal), then applying value matching, Fi (π s) = Fs (π s) = 0 and
smooth pasting, Fi ′ (π s) = Fs′ (π s) = 0, yields two equations

π s − c
2 m2

r
+ m − a

r2 + c2eβ2π s = 0, (10)

1

r
+ β2c2eβ2π s = 0, (11)

that determine the two unknowns, explicitly,

π s = 1

β2
− m − a

r
+ c

2
m2, c2 = −e−β2π s

rβ2
, (12)

and thus the value function analytically.
This explicit analytical solution allows to document that direct attempts of numeri-

cally solving the Hamilton–Jacobi–Bellman equation must fail. The optimal decision
between using and scrapping requires to solve

r F = π − c

2
m2 + ( m − a) F ′ + σ 2

2
F ′′, F

(
π s) = 0, F ′ (π s) = 0, (13)

i.e., a second order, in this case even an ordinary and linear, differential equation, sub-
ject to two boundary conditions. The only difficulty seems that the stopping level π s is
unknown, which could be found by iterating until the maximum value is found. Yet as
the above derived general solution highlights, this is numerically difficult, because any
deviation from the true π s (and any numerical guess is off of this value) is equivalent
to c1 �= 0. This introduces an exponentially growing term which sooner or later dom-
inates leading to a huge deviation from the true value function. Figure 1 documents
this for a numerical example using excellent approximations (±0.01% from the true
π s).

Replacing this direct (Runge–Kutta) procedure by finite difference algorithms
improves the approximation at some computational cost (see Dangl and Wirl 2004).

,laciremuN
eurt fo sseug rof

π s± %10.0

analytical

mret latnemadnuf

Fig. 1 Comparing direct numerical solutions of (13) using the Runge–Kutta algorithm and excellent guesses
of the scrapping level; a = 0.1, r = 0.1, m̄ = 0.025, c = 100, σ = 0.2
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However, finite difference algorithms require additional boundary conditions, e.g.,
that the solution of the Hamilton–Jacobi–Bellman equation can be approximated at
large values of π by the fundamental term, the particular solution. Tying any solution
between the boundary solution and the particular solution and applying the method of
finite differences avoids the impact of the exploding solution paths displayed in Fig. 1.
However, this approach requires the knowledge of the particular solution, which is not
the case in general. For example, a geometric representation of the stochastic process
(in the interior),

dπ = [m − a] πdt + σπdz, π (0) = π0, (14)

has no closed form analytical solution for the corresponding expected net present value
of profits (simultaneously a particular solution) for operating and maintaining forever.

3.3 Operating, no maintenance

This case of operation without maintenance saves the corresponding costs and thus
implies the Hamilton–Jacobi–Bellman equation (this part of the overall value function
is identified by the subscript o):

r Fo = π + Fo′ (m − a) + σ 2

2
Fo′′. (15)

Applying the procedure outlined in Sect. 3.1 yields the solution

Fo = π

r
− a

r2 + d1eγ1π + d2eγ2π , γ12 = a ± √
a2 + 2rσ 2

σ 2 (16)

In contrast to the above interior solution (8), both exponentials can be part of the value
function because they capture the two different options: to re-start maintenance and
to stop operation (leading to mothballing or scrapping, depending on parameters).

3.4 Mothballing

Suspending the equipment (no maintenance and no operation thus also no deprecia-
tion) reduces the stochastic process to dπ = σdz and eliminates the revenues π in
the objective (presumably negative otherwise) but adds instead the per unit costs h.
This implies the following functional equation for the value function in this domain,
identified by the subscript m,

r Fm = −h + σ 2

2
Fm′′. (17)

This differential equation has the following solution (again applying the principle of
superposition)

Fm (π) = −h

r
+ k1eα1π + k2eα2π , α12 = ±

√
2r

σ
(18)
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where the particular solution (−h/r) determines the fundamental term (the expected
net present value of holding the equipment forever as a backup without ever activating
it) while the exponential terms account for the potential benefits from the two different
and actually opposite options: future operation and scrapping. The exponents are the
roots of the characteristic equation of the homogeneous part of the differential equa-
tion (17), the options—to re-start operations and scrapping—are potentially valuable,
thus k1 > 0 and also k2 > 0.

3.5 Boundary conditions

Assuming that all options are economical in the state space (which need not be the
case, as is demonstrated with examples), the familiar conditions of value matching
F (π s) = Fm (π s) = Fs (π s) = 0 and smooth pasting F ′ (π s) = Fm′ (π s) =
Fs′ (π s) = 0 at the scrapping level (π s) yield:

− h

r
+ k1eα1π

s + k2eα2π s = 0, (19)

α1k1eα1π
s + α2k2eα2π s = 0. (20)

Analogously, value matching Fi (πm) = Fo (πo) and smooth pasting, Fi ′ (πm) =
Fo′ (πm), when stopping maintenance yet continuing operation, imply:

− cm2

2r
+ m

r2 + c2eβ2πo = d1eγ1π
o + d2eγ2πo

, (21)

β2c2eβ2πo = γ1d1eγ1π
o + γ2d2eγ2πo

. (22)

Finally, at the level of mothballing, Fi (πm) = Fm (πm) and Fi ′ (πm) = Fm′ (πm)

imply

πm

r
− a

r2 + d1eγ1π
m + d2eγ2πm = −h

r
+ k1eα1π

m + k2eα2π
m
, (23)

1

r
+ γ1d1eγ1π

m + γ2d2eγ2πm = α1k1eα1π
m + α2k2eα2πm

. (24)

Summarizing, the familiar conditions of value matching and smooth pasting yield six
equations that contain yet eight unknowns, the coefficients (k1, k2, d1, d2, c2) and the
threshold levels (π s, πm, πo).

Therefore additional conditions are needed. The approach in Dixit (1989) cannot
be extended to the limiting case of zero exit and entry costs (this reversible case of
stopping and entering at no charge is called switching in the following) because it
also ends up in the lack of a boundary condition. Dumas (1991) considers transaction
between actions and shows that the usual boundary conditions move up one notch:
value matching → smooth pasting, and smooth pasting → super contact, i.e., con-
tinuity of the second derivative. This does not solve our problem of switching at no
cost. However, all three conditions, value matching, smooth pasting and super contact
hold for the limit of zero transaction costs:
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Lemma Consider the stochastic dynamic optimization problem,

G(y0) ≡ max
x∈X⊆
+

⎧⎨
⎩E

⎛
⎝

∞∫

0

e−r t u(x (t) , y(t))dt

⎞
⎠

⎫⎬
⎭ ,

dy (t) = a (x (t) , y (t)) dt + b (y (t)) dz (t) , y(0) = y0,

in which the functions u, a and b are twice continuously differentiable and ensure con-
cavity, uxx +axx G ′ < 0, and the boundary strategy, x = 0, is admissible, |ux (0, y)| <

∞. Furthermore, assume without loss in generality that y < Y is the interior domain
and y > Y the stopping domain and Y denotes the corresponding threshold level.
Then,

lim
y↗Y

G ′′(y) = lim
y↘Y

G ′′(y).

This result applies to discrete (real option), X = {0, x}, as well as to continuous
controls, X = 
+.

Proof Wirl (2007, forthcoming).
Application of this lemma ensures that switching at no cost between interior and

boundary strategies implies continuity of the second derivative of the value function.
This property of super contact, i.e., continuity of F ′′ at the corresponding threshold
levels πo and πm , renders the needed two additional equations,

β2
2 c2eβ2πo = γ1d1eγ1π

o + γ2d2eγ2π
o
, (25)

γ 2
1 d1eγ1π

m + γ 2
2 d2eγ2πm = α2

1k1eα1π
m + α2

2k2eα2π
m
. (26)

The resulting simple equations document the suitability and applicability of the super
contact condition.

The eight Eqs. (19)–(26) are linear in the coefficients (k1, k2, d1, d2, c2) yet non-
linear in an essential way in the thresholds (π s, πm, πo) such that explicit analytical
solutions are not possible. And although the implicit function theorem allows in prin-
ciple to determine qualitative properties, its application is highly cumbersome even
after reducing the system to three equations by substituting the expressions of coeffi-
cients (obtained from solving the linear system). This holds a fortiori for complex
processes that render analytical solutions even if available, of often very limited use; a
particular example that allows for a rather complex closed form solution is elaborated
in the Appendix.

3.6 Examples

For the reasons expounded above a numerical example serves to trace the managerial
consequences. The reference parameters of this example are

r = 0.10, a = 0.10, h = 0.1, σ = 0.10, m = 0.05, c = 200. (27)
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1 π

F(π )

π s π m π oparcs niatniam&etarepoetarepollabhtom

Fo

Fi

Fm

F=F o F=F iF=F mF=F s

Fig. 2 Value function (s) for reference example: a = 0.1, r = 0.1, m = 0.05, c = 200, h = 0.1, σ = 0.2

Figure 2 shows the value function (bold), the thresholds (π s, πm, πo) and the associ-
ated separation of the state space into the different actions; the dashed lines refer to
the ‘solutions’ associated with particular sets of actions (i.e., to the functions labeled
F j , j = i, o, m and how they make up the value function F). From a managerial point
of view two results seem relevant: units that would produce a loss and are costly to
mothball are nevertheless kept (π s < 0) while units still delivering profits are retracted
from operation (πm > 0). At first sight it seems a little bit puzzling that maintenance is
active even if profitability is very high. This is a consequence of risk-neutral objective
and the linear and unbounded contribution of maintenance (or better efforts) to profits.

Figures 3 and 4 vary model parameters of which some parameter constellations
eliminate cases shown in Fig. 2 for the reference example. Not surprising, high dis-
counting enlarges the scrapping domain, reduces the domain of joint production and
maintenance and reduces the value (and domain) of mothballing. At low discount rates,
the option of stopping maintenance becomes worthless (i.e., maintenance and opera-
tion become Siamese twins) and this induces a non-monotonicity into the threshold
πo. The consequences of higher uncertainty are, as seems common, a mirror image
of discounting: it enlarges the domain of joint production and maintenance (including
a decline in πo) and of mothballing (sufficient uncertainty is necessary to render this
option valuable), but reduces the scrapping domain (with high uncertainty equipment
yielding a considerably losses are nevertheless kept) and the domain of operation only.

Figure 4 plots the consequences of the costs of maintenance1 and of mothballing.
Higher maintenance costs enlarge the domain of operating only largely at the expense
of shrinking the domain of joint operation and maintenance (i.e., a substantial increase
of the threshold πo), while the remaining thresholds are insensitive. Low maintenance
costs eliminate the case of operation only. Increasing the costs of mothballing has
two effects: it increases the domain where scrapping is optimal rendering the option

1 Variations in m do not cover the efficiency in maintenance since any increase in m increases the corre-
sponding costs to the squared. Thus variations in c are best suited to trace the consequences of efficiency
of maintenance.
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Fig. 3 Optimal thresholds for varying discount rate (r ) and standard error (σ ) for the reference parameters:
a = 0.1, r = 0.1, m = 0.05, c = 200, h = 0.1, σ = 0.2
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Fig. 4 Optimal thresholds for varying costs of maintenance (c) and of mothballing (h) for the reference
parameters: a = 0.1, r = 0.1, m = 0.05, c = 200, h = 0.1, σ = 0.2

of mothballing worthless at sufficiently high costs (e.g. for h > 0.18); second the
enlargement of the domain of operation cuts from above into the mothballing segment.

4 Continuous

The solution of the continuous problem is only sketched since the special case (scrap-
ping versus operating and maintenance) is analyzed in Dangl and Wirl (2004) and the
full blown case would require to append all the different options (i.e., the determination
of the option value coefficients and the thresholds) to the continuous program which
would enlarge the paper, complicate the computations without adding an equivalent
in substance.

Since maximization of the right hand side of the first row in (4) with respect to a
continuous choice of maintenance yields m∗ = F ′/c, the Hamilton–Jacobi–Bellman
becomes in the interior

r F = π − aF ′ + 1

2c
F ′2 + σ 2

2
F ′′, (28)

but is unchanged in all the other cases. Hence, one has to solve the above second order
differential equation accounting for all the boundary conditions. These conditions are
structurally identical to those in Sect. 3.5 but yield different values and upper bars
are introduced to indicate this difference. The thresholds π s and πm are contingent
on stopping the interior program at πo at which value matching, smooth pasting and
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super contact must hold. That is, conditional on a guess, π̂
o
, it is necessary to locate

the stable branch of the second order differential equation (28) which can be achieved
by a projection algorithm (originally suggested in Judd 1992, applied in Dangl and
Wirl 2004) because that follows the stable flow avoiding the exploding exponentials
that render standard procedures inadequate as demonstrated in Fig. 1.

5 Summary

This paper investigated the managerial problem of maintenance, mothballing and
scrapping of a profit generating unit (a machine, a product sold, an outlet, etc.). Aside
from analyzing this particular managerial problem, the paper emphasized two issues,
that of reversible versus irreversible stopping (scrapping) and how analytics and num-
erics are complements. The first point of reversible stopping or switching is related
to the issue of stopping operation without immediately scrapping the unit and having
the option of keeping it for potential future utilization. In this case, the familiar condi-
tions of value matching and smooth pasting are insufficient to solve the problem and
it is shown that super contact holds across such switching points and this condition
proves useful in solving the problem (it provides the lacking boundary condition).
Along the managerial application (maintenance) it was also demonstrated that ana-
lytical and numerical aspects are often complements and that sometimes analytical
solutions (although much acclaimed in the theoretical literature) offer little insight;
Judd (1998) and Miranda and Fackler (2002) are two particularly useful text books
on numerical methods in business, finance and economics. Conversely, brute force
numerics without any analytical look at the problem can prove faulty. Finally, a partic-
ular characteristic of this paper is that numerics become useful (if not necessary) for
a handy small-scale model rather than the large-scale models (say in transportation,
logistics and production) that must entirely rely on number crunching.
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from an anonymous referee, Florian Pützl, and Roland Görlich.

Appendix: Example: analytical but complex solution

The objective of the following example is to demonstrate that an analytical solution
may often be of less use than stressed in the literature. For this purpose, consider
the following variant of a stochastic process along operation and maintenance of an
equipment:

dπ = [m − δπ ] dt + σ
√

πdz, π (0) = π0, (29)

in which linear depreciation is replaced by geometric depreciation and the root
accounts for the standard error; geometric noise (σπdz) and/or relative improve-
ment due to maintenance (mπ) lead to more complicated expressions ruling even
out, as already mentioned, an analytical expressions for the particular solution of the
Hamilton–Jacobi–Bellman equation.

123



Optimal maintenance and scrapping versus the value of back ups 391

Let us restrict the analysis to the interior policy, m = m. This implies the following
linear differential equation (ignoring for the moment the superscript i),

r F = π − c

2
m2 + F ′ (m − aπ) + 1

2
σ 2π F ′′, (30)

which has the particular solution

Fp = π

r + a
− 1

r

c

2
m2 + m

(r + a) r
.

The homogenous part of the Eq. (30) is (slightly re-arranged)

π F ′′ +
(

2m

σ 2 − 2a

σ 2 π

)
F ′ − 2r

σ 2 F = 0. (31)

defining

z = 2a

σ 2 π (32)

and demanding

h (z) = F (π) , F ′ = h′ 2a

σ 2 , F ′′ = h′′
(

2a

σ 2

)2

(33)

yields after elementary simplifications, dividing by
(

2a
σ 2

)
, and defining

b = 2m

σ 2 , θ = r

a
, (34)

the second-order ordinary differential equation

zh′′ + (b − z) h′ − θh = 0, (35)

which is sometimes called Kummer’s differential equation (Abramowitz and Stegun
1964). It has two linear independent solutions (Jeffrey 2000; MacDonald 1948) for
b /∈ ℵ:

h1(z) = H(θ, b, z) ≡ 1 + θ

b
z + θ (θ + 1)

b (b + 1)

z2

2! + . . . , (36)

h2(z) = z1−b H(θ − b + 1, 2 − b, z). (37)

Since the second solution h2(z) behaves for small values of z like z1−b and is thus not
well defined for small values of z if b > 1 (while h1(z) remains bounded at z = 0),
the general solution of (30) is

F (π) = π

r + a
− 1

r

c

2
m2 + m

(r + a) r
+ C1 H

(
r

a
,

2m

σ 2 ,
2a

σ 2 π

)
(38)
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392 F. Wirl

Clearly, applying the implicit function theorem to exploit analytical properties
implicit in the value matching, smooth pasting and super contact conditions is not
a suitable strategy, even knowing (e.g. from MacDonald 1948) that H ′ = θ

b H
(θ + 1, b + 1, z).
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