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Abstract We consider a special case of the optimal separation, via a sphere, of
two discrete point sets in a finite dimensional Euclidean space. In fact we assume
that the center of the sphere is fixed. In this case the problem reduces to the
minimization of a convex and nonsmooth function of just one variable, which
can be solved by means of an “ad hoc” method in O(p log p) time, where p is the
dataset size. The approach is suitable for use in connection with kernel transfor-
mations of the type adopted in the support vector machine (SVM) approach.
Despite of its simplicity the method has provided interesting results on several
standard test problems drawn from the binary classification literature.

Keywords Classification · Separability · Kernel methods · Support vector
machine

Mathematics Subject Classification (2000): 90C90

This research has been partially supported by the Italian “Ministero dell’Istruzione,
dell’Università e della Ricerca Scientifica”, under PRIN project Numerical Methods for Global
Optimization and for some classes of Nonsmooth Optimization Problems (2005017083.002).

A. Astorino
Istituto di Calcolo e Reti ad Alte Prestazioni–C.N.R., c/o D.E.I.S.–Università della Calabria,
87036 Rende (CS), Italy
e-mail: astorino@icar.cnr.it

M. Gaudioso(B)
Dipartimento di Elettronica Informatica e Sistemistica, Università della Calabria,
87036 Rende (CS), Italy
e-mail: gaudioso@deis.unical.it



358 A. Astorino, M. Gaudioso

1 Introduction

In many supervised machine learning problems the objective is to assign ele-
ments to a finite set of classes or categories. For a given set of sample points
coming from two classes, we want to construct a function for discriminating
between the classes. The goal is to select a function that will efficiently and
correctly classify future points. Classification techniques can be used for data
mining or pattern recognition, where many applications require a categoriza-
tion. A few examples of application are text categorization, object recognition
in machine vision, cancer diagnosis and many others.

The classical binary classification problem is to discriminate between two
finite sets of points in the n-dimensional space, by a separating surface. The
problem consists in finding a separating surface minimizing an appropriate
measure of the classification error. Several mathematical programming-based
approaches for binary classification have been historically proposed (Rosen
1965, Mangasarian 1965, Bennett and Mangasarian 1992). Among the more
recent ones we recall the support vector machine (SVM) technique (Cristianini
and Shawe-Taylor 2000; Vapnik 1995), where a classifier is constructed by gener-
ating a hyperplane far away from the points of the two sets. By adopting kernel
transformations within the SVM approach, we can obtain general nonlinear
separation surfaces. In this case the basic idea is to map the data into a higher
dimensional space (the feature space) and to separate the two transformed sets
by means of one hyperplane, that corresponds to a nonlinear surface in the
original input space.

In this paper we deal with discrimination of two datasets by means of a
sphere, once the center of the sphere is given. This is a very simplified case of
spherical separation (Tax and Duin 1999). For some alternative approaches see
also Astorino and Gaudioso 2002, 2005.

We suppose that two nonempty and disjoint finite sets of sample points in the
n-dimensional space IRn, say A = {a1, . . . , am} and B = {b1, . . . , bk} are given,
and we refer to IRn as to the input space. As proposed by Tax and Duin (1999)
the objective is to find, in the input space or in the feature space, a minimal vol-
ume sphere separating the set A from the set B (i.e. a sphere enclosing all points
of A and no points of B). In general, (n+1) parameters need to be selected: the
center of the sphere (a point in IRn) and the radius of the sphere (a scalar in IR).

In case the center of the sphere is given, the above problem reduces to the
minimization of a function of just one variable (the radius), which is nonsmooth
but convex. We develop for such particular case an “ad hoc” algorithm which
finds the optimal solution in O(p log p) time, where p = max{m, k}. The pro-
posed algorithm consists basically of two phases: the “sorting” and the “cutting”
ones. In first phase the sample points are sorted according to their distance from
the center, while in second phase an optimal “cut” is found. Correctness of the
algorithm is proved via reformulation of the univariate minimization problem
as a structured Linear Program.

The simplification introduced is definitely drastic. Nevertheless, provided a
judicious choice of the center is made, we obtain, at a very low computational
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cost, reasonably good separation results, thanks also to the kernel transformation
that can be embedded into our approach in a rather straightforward way. Thus
we believe that our approach can be fruitfully adopted at least as a “first-aid”
attempt to deal with very large datasets.

The paper is organized as follows. In Sect. 2 we state the problem of finding
a minimal volume separating sphere when the center of the sphere is given
and describe our algorithm. In Sect. 3 we introduce kernel transformations.
The results of some numerical experiments are described in Sect. 4, while some
conclusions are drawn in Sect. 5. The proof of the correctness of the algorithm
is in the Appendix.

Throughout the paper we adopt the following notations. We denote by ‖.‖
the Euclidean norm in IRn and by aTb the inner product of the vectors a and b.
The convex hull of a set X will be denoted by conv(X ); the sphere of center x0
and radius R will be denoted by S(x0, R).

2 Minimal volume separating sphere

A possible spherical separation of a set A from a set B consists in finding a
minimal volume sphere enclosing all points of A and no points of B. Since
this problem is not always feasible, we resort to the objective of minimizing
a function combining the original objective of minimizing the volume with an
appropriate measure of the classification error.

A sphere centered in x0 ∈ IRn with radius R ∈ IR is defined as

S(x0, R)
�= {x ∈ IRn | (x − x0)

T(x − x0) ≤ R2}.

The sets A and B are defined to be spherically separated by S(x0, R) if

(ai − x0)
T(ai − x0) ≤ R2

for all points ai ∈ A (i = 1, . . . , m) and

(bl − x0)
T(bl − x0) ≥ R2

for all points bl ∈ B (l = 1, . . . , k).
According to our definitions any sphere S(x0, R) separates A and B provided

(ai − x0)
T(ai − x0) ≤ R2 ∀ i = 1, . . . , m

(bl − x0)
T(bl − x0) ≥ R2 ∀ l = 1, . . . , k.

Consequently we define the classification error associated to the decision vari-
ables (x0, R) for any point ai ∈ A and for any point bl ∈ B, respectively, as:

ξi = max{0, (ai − x0)
T(ai − x0) − R2} ∀ i = 1, . . . , m

µl = max{0, R2 − (bl − x0)
T(bl − x0)} ∀ l = 1, . . . , k.
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We observe that spherical separation seems a particularly promising ap-
proach if compared with linear separation. In fact, linear separation can be
considered a special case of spherical separation with infinite distance of the
center of the sphere from the points of the dataset.

The problem of minimizing both the volume of the sphere and the classifica-
tion error is defined as follows:

min
x0,R

R2 + C
m∑

i=1

max{0, (ai − x0)
T(ai − x0) − R2} +

+ C
k∑

l=1

max{0, R2 − (bl − x0)
T(bl − x0)}, (1)

where the positive constant C states the relative importance of the two objec-
tives.

We observe that the above problem requires minimization of a function
which is nonsmooth and nonconvex and is, apart from the smooth quadratic
term R2, the sum of several functions of the max type.

It is possible to get rid of the nonsmoothness by transforming the uncon-
strained problem above into the following constrained optimization problem,
where the additional variables ξi’s and µl’s have been introduced.

min
x0,R,ξ ,µ

R2 + C

⎛

⎝
m∑

i=1

ξi +
k∑

l=1

µl

⎞

⎠

s.t R2 − (ai − x0)
T(ai − x0) + ξi ≥ 0 ∀ i = 1, . . . , m

(bl − x0)
T(bl − x0) − R2 + µl ≥ 0 ∀ l = 1, . . . , k

ξi ≥ 0 ∀ i = 1, . . . , m
µl ≥ 0 ∀ l = 1, . . . , k.

(2)

We obtain a drastic simplification of problem (1) if we do not consider any
longer the center x0 of the sphere as a decision variable. In fact we assume that
it is known and fixed. Such simplification is based on the idea that, at least as
a tentative approximation, any centroid for the set A is worth considering as a
possible center of the sphere. In Sect. 5 we propose two different choices for x0.

Once the center x0 of the sphere is assumed known, by introducing the change
of variable

z = R2, z ≥ 0 (3)

and by defining:

ci
�= (ai − x0)

T(ai − x0) ≥ 0 ∀ i = 1, . . . , m

dl
�= (bl − x0)

T(bl − x0) ≥ 0 ∀ l = 1, . . . , k
(4)
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the problem (1) becomes:

min
z≥0

z + C

⎛

⎝
m∑

i=1

max{0, ci − z} +
k∑

l=1

max{0, z − dl}
⎞

⎠ , (5)

which is a convex, piecewise affine minimization problem in the scalar (non-
negative) variable z.

Problem (5) can be approached by means of standard univariate minimiza-
tion techniques. Nevertheless it is possible to devise a quite efficient algorithm
which provides an exact solution in O(p log p) time, where p = max{m, k}.

To state our algorithm and to prove its termination, it is useful to restate
problem (5) in the form of a linear program as follows:

fP = min
z,ξ ,µ

z + C

⎛

⎝
m∑

i=1

ξi +
k∑

l=1

µl

⎞

⎠

s.t. z − ci + ξi ≥ 0 ∀ i = 1, . . . , m
dl − z + µl ≥ 0 ∀ l = 1, . . . , k
z ≥ 0
ξi ≥ 0 ∀ i = 1, . . . , m
µl ≥ 0 ∀ l = 1, . . . , k.

(6)

Of course z∗, the optimal value of the variable z, at any optimal solution for
problem (6), provides an optimal solution to problem (5) too.

The dual of the above problem (6) is the following:

fD = max
α,β

m∑

i=1

ciαi −
k∑

l=1

dlβl

s.t.
m∑

i=1

αi −
k∑

l=1

βl ≤ 1

0 ≤ αi ≤ C ∀ i = 1, . . . , m
0 ≤ βl ≤ C ∀ l = 1, . . . , k.

(7)

We observe that both the primal and the dual problems are feasible and in
particular the solution

αi = 0 ∀ i = 1, . . . , m
βl = 0 ∀ l = 1, . . . , k

is dual feasible with objective function value equal to zero. The complementary
slackness conditions for problems (6) and (7) are the following:
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⎧
⎪⎨

⎪⎩

z
(∑m

i=1 αi − ∑k
l=1 βl − 1

)
= 0

ξi (C − αi) = 0 ∀ i = l, . . . , m
µl (C − βl) = 0 ∀ l = l, . . . , k

{
αi (z − ci + ξi) = 0 ∀ i = l, . . . , m
βl (−z + dl + µl) = 0 ∀ l = l, . . . , k.

(8)

In the sequel we indicate by α and β the vectors whose components are,
respectively, the αi’s, i = 1, . . . , m and the βl’s, l = 1, . . . , k. Moreover we
indicate by ξ and µ the vectors whose components are, respectively, the ξi’s,
i = 1, . . . , m and the µl’s, l = 1, . . . , k.

Proposition 1 The following properties hold for z∗, the optimal value of the
variable z at any optimal solution for the problem (6):

(i) If C <
1
m

then z∗ = 0;

(ii) If C >
1
m

then z∗ > 0.

Proof To prove (i) it is sufficient to observe that, in case C <
1
m

, no dual

feasible solution satisfying by equality the constraint
∑m

i=1 αi − ∑k
l=1 βl ≤ 1

exists. The thesis follows by taking into account the complementary slackness

condition z
(∑m

i=1 αi − ∑k
l=1 βl − 1

)
= 0.

As for the proof of (ii), suppose C >
1
m

and assume by contradiction that

(z∗, ξ∗, µ∗) is an optimal solution for (6) with z∗ = 0. Then it follows that (ξ∗, µ∗)
solves the problem

min
ξ ,µ

C

⎛

⎝
m∑

i=1

ξi +
k∑

l=1

µl

⎞

⎠

s.t. −ci + ξi ≥ 0 ∀ i = 1, . . . , m
dl + µl ≥ 0 ∀ l = 1, . . . , k
ξi ≥ 0 ∀ i = 1, . . . , m
µl ≥ 0 ∀ l = 1, . . . , k.

(9)

Since, by hypothesis, ci > 0 ∀ i = 1, . . . , m and dl > 0 ∀ l = 1, . . . , k, it follows
that

ξ∗
i = ci ∀ i = 1, . . . , m

µ∗
l = 0 ∀ l = 1, . . . , k

and fP = C
m∑

i=1

ci.

Now consider the feasible solution (z̄, ξ̄ , µ̄) to (6) obtained by setting:

z̄ = min{ min
1≤i≤m

ci, min
1≤l≤k

dl} > 0
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and by calculating (ξ̄ , µ̄) as the optimal solution to:

min
ξ ,µ

z̄ + C

⎛

⎝
m∑

i=1

ξi +
k∑

l=1

µl

⎞

⎠

s.t. ξi ≥ ci − z̄ ∀ i = 1, . . . , m
µl ≥ −dl + z̄ ∀ l = 1, . . . , k
ξi ≥ 0 ∀ i = 1, . . . , m
µl ≥ 0 ∀ l = 1, . . . , k.

(10)

The optimal values ξ̄ and µ̄ are the following:

ξ̄i = ci − z̄ ∀ i = 1, . . . , m
µ̄l = 0 ∀ l = 1, . . . , k.

Consequently the value associated to the feasible solution (z̄, ξ̄ , µ̄) is

z̄ + C
m∑

i=1

(ci − z̄) = C
m∑

i=1

ci − (m · C − 1) z̄ < C
m∑

i=1

ci = fP

which contradicts the optimality of (z∗, ξ∗, µ∗). �	
We remark that since we are not interested in finding trivial (zero radius)

spheres, the only interesting choice is to set C > 1/m. In this case, from the
previous proposition, taking into account complementary slackness, the con-
straint

∑m
i=1 αi − ∑k

l=1 βl ≤ 1 is satisfied by equality at the optimum of the dual
problem (7).

Thus we will consider problem (7) in the form

fD = max
α,β

m∑

i=1

ciαi −
k∑

l=1

dlβl

s.t.
m∑

i=1

αi −
k∑

l=1

βl = 1

0 ≤ αi ≤ C ∀ i = 1, . . . , m
0 ≤ βl ≤ C ∀ l = 1, . . . , k.

(11)

For sake of completeness we remark that, in case C = 1/m, the optimal value
z∗ can assume any value in the closed interval [0, min{ min

1≤i≤m
ci, min

1≤l≤k
dl}].

2.1 The Algorithm

Problem (11) is a Linear Program characterized by only one equality constraint
and by the presence of lower and upper bounds on all variables.
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It is well known that there exists an optimal solution to (11) with at most one
variable belonging to the interior of the interval [0, C] (we will refer to such
solution as to an optimal basic solution).

We assume, without loss of generality, that the points of the two sets A and
B are numbered so that:

c1 ≥ c2 ≥ · · · ≥ cm > 0 and 0 < d1 ≤ d2 ≤ · · · ≤ dk. (12)

Now we describe an algorithm that finds the optimal solution to the dual
problem (11) for C > 1/m. The basic idea is that, under the above numbering
of the variables, there exists an optimal solution such that if any variable, say
αı̂ (βl̂), is positive at the optimum, then all the variables αi, i < ı̂ (βl, l > l̂) are
equal to C.

For sake of notational simplicity we state the algorithm for the case C ≤ 1.
The algorithm for the case C > 1 is completely analogous and is described in
the Appendix 1.

Algorithm 1 (Case C ≤ 1)

Initialization
Set

– r
�=

⌊
1
C

⌋
(Remark: m ≥ r + 1)

– p̄
�= min{k, m − r} ≥ 1

– αi = 0 ∀ i = 1, . . . , m
– βl = 0 ∀ l = 1, . . . , k

Step 1. Set αi = C ∀ i = 1, . . . , r
If (cr+1 ≤ d1) Set αr+1 = 1 − Cr and STOP [exit (a): the basic variable is

αr+1].
(Remark: If C = 1, then αr+1 = 0 and the solution is a degenerate basic
feasible solution).

Endif
If (cr+i > di ∀ i = 1, . . . , p̄)

If (p̄ > 1) Set αr+i = C ∀ i = 1, . . . , (p̄ − 1)

Endif
Set
– αr+p̄ = 1 − Cr
– βl = C ∀ l = 1, . . . , (p̄ − 1)

and STOP [exit (b): the basic variable is αr+p̄].
Endif

Step 2. Find p∗, the smallest index i, 2 ≤ i ≤ p̄ such that cr+i ≤ di
(Remark: Step 2 cannot be entered if p̄ = 1. Calculation of the index p∗ is well
posed since the algorithm has not stopped at step 1).

If (cr+p∗ ≥ dp∗−1)

Set
– αr+i = C ∀ i = 1, . . . , (p∗ − 1)

– αr+p∗ = 1 − Cr
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– βl = C ∀ l = 1, . . . , (p∗ − 1)

and STOP [exit (c): the basic variable is αr+p∗ ].
Else Set αr+i = C ∀ i = 1, . . . , (p∗ − 1)

If (p∗ > 2) Set βl = C ∀ l = 1, . . . , (p∗ − 2)

Endif
Set βp∗−1 = C(r+1)−1 and STOP [exit (d): the basic variable is βp∗−1].

Endif

Remark The solution provided by the algorithm is invariant with respect to C
for all C > 1.

Remark The preliminary sorting of the ci’s and of the dl’s is required. It can be
executed in O(plogp) time, where p = max(m, k). The algorithm runs in O(p)

time.

Theorem 1 The algorithm (1) finds an optimal solution to problem (11).

Proof See Appendix 2. �	
Once the optimal solutions (z̄, ξ̄ , µ̄) and (ᾱ, β̄) for (6) and (11) respectively

have been calculated, the optimal solution of problem (5) is also available.
Recalling the substitution (3), R2 = z, the sphere S(x0,

√
z̄) can be utilized

for classification purposes, in the sense that any new sample point x ∈ IRn is
classified according to the following rule:

x is a point of the type A if (x − x0)
T(x − x0) < z̄

x is a point of the type B if (x − x0)
T(x − x0) > z̄.

The point x remains unclassified whenever it is (x − x0)
T(x − x0) = z̄.

3 Using the kernels

Kernel transformation of the type adopted in SVM (see Vapnik 1995 and
Schölkopf et al. 1999) can be easily embedded into the spherical separation
approach. Our kernel-based approach consists in:

1. mapping the data into a higher dimensional space (the feature space);
2. separating the two transformed sets by means of one sphere.

We consider an embedding map

φ : x ∈ X ⊆ IRn → φ(x) ∈ F ⊆ IRN ,

and a kernel function K that for all x, y ∈ X satisfies

K(x, y) = φ(x)Tφ(y).

We remark that, by using a kernel function K, the inner products in the feature
space can be computed without explicitly computing the map φ.
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The effect of φ is to recode our sets A and B as

Â = {φ(a1), . . . , φ(am)} and B̂ = {φ(b1), . . . , φ(bk)}.

We observe that if x0 ∈ IRn is the barycenter of the set A (or of the set A∪B),
then φ(x0) is not necessarily the barycenter of the set Â (or of the set Â ∪ B̂).

Let Q = {x1, . . . , xq} be a finite point set in the input space and

Q̂ = {φ(x1), . . . , φ(xq)}

the transformed set in the feature space. The barycenter of the sets Q̂ is the
vector

φQ̂ = 1
q

q∑

i=1

φ(xi).

As for all points in the feature space an explicit vector representation of this
point is not available. However, despite of this apparent inaccessibility of the
point φQ̂, we can compute its norm, and the distance of the image of any point x
in the input space from it, by using only evaluations of the kernel on the inputs:

φT
Q̂

φQ̂ = 1
q2

q∑

i,j=1

K(xi, xj),

(φ(x) − φQ̂)T(φ(x) − φQ̂) = K(x, x) + 1
q2

q∑

i,j=1

K(xi, xj) − 2
q

q∑

i=1

K(x, xi).

Now we proceed looking for sphere in the feature space centered in the
barycenter of the set Â, with radius R̂ ∈ IR, with the objective of minimizing
both the volume and the classification error.

We obtain the following problem

f̂P = min
ẑ,ξ̂ ,µ̂

ẑ + C

⎛

⎝
m∑

i=1

ξ̂i +
k∑

l=1

µ̂l

⎞

⎠

s.t. ẑ − ĉi + ξ̂i ≥ 0 ∀ i = 1, . . . , m
d̂l − ẑ + µ̂l ≥ 0 ∀ l = 1, . . . , k
ẑ ≥ 0
ξ̂i ≥ 0 ∀ i = 1, . . . , m
µ̂l ≥ 0 ∀ l = 1, . . . , k

(13)
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where

ẑ = R̂2

ξ̂i is the classification error for the point φ(ai) ∈ Â
µ̂l is the classification error for the point φ(bl) ∈ B̂

and

ĉi = (φ(ai) − φÂ)T(φ(ai) − φÂ)

= K(ai, ai) + 1
m2

m∑

j,s=1

K(aj, as) − 2
m

m∑

j=1

K(ai, aj) ≥ 0 ∀ i = 1, . . . , m

d̂l = (φ(bl) − φÂ)T(φ(bl) − φÂ)

= K(bl, bl) + 1
m2

m∑

j,s=1

K(aj, as) − 2
m

m∑

j=1

K(bl, aj) ≥ 0 ∀ l = 1, . . . , k.

The problem (13) is a Linear Program of the same type as problem (6). As in
Sect. 2 its dual is stated in the form:

f̂D = max
α̂,β̂

m∑

i=1

ĉiα̂i −
k∑

l=1

d̂lβ̂l

s.t.
m∑

i=1

α̂i −
k∑

l=1

β̂l = 1

0 ≤ α̂i ≤ C ∀ i = 1, . . . , m
0 ≤ β̂l ≤ C ∀ l = 1, . . . , k

(14)

and can be solved by the algorithm (1).
Once the optimal solutions (α̂∗, β̂∗) and (ẑ∗, ξ̂∗, µ̂∗) for (14) and (13), respec-

tively, have been calculated, the sphere S(φÂ,
√

ẑ∗) can be used for classification
purposes, in the sense that any new sample point x ∈ IRn will be classified as
follows:

x is a point of the type A if

(φ(x) − φÂ)T(φ(x) − φÂ) = K(x, x) + 1
m2

m∑

i,j=1

K(ai, aj) − 2
m

m∑

i=1

K(x, ai) < ẑ∗

x is a point of the type B if

(φ(x) − φÂ)T(φ(x) − φÂ) = K(x, x) + 1
m2

m∑

i,j=1

K(ai, aj) − 2
m

m∑

i=1

K(x, ai) > ẑ∗.
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4 Numerical experiments

We have implemented the algorithm described in Sect. 4 using Matlab 5.3
running on a Pentium IV 2.2 GHz Notebook. We have run it on several test
problems available in the literature.

We have considered the following datasets:

– Four publicly available datasets from the UCI Machine Learning Repos-
itory Murphy and Aha (1992), in particular, the Wisconsin Breast Cancer
Prognosis (WBCP), the Cleveland Heart Disease (Heart), Ionosphere (Ion-
osphere), Mushroom (Mushroom).

– The Galaxy Dim dataset (Galaxy Dim) used in galaxy discrimination with
neural networks from Odewahn et al. (1992).

In our implementation we have used the following kernel functions:

– linear: K(x, y) = xTy;
– radial basis function (RBF): K(x, y) = exp(−‖x − y‖2)/2p2

1;
– exponential radial basis function (ERBF): K(x, y) = exp(−‖x − y‖)/2p2

1;

with parameter p1.
We have run our algorithm for several values of the kernel parameters and

of the positive weighting constant C. The center x0 has been defined either as
the barycenter of the set A:

x(1)
0 = 1

m

m∑

i=1

ai,

or as a point “far” from both the sets A and B:

x(2)
0 = 1

m

m∑

i=1

ai + M

⎛

⎝ 1
m

m∑

i=1

ai − 1
k

k∑

l=1

bl

⎞

⎠ ,

for some sufficiently large positive constant M. Whenever nonlinear kernel
functions have been adopted, the point φ(x0) has been selected as φÂ, the

barycenter of the set Â.
We have adopted the tenfold cross-validation protocol, which consists in

splitting the dataset of interest into ten equally sized pieces. Nine of them are
in turn used as training set and the remaining one as testing set. By correctness
we intend the total percentage of well classified points (of both A and B) when
the algorithm stops.

In Table 1 we have reported for each dataset the results obtained in terms of
averages on the tenfold cross-validation with the choice of the linear kernel. To
provide a comparison opportunity we have reported in the same Table 1 also
some results drawn from the literature, in particular those reported in Fung
and Mangasarian (2001) related to the use of the SVM-light (Linear Kernel)
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Table 1 Comparison of training and testing correctness on standard datasets

Dataset Method Average Average
(m, k, n) training set testing set

correctness correctness

WBCP (41, 69, 32) SVM-light (Linear K.) 62.7 62.7

Spherical Sep. (Linear K. - C = 10, x(1)
0 ) 66.70 67.20

Spherical Sep. 68.61 67.70
(Linear K. - C = 10, x(2)

0 , M = 104)

Heart (83, 214, 13) SVM-light (Linear K.) 87.7 86.5
Spherical Sep. 75.08 74.50

(Linear K. - C = 10, x(1)
0 )

Spherical Sep.
(Linear K. - C = 10, x(2)

0 , M = 104) 87.58 86.80

Ionosphere SVM-light (Linear K.) 91.4 88.0
(126, 225, 34) Spherical Sep. 71.54 71.00

(Linear K. - C = 10, x(1)
0 )

Spherical Sep. 83.32 82.41
(Linear K. - C = 0.03, x(2)

0 , M = 104)

Mushroom SVM-light (Linear K.) 81.5 81.5
(3916, 4208, 22) Spherical Sep. 75.55 70.75

(Linear K. - C = 10, x(1)
0 )

Spherical Sep. 77.11 75.37
(Linear K. - C = 0.01, x(2)

0 , M = 1014)

Galaxy Dim SVM-light (Linear K.) 94.2 94.1
(2082, 2110, 14) Spherical Sep. 86.16 84.16

(Linear K. - C = 10, x(1)
0 )

Spherical Sep. 89.60 88.62
(Linear K. - C = 0.03, x(2)

0 , M = 1014)

Table 2 Training and testing correctness with nonlinear kernel functions

Dataset Method Average Average
training set testing set

(m, k, n) correctness correctness
Ionosphere Spherical Sep. 92.85 88.05
(126, 225, 34) (RBF k. - C = 10, φÂ, p1 = 0.7)

Mushroom Spherical Sep. 89.60 87.60
(3916, 4208, 22) (ERBF k. - C = 10, φÂ, p1 = 0.2)

approach (Joachims 1999). We remark that for Galaxy Dim, a relatively large
dataset, the entire dataset has been used.

In Table 2 just the improving results, obtained with a different choice of
kernel function, are reported.

The different parameters have been set after a tuning procedure aimed at
finding the value which ensures on the average the best performance.
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5 Conclusions

The results provided by our implementation show that the use of nonlinear
kernel transformations in connection with the spherical separation approach
improves on the classification correctness with respect to the spherical separa-
tion approach with linear kernel, i.e. spherical separation in the sample space.
On the other hand our algorithm has provided, at a very low computational
cost, results which appear comparable with those obtained by a well estab-
lished method. This fact would suggest to consider our approach as one of the
election tools to deal with very large datasets.

Appendix 1

We restate algorithm (1) of Sect. 2 for the case C > 1.

Initialization
Set
– p̄

�= min{k, m} ≥ 1
– αi = 0 ∀ i = 1, . . . , m; βl = 0 ∀ l = 1, . . . , k

Step 1.
If (c1 ≤ d1) Set α1 = 1 and STOP [exit (a): the basic variable is α1].
Endif
If (ci > di ∀ i = 1, . . . , p̄)

If (p̄ > 1) Set αi = C ∀ i = 1, . . . , (p̄ − 1)

Endif
Set
– αp̄ = 1
– βl = C ∀ l = 1, . . . , (p̄ − 1)

and STOP [exit (b): the basic variable is αp̄].
Endif

Step 2. Find p∗, the smallest index i, 2 ≤ i ≤ p̄ such that ci ≤ di
(Remark: Step 2 cannot be entered if p̄ = 1. Calculation of the index p∗ is
well posed since the algorithm has not stopped at step 1).

If (cp∗ ≥ dp∗−1)

Set
– αi = C ∀ i = 1, . . . , (p∗ − 1)

– αp∗ = 1
– βl = C ∀ l = 1, . . . , (p∗ − 1)

and STOP [exit (c): the basic variable is αp∗].
Else Set αi = C ∀ i = 1, . . . , p∗

If (p∗ > 2) Set βl = C ∀ l = 1, . . . , (p∗ − 2)

Endif
Set βp∗−1 = C − 1 and STOP [exit (d): the basic variable is βp∗−1].

Endif
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Appendix 2

Proof of Theorem 1 We assume that ᾱ ≥ 0 and β̄ ≥ 0 are those obtained on
exit from the algorithm (1). We prove the property for the case C ≤ 1, as the
treatment for the case C > 1 is analogous.

It is immediate to verify that, corresponding to all possible exits, the con-
straint

m∑

i=1

ᾱi −
k∑

l=1

β̄l = 1 (15)

is satisfied by construction.
We denote by ᾱh (exit (a), (b), (c)), or β̄s (exit (d)), the unique basic variable

(possibly degenerate) for the appropriate index h or s and we construct a primal
solution as follows:

– If the basic variable is ᾱh then set ξ̄h = 0, z̄ = ch and

ξ̄i =
{

0 if ᾱi = 0
ci − z̄ if ᾱi = C

for i = 1, . . . , m; i �= h (16)

µ̄l =
{

0 if β̄l = 0
z̄ − dl if β̄l = C

for l = 1, . . . , k. (17)

– If the basic variable is β̄s then set µ̄s = 0, z̄ = ds and

ξ̄i =
{

0 if ᾱi = 0
ci − z̄ if ᾱi = C

for i = 1, . . . , m (18)

µ̄l =
{

0 if β̄l = 0
z̄ − dl if β̄l = C

for l = 1, . . . , k; l �= s. (19)

It easy to verify that the complementary slackness conditions (8) are satisfied
as consequence of (15) and of the variable setting (16), (17), (18) and (19).

To prove the feasibility we need to show first that (z̄, ξ̄ , µ̄) are nonnega-
tive. We consider separately the two cases where the basic variable is ᾱh (exits
(a), (b), (c)) or β̄s (exit (d)) for some appropriate value of the index h or s
respectively.

Consider the case ᾱh is the basic variable. We have z̄ = ch > 0 and ξ̄i is equal
either to zero or to ci − z̄, the latter case occurring only in correspondence to
an index i < h for which it is, by hypothesis, ci ≥ ch = z̄. On the other hand the
nonnegativity of µ̄ follows by observing that whenever it is µ̄l = z̄ − dl we have
µ̄l = z̄ − dl = ch − dl ≥ 0.

Consider now the case β̄s is the basic variable. We have z̄ = ds > 0 and µ̄l is
equal either to zero or to z̄−dl, the latter case occurring only in correspondence
to an index l < s for which it is by hypothesis dl ≤ ds = z̄. On the other hand the
nonnegativity of ξ̄ follows by observing that whenever it is ξ̄i = ci − z̄ = ci − ds
the condition ci − ds ≥ 0 holds.
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Finally, noting that satisfaction of the constraints z̄−ci + ξ̄i ≥ 0 ∀ i = 1, . . . , m
and dl − z̄ + µ̄l ≥ 0 ∀ l = 1, . . . , k is ensured by the variable settings and by
the initial sorting of the ci’s and of the dl’s, the thesis follows as the solutions
(z̄, ξ̄ , µ̄) and (ᾱ, β̄) are primal and dual feasible respectively and satisfy the
complementary slackness conditions. �	
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