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Abstract We survey some recent developments in the area of continuous-time port-
folio optimization. These will include the use of options and of defaultable assets as
investment classes and the presentation of a worst-case investment approach that takes
the possibility of stock market crashes into account.
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1 Introduction

The problem to find an optimal portfolio process in a continuous-time market setting
is nowadays well understood from a theoretical point of view. Its main results (such
as those derived in the pioneering work by Merton 1969, 1971; Cox and Huang 1989;
Pliska 1986; or Karatzas et al. 1987) are covered in monographs such as Korn (1997)
or Merton (1990). However, from a practical point of view there are various aspects
that have until now prevented a breakthrough of the use of continuous-time portfo-
lio methods in reality. Various obstacles for such a practical application have to be
overcome. They range from a satisfying treatment of transaction costs via a demand
for including alternative investment classes besides stocks and bonds to a reasonable
protection against (stock) market crashes. In this survey, we will consider aspects of
crash protection and of investment into derivatives. After introducing to the standard
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290 R. Korn

results obtained in a complete market setting of the standard Black-Scholes type, we
will consider the portfolio problem when derivatives form an alternative investment
class. As a direct application of this, optimal investment strategies with defaultable
assets will be derived in an explicit form. Finally, we present the worst-case portfolio
approach (and variants of it) by Korn and Wilmott (2002) that explicitly considers the
possibility of market crashes in a non-standard way.

2 Optimal portfolios in the Black-Scholes-setting

We consider a Black-Scholes-type market where a bond (or, more precisely, a money
market account) with a price evolution given by

d P0(t) = P0(t)rdt, P0(0) = 1 (1)

and n risky securities (shares of stock) with price dynamics given by

d Pi (t) = Pi (t)

⎛
⎝bi dt +

n∑
j=1

σi j dW j (t)

⎞
⎠ , Pi (0) = pi , i = 1, . . . , n (2)

can be traded continuously in time until the time horizon T. Here,the market coeffi-
cients r, b and σ are assumed to be constants with σ being a regular matrix and
{W (t), ft }t∈[0,T ] denotes an n-dimensional Brownian motion. To describe the actions
of an investor, we introduce portfolio processes as n-dimensional, ft -progressively
measurable processes π(t) where πi (t) denotes the fraction of the investor’s total
wealth invested in stock i at time t . Here, the total wealth is the sum of the current
values of the investor’s holdings. For technical reasons, we have to restrict to those
portfolio processes such that the corresponding wealth equation

d Xπ (t) = Xπ (t)
[(
π(t)′b + (1 − π(t)′1)r

)
dt + π(t)′σdW (t)

]
, (3)

Xπ (0) = x

admits a unique strong solution satisfying

T∫

0

‖π(t)Xπ (t)‖2dt < ∞, P-a.s. (4)

Note that the fraction of wealth invested in the bond at time t is given by

1 −
n∑

i=1

πi (t) = 1 − π(t)′1. (5)

The aim of the investor is to find an optimal portfolio process. More precisely, given
a utility function U , i.e. a strictly concave, increasing and differentiable function U
satisfying
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U ′(0) > 0, U ′(+∞) = 0, (6)

the problem

max
π(·)∈A(x)

E(U (Xπ (T )))

is called the continuous-time portfolio problem. Here, the set A(x) consists of those
portfolio processes that lead to a non-negative wealth process when the investor is
endowed with a positive initial wealth of x and which satisfy in addition

E(U−(Xπ (T ))) < ∞. (7)

We call such portfolio processes admissible. Note that we face a dynamic optimization
problem as we have to decide about the optimal portfolio process at each time instant.
Thus, stochastic control methods are obvious candidates for solving the continu-
ous-time portfolio problems. Indeed, this is the approach of Merton (1969). One can
directly write down a Hamilton–Jacobi–Bellman equation (for short HJB-equation)
corresponding to the portfolio problem

max
π∈Rn

{
vt (t, x)+ 1

2
π ′σσ ′πx2vxx (t, x)+ (

r + π ′ (b − r1
))

xvx (t, x)

}
= 0 (8)

v(T, x) = U (x) (9)

By standard verification theorems (see Korn and Korn 2001) one can show that if the
HJB-equation possesses a classical solution (satisfying suitable growth conditions), it
has to coincide with

v(t, x) = max
π(·)∈A(t,x)

Et,x (U (Xπ (T ))), (10)

the value function of our problem (i.e. the optimal utility viewed as a function of the
parameters (t, x)when the wealth process starts at time t with a value of x . Therefore,
one can state an algorithm for solving the portfolio problem with this method:

Algorithm for solving the portfolio problem via stochastic control

Step 1 Solve the optimisation problem inside the HJB-equation to obtain

π∗(t) = π∗(t, x)

still depending on the yet unknown value function v and its partial derivatives.

Step 2 Insert π∗(t) into the HJB-equation, drop the supremum operator, and solve
the resulting partial differential equation.
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Step 3 Check all the assumptions made in the previous steps!
Solving the HJB-equation by this algorithm (compare, e.g., Korn 1997, Chap. 3)

for the choice of U (x) = 1
γ

xγ , γ < 1, leads to an optimal portfolio process of

π̂(t) = 1

1 − γ
(σσ ′)−1(b − r1). (11)

A second approach to solve the continuous-time portfolio problem and which is
tailored to the properties of the Black-Scholes type market is the so called martingale
approach (see Korn 1997, Chap. 3). It is based on the possibility of a decomposition
of the continuous-time portfolio problem into a static optimization problem

max
B∈B(x)

E(U (B)) (12)

with B(x) = {B fT − measurable |B ≥ 0, E(H(T )B) ≤ x }, and a representation
problem

Find a port f olio process π̂(·) wi th X π̂ (T ) = B̂

where B̂ solves the static optimization problem. Here, the static optimization problem
can be solved by Lagrangian methods while the representation problem can be really
involved and often needs problem specific treatment (depending on the utility function
and on the assumptions on the market coefficients). Further details can be found in
Korn (1997, Chap. 3). As an application, one can explicitly solve the continuous-time
portfolio problem for the choice of leading to an optimal portfolio process of

π̂(t) = (σσ ′)−1(b − r1). (13)

For the choice of U (x) = 1 − e−λx , λ > 0, application of the martingale method
results in an optimal vector of money (not fractions!) invested into the different stocks
given by

π̂(t)X̂(t) = 1

λ
(σσ ′)−1(b − r1)e−r(T −t). (14)

However, for general utility functions numerical methods have to be used. Another
weakness of the whole approach is the solution of the problem itself. While a constant
portfolio process has a very appealing form the mathematical point of view, it raises
a lot of practical problems. To see this, note that in particular for the case of a market
consisting only of a bond and a stock, the investor following—say—the log-optimal
strategy π̂(t) = (b − r)/σ 2 has to rebalance his holdings at each time instant due to
the fact that the stock price and the bond price move in a different way. In the presence
of transaction costs, strictly following such a strategy leads to ruin. On the other hand,
if one uses a relaxed version (Let the portfolio process evolve freely as long as it is not
too far away from the optimal portfolio; rebalance to the optimal portfolio only if the
portfolio process has moved too far away) one could obtain nearly the same optimal
utility as obtained by following the log-optimal portfolio in a strict way. However, the
relaxed version leads to finite transaction costs. For details see Rogers (2001).
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3 Optimal investment with derivatives

Due to their high liquidity, leverage effects and their non-linear payoff profile, options
and other derivatives are nowadays a widely used investment opportunity. It is therefore
a natural generalization of the standard portfolio problem to allow for investment into
options. However, a straight forward generalization of the stochastic control approach
leads to a much more complicated form of the HJB-equations as an option price even
in the most simple examples (such as a call or put option) is a non-linear function
f (t, P1(t)) of the underlying stock price, if not a functional of the whole price paths
of a set of stocks.

However, the martingale approach of portfolio optimization is well suited to deal
with this problem when we restrict ourselves to so-called weakly path dependent
options. To explain this in more detail, we first have to introduce the notion of a
trading strategy and of a replicating strategy for an option.

Definition 1 (i) A trading strategy is an R(n+1)-valued, ft -measurable process
ϕ(t) satisfying

T∫

0

|ϕ0(t)|dt < ∞,

n∑
i=1

n∑
j=1

T∫

0

(
ϕi (t)Pi (t)σi j (t)

)2
dt < ∞ P-a.s. (15)

where T > 0 is given (the time horizon). The process

X (t) =
n∑

i=0

ϕi (t)Pi (t) (16)

is called the wealth process corresponding to ϕ(t).
(ii) A trading strategy ϕ(t)will be called self-financing if the corresponding wealth

process X (t) satisfies

X (t) = X (0)+
n∑

i=0

t∫

0

ϕi (s)d Pi (s) ∀t ∈ [0, T ]. (17)

(iii) A non-negative, fT -measurable random variable C with

E(Cµ) < ∞ (18)

for some µ > 1 is called a European option. Each self-financing trading strat-
egy ϕ(t) such that the corresponding wealth process X (t) satisfies

X (T ) = C P-a.s. (19)

is called a replication strategy for the option C .
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The concept of replication strategies is the basic idea to derive the fair price of an
option in the Black-Scholes setting. For more details we refer to Chap. 3 of Korn
and Korn (2001). The following result from Korn and Trautmann (1999) will be quite
useful for our considerations below. It gives an explicit formula for the replication
strategy of options of a special kind:

Theorem 1 Assume that the price of an option at time t can be written as an at
most polynomially growing C1,2− function f (t, P1(t), . . . , Pn(t)) of time and the
underlying stock prices. Then we have:

(a) The replication strategy ψ(·) in bond and stocks for the option is given by

ψi (t) = f pi (t, P1(t), . . . , Pn(t)), i = 1, . . . , N , (20)

ψ0(t) = f (t, P1(t), . . . , Pn(t))− ∑n
i=1 f pi (t, P1(t), . . . , Pn(t))Pi (t)

P0(t)
,

(21)

and the price function f (t, p1, . . . , pn) is the unique polynomial solution of the
partial differential equation

ft + 1

2

n∑
i, j,k=1

σikσk j pi p j f pi p j +
n∑

i=1

r pi f pi − r f = 0. (22)

(b) The price process f (t, P1(t), . . . , Pn(t)) of the option satisfies

d f (t, P1(t), . . . , Pn(t))

=
(

r f (t, P1(t), . . . , Pn(t))+
n∑

i=1

(bi − r)pi f pi (t, P1(t), . . . , Pn(t))

)
dt

+
n∑

i, j=1

σi j pi f pi (t, P1(t), . . . , Pn(t))dW j (t)

Remark (i) Note that the non-linear character of the above stochastic differential
equation for the option price as given in part (b) of the theorem is the reason for
the complicated form of the HJB-equation that would correspond to a suitable
portfolio problem involving options.

(ii) Part (a) of the theorem implicitly states that the relation between the option
price and the replication strategy for the option is given by

f (t, P1(t), . . . , Pn(t)) =
n∑

i=0

ψi (t)Pi (t). (23)

With the help of all our terms introduced so far, we can set up the option portfolio
problem:

max
ϕ

E(U (X (T ))) (24)
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with

X (t) = Xϕ(t) = ϕ0(t)P0(t)+
n∑

i=1

ϕi (t) f (i)(t, P1(t), . . . , Pn(t)) (25)

(we omit the technical details of the definition of a trading strategy in options and refer
the reader to Korn and Trautmann 1999 for the required integrability constraints). The
basic idea to solve the option portfolio problem now consists in a two step-procedure:

Two-step procedure to solve the option portfolio problem

Step 1 Solve the corresponding portfolio problem if the underlying stocks and the
bond would be tradable.

Step 2 Express the optimal positions in the underlying stocks determined in Step 1
with the help of a suitable strategy in the options and the bond.

The main result ensuring that this procedure indeed is valid can be found in Korn
and Trautmann (1999):

Theorem 2 Let the Delta matrix ψ(t) = (ψi j (t)), i, j = 1, . . . , n with

ψi j (t): = f (i)p j
(t, P1(t), . . . , Pn(t)), t ∈ [0, T ) (26)

be regular. Then, the option portfolio problem has the following explicit solution:

(a) The optimal terminal wealth B∗ coincides with the optimal terminal wealth of
the corresponding stock portfolio problem.

(b) Let ξ(t) be the optimal trading strategy of the corresponding stock portfolio prob-
lem. Then, the optimal trading strategy ϕ(t) for the option portfolio problem is
given by

ϕ̄(t) = (ψ(t)′)−1ξ̄ (t) (27)

ϕ0(t) =
(

X (t)−
∑n

i=1
ϕi (t) f (t, P1(t), . . . , Pn(t))

)
/P0(t) (28)

where ϕ̄(t),ξ̄ (t) are the last n components of ϕ(t) and ξ(t).

Example 1 As an example to illustrate the above theorem and also the two-step pro-
cedure we consider the case of HARA-utility, i.e. of the choice of

U (x) = 1
γ

xγ (29)

with γ < 1, γ 	= 0. For simplicity, we also assume n = 1. From the explicit example
of Sect. 1 we obtain

ξ1(t) = b − r

(1 − γ )σ 2

X (t)

P1(t)
. (30)
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By noting that the optimal wealth in both the option portfolio problem and the portfolio
problem including the underlying stock coincide (this is a consequence of part a) of
Theorem 3, relations (27) and (30) result in

ϕ1(t) = b − r

(1 − γ )σ 2

X (t)

ψ1(t)P1(t)
(31)

and in

πopt (t): = ϕ1(t) f (t, P1(t))

X (t)
= b − r

(1 − γ )σ 2

f (t, P1(t))

f p(t, P1(t))P1(t)
. (32)

By denoting by π∗(t) = π∗ = (b − r)/((1 − γ )σ 2) the optimal portfolio process for
the portfolio problem including the underlying stock, we obtain

πopt (t)<π
∗ ⇔ f (t, P1(t)) < f p(t, P1(t))P1(t). (33)

Thus, whenever the value of an option is smaller than the amount of money invested
in the stock in its replication strategy, we optimally invest less money in the option
than in the underlying in both corresponding portfolio problems. This is in particular
the case if the option we are investing in is a (European) call option (to see this remind
yourself of the explicit form of the Black-Scholes formula).

4 Optimal investment with defaultable securities

As a direct application of the results obtained in the foregoing section we will solve
an optimal portfolio problem with defaultable securities in the framework of Merton’s
firm value model (see Merton 1974). The model is based on the assumption that the
(unobservable) value process of a firm follows a geometric Brownian motion

dV = bV dt + σV dW (t). (34)

Further, the company has issued one share of stock and a zero coupon bond with
notional B and maturity T . It is assumed that only at maturity it can be decided if the
full notional of the bond can be repaid to the bondholders. If this is the case than the
firm value falls by an amount of B. If, however, the bond cannot be fully repaid by
the company the bond holders take over the firm and the share value drops to zero.
Consequently, at the maturity T of the bond, we have the following relations for the
share value S(T ) and the bond value B(T )

S(T ) = (V (T )− B)+, B(T ) = min(V (T ), B) = B − (B − V (T ))+. (35)

Hence, the value of the share and of the corporate bond can be interpreted as the
prices of call options or as (B−) put options on the firm’s value with strike B, respec-
tively. If in addition we assume that there is an opportunity for a riskless investment
with an interest rate of r then we obtain—in total analogy with the Black-Scholes
formulae—the representations for the (defaultable) bond and share price as:
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S(t) = V (t)Φ(d1(t))− Be−r(T −t)Φ(d2(t)), (36)

B(t) = Be−r(T −t)Φ(d2(t))+ V (t)Φ(−d1(t)) (37)

with

d1(t) =
ln

(
V (t)

B

)
+ (r + 1

2σ
2)(T − t)

σ
√

T − t
, d2(t) = d1(t)− σ

√
T − t . (38)

Consequently, we can use the solution technique for optimal investment with deriva-
tives of the preceding section to solve the following portfolio problems:

Proposition 1 In the above market consisting of a riskless money market account,
shares of a company that has issued a bond with maturity T > 0 and notional B, we
consider an investor who is maximizing his expected utility from final wealth at time
T1 < T .

(a) If the investor is allowed to invest into the money market account and in the
(defaultable) bond issued by the company then his optimal portfolio process (to
be precise, the fraction of his wealth invested in the defaultable bond) is given
by

π∗
B(t) =

{
b−r
σ 2

B(t)
Φ(−d1(t))V (t)

, f or U (x) = ln(x)
b−r

(1−γ )σ 2
B(t)

Φ(−d1(t))V (t)
, f or U (x) = 1/

γ xγ
(39)

(b) If the investor is allowed to invest into the money market account and in the share
of the company then his optimal portfolio process (to be precise, the fraction of
his wealth invested in the share) is given

π∗
S (t) =

{
b−r
σ 2

S(t)
Φ(d1(t))V (t)

, f or U (x) = ln(x)
b−r

(1−γ )σ 2
S(t)

Φ(d1(t))V (t)
, f or U (x) = 1/

γ xγ
(40)

(c) If the investor is allowed to invest into both the money market account and in
the share of the company then his optimal trading strategy (ϕ0, ϕ1, ϕ2) in the
money market account, the defaultable bond and the share is explicitly given
in the following way: for any given trading strategy ϕ2(·) in the share of the
company, ϕ0(·) and ϕ1(·) are

ϕ1(t) = ξ1(t)− ϕ2(t)Φ(d1(t))

Φ(−d1(t))
, (41)

ϕ0(t) = ξ0(t)− (−ϕ1(t)+ ϕ2(t))e
−rT BΦ(d2(t)) (42)

with (ξ0, ξ1) being the optimal trading strategy in the (artificial) portfolio prob-
lem where the money market account and the firm value can be traded.
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Proof Parts (a) and (b) are already proved in Korn and Kraft (2003). Alternatively,
they can be derived as a direct consequence of Theorem 3. For the proof of part (c)
one has to note that the stock and defaultable bond parts of the trading strategy have to
be chosen in such a way that the sum of their intrinsic firm value components have to
equal the optimal position in the firm value in the artificial problem. More precisely,
let (ξ0, ξ1) be the optimal trading strategy in the (artificial) portfolio problem where
the money market account and the firm value can be traded. Then, the optimal wealth
process satisfies

X∗(t) = ξ0(t)e
rt + ξ1(t)V (t). (43)

Due to the main theorem of the preceding section, this is also the optimal wealth
process of our portfolio problem in (iii). Hence, we have to generate the positions in
the firm value and in the money market account by investing according to a suitable
trading strategy (ϕ0, ϕ1, ϕ2) in the money market account, the defaultable bond and
the share. If we note further that the defaultable bond and the share satisfy

S(t) = (−Be−rTΦ(d2(t)))e
rt +Φ(d1(t))V (t),

B(t) = Be−rTΦ(d2(t))e
rt +Φ(−d1(t))V (t)

and that in our portfolio problem we must have

X∗(t) = ϕ0(t)e
rt + ϕ1(t)B(t)+ ϕ2S(t)

= (ϕ0(t)+ ϕ1(t)Be−rTΦ(d2(t))+ ϕ2(t)(−Be−rTΦ(d2(t))))e
rt

+(ϕ1(t)Φ(d1(t))+ ϕ2SΦ(−d1(t)))V (t)

equating the coefficients ert of and of V (t) leads to the asserted form of the optimal
trading strategy. Note that we can choose one of the two components corresponding to
the risky assets freely. We have without loss of generality chosen ϕ2(·). As in Chap. 5
of Korn and Korn (2001) one can also show that this so obtained trading strategy is a
self-financing and admissible one.

Remark (i) Note in particular that if we can only invest in the money market
account and in the share then the fraction of wealth invested in the risky secu-
rity is less than in the corresponding artificial portfolio problem where we can
invest in the money market account and in the firm value. If, however, we
replace the share by the defaultable bond as investment possibility then the
fraction of wealth invested in the risky security is higher than that in the corre-
sponding artificial portfolio problem. To see this, compare the explicit forms
of π∗

S (·) and of π∗
B(·)with the representations for the share and the bond price.

(ii) If we choose
ϕ1(t) = ϕ2(t) = ξ1(t) (44)

then due to V (t) = B(t) + S(t) we will exactly invest as much money in
the risky assets as we would do in the artificial portfolio problem and—as a
by-product—obtain ϕ0(t) = ξ0(t).
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(iii) Further problems in this area can be found in Korn and Kraft (2003) and Kraft
and Steffensen (2006). As credit products and credit derivatives in much more
complicated form than the above ones are traded at the financial markets it
would be a very interesting aspect of future research to include such products
as CDO and CDS into a suitable portfolio problem.

5 Optimal investment with crashes and unhedgeable risks

It is a well-known fact that the standard Black-Scholes model—which has also served
as the basis of the foregoing sections—has deficiencies in explaining large movements
of the stock prices observed from time to time at the financial markets. This is in partic-
ular true for large down movements, often referred to as “crashes”. There are various
approaches in the financial that try to overcome this problem by introducing vari-
ous stochastic processes with non-normal returns for the related stock price models.
Popular examples are stochastic volatility models (see e.g. Heston 1993), pure jump
processes with hyperbolic distributions (see e.g. Eberlein and Keller 1995), normal
inverse Gaussian distributions (see e.g. Barndorff-Nielsen 1998), Lévy processes as
a whole class or even general semi-martingales. While all of these models exhibit an
excellent fit to observed data, their use alone will not overcome the problems of large
losses when a standard method of portfolio optimization is used. Here, we will pick
up an alternative approach to crash modelling pioneered by Hua and Wilmott (1997)
who assume that there are normal times in the life of a stock and crash times. They
assume that the number and size of crashes (i.e. the percentage of the relative drop
of the stock prices) in a given time interval are bounded. In particular, they make no
probabilistic assumptions on height, number and times of occurrence of crashes. We
will combine this with a worst-case approach to portfolio optimization of Korn and
Wilmott (2002) to derive a new optimality concept for investment. For simplicity, we
consider a market consisting of only one bond and one stock, and assume that at most
one crash can happen in [0, T ] with a maximal height of k∗ < 1. The security prices
are assumed to follow the prices given by

d P0(t) = P0(t)rdt, P0(0) = 1, (45)

d P1(t) = P1(t)(bdt + σdW (t)), P1(0) = p (46)

in normal times. At the crash time (if it occurs in [0, T ]), the stock price falls by a
factor of k ∈ [0, k∗]. Noting that the wealth before the crash at time t if the investor
follows a portfolio process of π (t) at that time is given by

Xπ (t−) = (1 − π(t))Xπ (t−)+ π(t)Xπ (t−), (47)

we obtain the following simple relation between the wealth before and after a crash:

(1 − π(t))Xπ (t−)+ π(t)Xπ (t−)(1 − k) = Xπ (t−)(1 − π(t)k) = Xπ (t)
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Moreover, following the portfolio process π(·) if a crash of size k happens at time t
leads to a final wealth of Xπ (T ) = (1 − π(t)k)X̃π (T )where X̃π (·) denotes the wealth
process in the standard model without any crash possibility. Hence, in tendency, high
values of π(·) lead to a high final wealth if no crash occurs at all, but to a high loss at
the crash time. On the other hand, in tendency, low values of π(·) lead to a low final
wealth if no crash occurs at all, but to a small loss (or even no loss at all!) at the crash
time. We have thus two competing aspects (Return and insurance) for two different
scenarios (Crash or not) and are therefore faced with a balance problem between risk
and return.

If we would now want to optimize our portfolio in the usual way, we will realize
that we do not have the full probabilistic information to treat this problem. We can
only follow the idea presented in Korn and Wilmott (2002) to determine worst-case
bounds for the performance of optimal investment. Thus, we are searching for the
investment strategy that yields the best uniform worst-case bound, i.e. we are going
to solve the problem

(WP) sup
π(·)∈A(x)

inf
0≤t≤T,0≤k≤k∗ E(ln(Xπ (T )))

where the final wealth satisfies Xπ (T ) = (1 − π(t)k)X̃π (T ) in the case of a crash of
size k at time t . To avoid bankruptcy we require

π(t) < 1/
k∗ (48)

which is a reasonable assumption anyway, given k∗ < 1. Another natural, but impor-
tant assumption is

b > r (49)

which results in the fact that we do not have to consider portfolio processes π(t) that
can attain negative values as the log-utility function is increasing in x (convince your-
self that the worst case bound for portfolio processes with negative values is always
dominated from the one corresponding to their positive part).

Remark (i) Of course, the optimal strategy after the only crash has happened in
[0, T ] is to follow the optimal portfolio in the crash free world, i.e. to follow

π(t) ≡ π∗ := b − r

σ 2 . (50)

Thus, the occurrence of the crash has the positive effect that the investor can
be sure that no further one will happen until T .

(ii) To give the reader an intuition for our worst-case approach, we will calculate
the worst-case bound for two extreme strategies. The first one is π(t) ≡ 0
(i.e. playing safe). Here, the worst-case scenario is that no crash appears at
all (!), as then the investor can never switch to π∗. This leads to the following
worst-case bound of

WC B0 = E(ln(X0(T ))) = ln(x)+ rT . (51)
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The other extreme strategy consists of ignoring the crash and to follow the optimal
strategy as if no crash possibility would be present, i.e. to use

π(t) ≡ π∗ := b − r

σ 2 . (52)

Then, the worst-case scenario is the occurrence of a crash of maximum size k∗ (at an
arbitrary time instant!), leading to the following worst-case bound of

WC Bπ∗ = E(ln(Xπ
∗
(T ))) = ln(x)+rT + 1

2

(
b − r

σ

)2

T +ln(1 − π∗k∗) (53)

Comparing the two results of Remark (ii) leads to the insights that

– it depends on time to maturity which one of the above strategies is better
– a constant portfolio process cannot be the optimal one
– strategyπ(t) ≡ 0 takes too few risk to be good if no crash occurs while the strategy

π(t) ≡ π is too risky to perform well if a crash occurs, and the optimal strategy
should balance this out!

We can show even stronger properties of the optimal strategy, and moreover, can derive
it explicitly as a unique solution of an ordinary differential equation (see Korn and
Wilmott 2002):

Theorem 3 Optimal investment in the presence of a crash with log utility There exists
a portfolio process π̂ (·) such that the corresponding expected log-utility after an imme-
diate crash equals the expected log-utility given no crash occurs at all. It is given as
the unique solution π̂(·) ∈ [0, 1/k∗) of the differential equation

π ′(t) = 1

k∗
(
1 − π(t)k∗)

(
π(t)(b − r)− 1

2

(
π(t)2σ 2 +

(
b − r

σ

)2
))

, (54)

π(T ) = 0. (55)

Further, this strategy yields the highest worst-case bound for our problem (WP). In
particular, this bound is active at each future time point (uniformly optimal balancing).
After the crash has happened the optimal strategy is given by

π(t) ≡ π∗ := b − r

σ 2 . (56)

Proof Note first that it is clear that after the only crash has happened, it is optimal to
follow the strategy of the form of (54) as then we are in the crash-free standard market
of Sect. 1. In this proof, we only indicate how to obtain the above portfolio process
π̂(·). For the optimality proof, we refer to Korn and Wilmott (2002). Let

v0(t, x) = ln(x)+
(

r + 1

2

(
b − r

σ

)2
)
(T − t) (57)
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be the value function corresponding to the portfolio problem in the usual, crash-free
Black-Scholes setting (see also Sect. 1). Note also that any portfolio process yielding
the highest worst-case bound obviously has to satisfy π(T ) = 0. The above indiffer-
ence property between the worst possible crash and no crash happening at all is satisfied
by a portfolio process π̂(·) with

ln(x)+ r(T − t)+ E

T∫

t

(
π̂(s)(b − r)− 1

2
π̂2(s)σ 2

)
ds

= v0(t, x(1−π̂ (t)k∗)) = ln(x)+ ln(1−π̂ (t)k∗)+
(

r + 1

2

(
b − r

σ

)2
)
(T − t)

Here, the left hand side is the expected log-utility given no crash occurs at all. If we
now assume that there exists a differentiable (thus meaning in particular a determin-
istic !) such process π̂(·), via differentiating both sides of the above equation with
respect to t , we obtain the differential equation

π ′(t) = 1

k∗ (1 − π (t) k∗)
(
π(t)(b − r)− 1

2

(
π(t)2σ 2 +

(
b − r

σ

)2
))

. (58)

What remains to show is the existence of a classical solution to this equation also

satisfying the final condition π(T ) = 0 and π̂(·) ∈
[
0, 1/

k∗
)

. This however follows

by standard existence and uniqueness results, and by the explicit form of the equation.

Remark The problem can also be treated in a more general setting including

– more general utility functions,
– changing market coefficients after a crash,
– insurance risk as a further risk component,
– a multi-asset market.

For those topics we refer to Korn (2005) and to Korn and Menkens (2005).

To illustrate the qualitative behaviour of the optimal strategy we consider the fol-
lowing example where we have chosen b = 0.2, r = 0.05, σ = 0.4, k∗ = 0.2 and
T = 1. The optimal strategy is illustrated by Fig. 1. Note that the optimal portfolio
π∗ in the crash-free standard model equals π∗ = 0, 9375. It is way above the optimal
portfolio process in view of a crash. Given the above input data this is not surprising.
For such a small time horizon the crash risk dominates the potential of the stock return
compared to bond investment. To understand how the strategy works note that as long
as no crash has happened the investor has to keep his portfolio on the lower line.
Directly after the crash he can switch to π∗.

6 Further recent developments and aspects of future research

The area of continuous-time portfolio optimization is still a very active area of
research and results on various different levels of generality and applicability have
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Optimal portfolios with crash risk
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Fig. 1 Optimal investment for insurers with exponential utility

been achieved recently. On the side of the theory the introduction of duality meth-
ods to solve constrained portfolio optimization problems (such as in Cvitanic and
Karatzas 1992 or—even more general—in Kramkov and Schachermayer 1999) have
generalized the standard scope of continuous-time portfolio optimization by a large
amount. Further, considering risk measures in portfolio optimization is an intensively
researched area (see e.g. Föllmer and Schied 2002 for an introduction into the subject).
On the practical side, however, the applications of continuous-time portfolio methods
in reality are still rare. The main reason is that strictly following the optimal strategies
of continuous trading lead to an enormous amount of transaction costs. Therefore, it
is substantial to find good ways to transform continuous-time strategies to real life
applications. The work by Rogers (2001) is an excellent starting point for further
studies. Explicit results on portfolio optimization under transaction costs are still not
available. Easily implementable strategies taking transaction costs into account are
a necessary ingredient for the breakthrough of the application of continuous-time
methods in reality.

Acknowledgments The work of Ralf Korn has been supported by the Rheinland-Pfalz cluster of excellence
Dependable adaptive systems and mathematical modelling.
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