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Abstract This paper is about games where the agents face constraints in the
combined strategy space (unlike in standard games where the action sets are
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bounded capacity. In each such problem a regulator may aim at compliance to
standards or quotas through taxes or charges. The relevant solution concept for
these games has been known under several names like generalised Nash equi-
librium, coupled constraint equilibrium and more. Existing numerical methods
converging to such an equilibrium will be explained. Application examples of
use of NIRA, which is a suite of Matlab routines that implement one of the
methods, will be provided.
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1 Introduction

The aim of this paper is to coach the managerial and economic communities
to apply generalised equilibrium as a solution concept for games with con-
straints in the combined strategy space of all agents. The benefits of use of this
equilibrium include a learned design of policies that can enforce constraints’
satisfaction in a competitive environment and an analysis of economic agents’
behaviour subjected to constraints.

Computation of Pigouvian taxes with-a-base-line,1 see e.g. Randall (1987),
for a one-agent compliance problem is classical in environmental economics.
However, a typical feature of an environmental compliance problem is that it is
multi-agent. This suggests a game theory context but, the game must be special
rather than traditional. It needs to be a game where the set of options available
to one agent depends on the other agents’ choices. E.g., if an environmental
standard on a beach’s cleanliness, which many agents pollute, is (newly) added
to the game then a joint constraint in the combined strategy space of all agents
needs to be imposed. If all agents act simultaneously, no traditional solution is
available to such a game.

The feature of handling games with a constrained strategy space is also of
prime importance for electricity market modeling. In a typical problem of elec-
tricity generation and distribution, the competing economic agents’ strategy
space is coupled. This is (mainly) due to capacity constraints and Kirchhoff’s
laws, and signifies that the set of options available to an agent depends on the
other agents’ choices. No traditional noncooperative game theory concept can
be used to solve such a game.

Neither does a “classical” game theory problem solution exist to an internet
traffic problem if a selfish user exhausts a constrained capacity of the buffer.

All three situations2 described above have the same structure: each is a multi-
person non-cooperative game with constraints whose satisfaction depends on
the actions undertaken by all agents. Moreover, it is possible to envisage that
there is an “umpire” (or regulator) in each game capable of levying taxes on
agents. If the taxes are customarily designed then they can modify the agents’
payoffs so that their maximising actions satisfy the constraint.

The interest in games that allow for constraints in the combined action space
is almost as old as Nash equilibrium, see Debreu (1952). However, after a
controversial (or misunderstood) remark made in Ichiishi (1983) that the gen-
eralised Nash equilibrium concept “…is only useful as a mathematical tool to
establish existence theorems in various applied contexts3”, references to that
topic became rare in the “main-stream” economics literature. However, the

1 I.e., where taxes are applied after a constraint is violated.
2 For environmental-management coupled-constraint games see Haurie and Krawczyk (1997),
Krawczyk (2005) (and other papers listed there) and Tidball and Zaccour (2005); for such games
“played” on electricity markets, see Contreras et al. (2004) and Hobbs and Pang (2006); for con-
strained internet traffic models see Kesselman et al. (2005).
3 Stressed by JK.
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remark did not stop the mathematical operations-research (OR) researchers
from applying and developing this solution concept, see e.g., Harker (1991)
and Robinson (1993). The concept has also been used in the politico–economic
context of environmental management (see e.g., Haurie and Krawczyk (1997)
or Krawczyk and Uryasev (2000)).

In fact, the remark quoted above seems contradictory and was bound to be
misunderstood: it questions the importance of the constrained solution con-
cept but, it also says that the concept helps to establish solution existence in
applied contexts; so, presumably, the remark’s author saw importance of the
constrained games and their solutions for applications.

Following is a brief outline of what this paper contains. In Sect. 2 a class
of games with coupled constraint action sets will be defined. The solution ap-
proaches to such games will be discussed in Sect. 3. Application examples of
use of NIRA, which is a suite of Matlab routines that implement one of the
methods, will be provided in Sect. 4. The paper ends with concluding remarks.

2 Coupled constraint equilibrium

2.1 Name and history

So, we need a game model for situations where the players’ strategy sets are
not disjoint. We said that an umpire might be naturally included in such games.
If we think of a democracy with a (local) government empowered to levy taxes
and charges on players then the government may play the role of the umpire.
The latter will (usually) want to induce the agents to act in a socially acceptable
manner. This might be why Debreu (1952) (see also Arrow and Debreu 1954)
called the solution concept for a game with constraints a social equilibrium.

It was noticed in McKenzie (1959) that an equilibrium under constraints
generalises the “classical” Nash equilibrium and called the concept general
equilibrium. Other names for the constrained equilibrium concept have been
pseudo-Nash equilibrium, generalised Nash equilibrium , normalised equilib-
rium and coupled constraint equilibrium.

The last name is due to Rosen (1965). Perhaps this is the most informa-
tive name since it refers explicitly to the coupling character of constraints in
equilibrium. At present, this name (i.e., coupled constraint equilibrium) and
generalised Nash equilibrium seem to prevail: the former in politico-economic
contexts, the latter in the OR literature.

2.2 The class of games with feasibility sets interactions

There have been several mathematical operations research papers on coupled
constraint games applications4 and methodology published in the last 15 years.

4 Robinson (1993) is interested in a military problem that he modelled and analysed as constrained
equilibrium problem.
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It was Harker (1991) who used the enlighting term for this class of mathematical
problems: games with feasibility sets interactions. He and many other authors
developed (and are developing) methodology for these games in conjunction
with variational inequalities. See Pang and Fukushima (2005) for a modern
treatment of generalised Nash equilibria in the context of quasi-variational
inequalities.5 A reason for the link between constrained equilibria and varia-
tional inequalities is in that existence of this equilibrium can be established as
a “byproduct” of the solution existence to a variational inequality problem, see
Sect. 3.3 later in this paper.

As said, it is the paper by Rosen (1965) that has a politico-economic appeal.
This is because one of Rosen’s concerns is induction of agents to chose to
“play” a constrained equilibrium. Once the Karush-Kuhn-Tucker multipliers
associated with the common constraints are computed the equilibrium imple-
mentation is straightforward: the multipliers need to be used as penalty tax rates
for the constraints’ violation (see Haurie and Krawczyk 1997). If the players
allow for the taxes in their payoffs then they will play a real time game whose
solution is the desired equilibrium, see Contreras et al. (2004) and Krawczyk
(2005).

Rosen (1965) allows for a discriminatory treatment of players and provides
a criterion for the solution uniqueness (which is easy to apply for smooth mod-
els). The former permits us to modify the Karush-Kuhn-Tucker multipliers to
adjust the tax rates among players in case the regulator wants to favour certain
players. The latter (i.e., uniqueness) is of prime importance for applications. By
introducing an environmental tax, the regulator will “move” the agents from
an existing equilibrium. Therefore, knowledge that a new equilibrium exists
and is unique is crucial for the tax legislation and implementation. It suffices to
say that without the equilibrium uniqueness, the tax effectiveness could not be
examined.

For the symmetric information case (adopted in this paper), the charges com-
puted in the method will be never paid. In other words, the KKT multiplier is the
“correct” shadow price, given which the agents choose to modify their actions
so that their output and/or externalities are not exceeding the constraint.

2.3 Mathematical model

We need the following definitions and theorems to establish the existence and
uniqueness conditions of a Nash equilibrium in coupled constraint games. The
proofs of the theorems can be found in Rosen (1965).

Consider a concave game i.e., such where the n players have payoff func-
tions6 (φi)i=1,...n continuous in x = (x1, x2, . . . xn)′ ∈ X ⊂ Rm and concave in
xi ∈ Rmi , and such that strategy set X is a convex, closed and bounded subset

5 See Nagurney (1993) for a complete introduction to variational inequalities.
6 We will assume that the payoffs are interpersonally comparable e.g., all expressed in $ terms.
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of Rm. The solution to the game is x∗ that satisfies

φi(x∗) = max
yi|x∗∈X

φi(yi|x∗) (1)

where yi|x ≡ (x1, x2, . . . yi, . . . xn)′ denotes a collection of actions when the i-th
agent “tries” yi while the remaining agents are playing xj, j = 1, 2, . . . i − 1, i +
1, . . . n. At x∗ no player can improve their own payoff by a unilateral change
in his (or her) strategy which keeps the combined vector in X.

Game (1) shall be called a coupled constraint game (à la Rosen 1965). The
coupling refers to the fact that one player’s action affects what the other play-
ers’ actions can be. In the special case where X = X1 × · · · × Xn i.e., each
player’s action is individually constrained, the game is said to have uncoupled
constraints.

Notice that (1) can be interpreted as a model for a solution to each com-
pliance problem alluded to above (environmental, electrical and switching).
Functions (φi)i=1,...,n, are the players’ payoffs. The set X will comprise strate-
gies that fulfil the game standards imposed by the government or the network
requirements. In particular, set X will be convex, closed and bounded if the
standards to comply with are defined as concave functions of agent strategies.

We want now to specify the mathematical conditions for the possibly unique
existence of coupled-constraint equilibrium.

Let us first consider uncoupled-constraint games.

Theorem 1 An equilibrium point exists for every concave n-person game.

Therefore, we know that if each player has a payoff function which is contin-
uous in all players’ actions and concave7 with respect to his own strategy while
the other players’ strategies remain fixed, then the game must have at least
one Nash equilibrium. The payoff concavity assumption is common for many
economic activities’ models.

If the equilibrium is unique than regulator can enforce it. The conditions for
uniqueness rely on the concept of diagonal strict concavity (DSC) of the joint
payoff function

f (x, r) ≡
n∑

i=1

riφi(x), r ∈ Rn+ . (2)

Vector r is composed of weights ri with which the regulator appraises an indi-
vidual agent’s payoff (e.g., from a community’s point of view). We will see that
the weights r will help the regulator to adjust the levels of agents’ responsibility
for the constraint satisfaction. If all agents are treated equally i.e., the burden
of responsibility is distributed evenly, then r = [1 1 . . . ].

7 These assumptions can be weakened, see e.g., Harker (1991) or Fudenberg and Tirole (1991).
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Definition 1 The joint payoff function f (x, r) = ∑n
i=1 riφi(x), r ∈ Rn+, is called

diagonally strictly concave (DSC) for x ∈ X and fixed r if for every x1, x2 ∈ X
we have

(x2 − x1)′g(x1, r) + (x1 − x2)′g(x2, r) > 0 (3)

where g(x, r) is the pseudogradient of

g(x, r) =



r1∇1φ1(x)

...
rn∇nφn(x)



 . (4)

Notice that this definition relies on differentiability of payoff functions φi(x),
i = 1, . . . n. For twice-continuously differentiable functions, a criterion for DSC
is straightforward and consists of checking whether the Jacobian of g(x, r)
(or, equivalently, the pseudo-Hessian of f (x, r)) is negative definite. If so, the
main diagonal terms, which reflect concavity of an agent’s payoff in his own
actions, dominate the other terms that indicate the strength of the other agents
interactions.

Now, the economic interpretation of DSC becomes clear. A game whose
joint payoff is DSC (or, for shortness, a game which is DSC), is one in which
each player has more control over his own payoff than the other players have
over it. This is also a common, and desired, feature of many economic models.

Later in Sect. 3.4 we will see that an approximated equilibrium existence can
be established through weaker conditions that DSC.

Theorem 2 In a game with uncoupled constraints, if the joint payoff function
f (x, r) is DSC for some r > 0, then there exists a unique Nash equilibrium.

When the constraints are coupled, there are no such guarantees, and a special
type of equilibrium must be defined.

For that purpose, assume that the constraint set X is defined through a col-
lection of functions h : Rm → RL, where m is the dimension of the collective
strategy space (n is the number of players so, m ≥ n)

X = {x : h(x) ≥ 0}. (5)

Each component of h represents a constraint and there may be L of them. In the
case of a concave game, each h�(x), � = 1, . . . L, is a concave function of x (sup-
pose continuously differentiable in x and such that the constraint qualification
conditions are satisfied).

Denote the constraint shadow price vector for player i by λ∗
i ∈ RL. Then,

x∗ ∈ X is a coupled constraint equilibrium point if and only if it satisfies the
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Karush-Kuhn-Tucker conditions:

h(x∗) ≥ 0 (6)

(λ∗
i )

Th(x∗) = 0 (7)

φi(x∗) ≥ φi(yi|x∗) + (λ∗
i )

Th(yi|x∗) (8)

for all i = 1, . . . n and where yi|x was defined in (1). In general terms, conditions
(6)–(8) define x∗ as a vector of non improvable strategies if x∗ ∈ X.

The above conditions establish a solution to (1) under the adopted differ-
entiability and qualification assumptions. In general, the multipliers will not be
related to each other. However, we shall consider a special kind of equilibrium,
which can reflect the different levels of agent responsibility for the constraint
satisfaction (expressed by the vector r) and is unique.

Definition 2 An equilibrium point x∗ is a Rosen–Nash normalised equilibrium
point if, for some vectors r > 0 and λ∗ ≥ 0, conditions (6)–(8) determine x∗ and
are satisfied for

λ∗
i = λ∗

ri
(9)

for each i.8

For shortness we have dropped coupled constraint from the equilibrium
definition.

The number of components of vector λ∗ (and of λ∗
i ) is obviously the same as

the “length” of h(x). So, λ∗ = [λ∗,1, . . . λ∗,�, . . . λ∗,L]′ where each λ∗,�, � = 1, . . . L
is a single constraint’s Lagrange multiplier.

We can better understand the role of weights ri now. If an agent’s weight ri,
in the joint payoff function (2), is greater than those of his (or her) competitors,
then his (or her) Lagrange multipliers are lessened, relative to the competitors’.
This can be interpreted as a concession gained by this agent to pollute more (or
transmit more energy) than their competitors. Paraphrasing, the vector r tells us
of how the regulator has distributed the burden of the constraints’ satisfaction
among the agents.

Theorem 3 There exists a normalised equilibrium point to a concave n-person
game for every specified r > 0.

The wording of the following theorem crucial for coupled-constraint games
is a bit stronger than in Rosen (1965), see Haurie and Krawczyk (2002).

Theorem 4 Let the weighting r̄ ∈ Q be given where Q is a convex subset of
Rn+. Let f (x, r̄) be diagonally strictly concave on the convex set X and such that
the Kuhn–Tucker multipliers exist. Then, for the weighting r̄, there is a unique
normalised equilibrium point.

8 We could say that λ∗ are the “objective” shadow prices while λ∗
i are the “subjective” ones.
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This means that, if a game is DSC for a feasible distribution of the con-
straint satisfaction responsibilities, then the game possesses a unique coupled
constraint equilibrium for each such distribution.

The regulator can enforce the equilibrium through the modification of each
agent’s payoff by a penalty term

Ti(λ
∗, ri, x) ≡ λ∗

ri
min

(
0, h(x)

)
; (10)

obviously, Ti(λ
∗, ri, x) < 0 for x /∈ X.

We can say that the computation of the Lagrange multipliers uncouples the
equilibrium strategies x∗ (or that the game becomes uncoupled). This means
that the Rosen–Nash normalised equilibrium strategies x∗ are also Nash equi-
librium strategies of the following uncoupled game

φi(x∗∗) = max
yi|x∗∗∈Rn

(
φi(yi|x∗∗) + Ti(λ

∗, ri, yi|x∗∗)
)

(11)

i.e.,

x∗∗ = x∗.

In other words, if the charge scheme (10) (which includes information on cou-

pled-constraint-equilibrium shadow prices
λ∗

ri
) is communicated to agents, then

the agents play an uncoupled game whose unique solution satisfies the con-
straints.

This is important for applications. If the game at hand is DSC for r̄ ∈ Q,
the regulator can be certain of what the agents’ reaction is going to be to a tax
signal defined through the Lagrange multipliers λ∗

i . After DSC is established
(which implies uniqueness), the game still needs to be solved. In particular,
the Lagrange multipliers λ∗

i as well as the equilibrium strategies x∗ have to
be computed. This might be a difficult procedure that requires computational
support.

Notwithstanding the computational difficulty of calculating λ∗, the policy
maker needs to observe h(x) but not individual xi, i = 1, . . . n to determine
Ti(λ

∗, ri, x). This is an attractive feature of regulation based on coupled con-
straint equilibria in situations where tracing a constraint’s violation to the
offender is difficult or impossible.

3 Numerical solutions to coupled constraint games

3.1 Numerical approach

Numerical methods for solutions to games with joint constraints in the strategy
space can be grouped in three categories:



Coupled-constraint (or generalised nash) equilibria 191

– methods exploiting “explicit” use of Rosen’s (1965) theorems and conditions;
– methods based on solutions to quasi-variational inequalities à la Pang and

Fukushima (2005);
– min-maximisation of a bi-variate function like the Nikaido–Isoda function9

(see Uryasev and Rubinstein 1994).10

The methods will be described below albeit the latter will receive most atten-
tion due to author’s extensive experience with this method.

3.2 Rosen’s algorithm

Rosen’s (1965) projected gradient algorithm consists of constrained minimisa-
tion of a pseudo-gradient norm (i.e., norm of (4)). The algorithm can be itemised
as follows:

(i) Begin.
(ii) Compute the payoffs’ pseudo-gradients at feasible points x(m), where m

is the iteration number and j = 1, 2, . . . , n:

γ
(m)
j = rj · ∇jφj(x)

∣∣
x(m)

(iii) Make a step in the direction of the pseudo-gradient

x(m+1) = x(m) + κ(m)γ (m)

where κ(m) is such that x(m+1) attains either the first active constraint or
the pseudo-gradient norm is minimised.
Repeat (ii) and (iii) until the pseudo-gradient norm is sufficiently small.

(iv) Determine the Karush-Kuhn-Tucker multipliers.

As for any gradient algorithm, convergence of Rosen’s algorithm depends
on concavity of the underlying function (here, on joint payoff f (x, r), see (2)).
For games that are DSC, convergence is quick and reliable. In Haurie and
Krawczyk (1997), the above algorithm was used to solve a three-player River
Basin Pollution game.11

9 Or Ky Fan, see Aubin (1993).
10 Also see papers by this author on coupled constraint equilibria.
11 The game was later treated as a test problem in Krawczyk and Uryasev (2000) and Krawczyk
(2005).
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3.3 Quasi-variational inequalities

A variational inequality problem12 consists of finding a vector xo ∈ K such that

(z − xo)TF(xo) ≤ 0, ∀z ∈ K (12)

where F is a vector map F : Rn → Rn and K ⊂ Rn. Notice that xo (if it exists)
is such that F(xo) is perpendicular to the (convex) set K at xo. Should F(·) be
the gradient of a maximised function ϕ(·) then a solution to (12) xo solves a
constrained maximisation problem

xo = arg max
x∈K

ϕ(x). (13)

Hence, if we have a numerical method that solves a variational inequality then
we can use this method to compute a solution to the constrained maximisation
problem represented as the variational inequality. As a matter of fact, numer-
ical methods for variational inequalities are readily available and utilised as
optimisation “tools”, see e.g. Facchinei and Pang (2003).

The link between variational inequalities and equilibria is immediate if we
think of F(·) as of the pseudo-gradient of the joint payoff function (2) with
r ≡ 1.

The constraint set which was generically represented by symbol X in Sect. 2.3,
can now be denoted

X ≡
⋃

i

Ki(x(−i))

where Ki(x(−i)) is the action set for player i. (This notation highlights the fact
that the actions available to player i depend on the other players’ choices.)
Hence, player i maximisation problem (1) can be represented as:

max φi(yi|x(−i)) s.t. yi ∈ Ki(x(−i)), i = 1, . . . , n. (14)

If F(x) represents (again) the pseudo-gradient of the joint payoff function (2)
with r ≡ 1 then xo that satisfies

(z − xo)TF(xo) ≤ 0, ∀z ∈ K(xo) (15)

is a coupled constraint equilibrium (or a generalised Nash equilibrium, see Pang
and Fukushima 2005). Inequality (15) is called a quasi-variational inequality
and is a generalisation of (12) because of the constraint set K(·) dependence on
strategy x.

12 In the mathematical OR literature, variational inequalities are usually formulated for minimisa-
tion problems see e.g., Pang and Fukushima (2005) or Hobbs and Pang (2006). Consequently, their
inequality.
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One can formulate the theorem (see e.g., Haurie and Krawczyk 2002) that if
the game is DSC then (15) is the necessary and sufficient condition for xo to be
a unique Nash equilibrium.

The diagonal strict concavity (DSC) assumption is then equivalent to the
property of strong monotonicity of the pseudo-gradient operator F(x) in the
parlance of variational inequality theory.

On the other hand, Pang and Fukushima (2005) formulate the theorem that
guarantees existence of a solution to the quasi-variational inequality problem
(15). Requested is continuity of F, and also continuity of K(x) where K(·) is
understood as a correspondence13 between point x ∈ Rn and a subset of Rn;
moreover, for every x ∈ T ⊂ Rn, K(x) �= ∅ needs to be a convex and closed
subset of a compact and convex T. Obviously, DSC (backed by convexity of
K(x)) is a sufficient condition under which a solution to (15) is the generalised
Nash equilibrium (or coupled constraint equilibrium).

3.4 The NIRA approach

3.4.1 What is NIRA?

NIRA is the acronym used to denote an equilibrium search method based on
the (bivariate) Nikaido–Isoda function and a relaxation algorithm. Min-max-
misation of this function can deliver a solution to a coupled constraint game.
The Nikaido–Isoda function and its min-maxmisation relaxation algorithm are
economically interpretable. The algorithm convergence conditions do not have
to rely on smoothness of the payoff functions.

However, should the payoff functions be twice continuously differentiable,
verification of the convergence theorem’s hypotheses becomes much easier.
Moreover, for such smooth games, the conditions under which NIRA con-
verges to a unique Nash equilibrium imply diagonal strict concavity of the
game at hand. This means that if the game satisfies the NIRA convergence
conditions and the algorithm has converged, then the convergence point is a
coupled constraint equilibrium. Moreover, NIRA delivers the Lagrange multi-
pliers as an integral part of the solution procedure. The multipliers can then be
used to decouple the game.

NIRA was used in Berridge and Krawczyk (1997), Contreras et al. (2004)
and Krawczyk and Uryasev (2000) for the solution of several infinite games of
varying complexity. An open-loop dynamic River Pollution game was solved
through NIRA in Krawczyk (2005). In that paper, managerial and economic
aspects of a transition process, from a polluted environment state to one in
which the agents comply to the standards, were discussed; economics of a
non-conservative behaviour of the agents was explained.

13 Or, point-to-set mapping.
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3.4.2 Nikaido–Isoda function

Let us now introduce the Nikaido–Isoda function (see Nikaido and Isoda 1955).
This function transforms an equilibrium problem into an optimisation problem
and has an interesting economic interpretation.

Definition 3 Let φi be the payoff function for player i and X a collective strategy
set as in (1). Then the Nikaido–Isoda function � : X × X → R is defined as

�(x, y) =
n∑

i=1

[φi(yi|x) − φi(x)]. (16)

Result 1 Uryasev and Rubinstein (1994)

�(x, x) ≡ 0 x ∈ X. (17)

Each summand in (16) can be thought of as the improvement in payoff a
player will receive by changing his or her action from xi to yi while all other
players continue to play according to x. The function thus represents the sum of
these improvements in payoff. Note that the maximum value this function can
take for a given x is always nonnegative, owing to Result 1 above. Also, the func-
tion is nonpositive everywhere when either x or y is a Nash equilibrium point,
since in an equilibrium situation no player can make a unilateral improvement
to their payoff, and so each summand in this case can be at most zero.

From here, the conclusion is reached that when the Nikaido–Isoda function
cannot be made (significantly) positive for a given y, we have (approximately)
reached the Nash equilibrium point. This observation is useful in constructing
a termination condition for our algorithm; that is, choose an ε > 0 such that,
when maxy∈X �(xs, y) < ε, where xs ∈ X is computed at the current iteration s,
the equilibrium has been reached to a sufficient degree of precision.

3.4.3 Mathematics of NIRA

The next three definitions (see e.g., Nurminski 1982 or Uryasev and Rubinstein
1994) are about weak convexity and concavity14 of a bivariate function. As
the following Theorem 5 (the convergence theorem) will document it, weak
convex–concavity of a function is a crucial assumption needed for convergence
of a relaxation algorithm to a coupled constraint equilibrium.

Let X be a convex closed subset of the Euclidean space Rm and f a continu-
ous function f : X → R.

14 Recall the following elementary definition: a function is “just” convex ⇐⇒

αf (x) + (1 − α)f (y) ≥ f
(
αx + (1 − α)y

)
.
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Definition 4 A function of one argument f (x) is weakly convex on X if there
exists a function r(x, y) such that ∀x, y ∈ X

αf (x) + (1 − α)f (y) ≥ f (αx + (1 − α)y) + α(1 − α)r(x, y)

0 ≤ α ≤ 1, and r(x,y)

‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X. (18)

Definition 5 A function of one argument f (x) is weakly concave on X if there
exists a function µ(x, y) such that, ∀x, y ∈ X

αf (x) + (1 − α)f (y) ≤ f (αx + (1 − α)y) + α(1 − α)µ(x, y)

0 ≤ α ≤ 1, and µ(x,y)

‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X. (19)

Example The convex function f (x) = x2 is weakly concave. See Krawczyk and
Uryasev (2000).

Let � : X × X → R be a function defined on a product X × X, where X is a
convex closed subset of the Euclidean space Rm.

Definition 6 A function of two vector arguments, �(x, y) is referred to as weakly
convex–concave if it satisfies weak convexity with respect to its first argument
and weak concavity with respect to its second argument.

That is, for fixed z ∈ X,

α�(x, z) + (1 − α)�(y, z) ≥ �(αx + (1 − α)y, z) + α(1 − α)r(x, y; z)

x, y ∈ X, 0 ≤ α ≤ 1, and r(x,y;z)
‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X (20)

and

α�(z, x) + (1 − α)�(z, y) ≤ �(z, αx + (1 − α)y) + α(1 − α)µ(x, y; z)

x, y ∈ X, 0 ≤ α ≤ 1, and µ(x,y;z)
‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X (21)

r(x, y; z) and µ(x, y; z) are referred to as the residual terms.

The functions r(x, y; z) and µ(x, y; z) were introduced with the concept of
weak convex–concavity. Notice that smoothness of �(z, y) is not required. How-
ever, if �(x, y) is twice continuously differentiable with respect to both argu-
ments on X × X, the residual terms satisfy (see e.g., Krawczyk and Uryasev
2000)

r(x, y; y) = 1
2 〈A(x, x)(x − y), x − y〉 + o1(‖x − y‖2) (22)

and

µ(y, x; x) = 1
2 〈B(x, x)(x − y), x − y〉 + o2(‖x − y‖2) (23)
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where A(x, x) = �xx(x, y)|y=x is the Hessian of the Nikaido–Isoda function with
respect to the first argument and B(x, x) = �yy(x, y)|y=x is the Hessian of the
Nikaido–Isoda function with respect to the second argument, both evaluated
at y = x.

To prove the inequality of condition (v) of Theorem 5 (the convergence
theorem, below) under the assumption that �(x, y) is twice continuously differ-
entiable, it suffices to show that

Q(x, x) = A(x, x) − B(x, x) (24)

is strictly positive.

Definition 7 The relaxation algorithm’s optimum response function, possibly
multi-valued, at point x is (see Başar 1987, Uryasev and Rubinstein 1994)

Z(x) = arg max
y∈X

�(x, y), x, Z(x) ∈ X. (25)

Suppose we wish to find a Nash equilibrium of a game and we have some
initial estimate of it, say x0, and Z(x) is single-valued; the relaxation algorithm
is given by the following formula

xs+1 = (1 − αs)xs + αsZ(xs), s = 0, 1, 2, . . . , (26)

where 0 < αs ≤ 1 . The iterate at step s + 1 is constructed as a weighted average
of the improvement point Z(xs) and the current point xs. This averaging ensures
convergence of the algorithm under certain conditions as stated in the theorem
below. See Krawczyk and Uryasev (2000) for a proof.

Theorem 5 (Convergence theorem.) There exists a unique normalised Nash
equilibrium point to which the algorithm (26) converges if:

(i) X is a convex compact subset of Rm,
(ii) the Nikaido–Isoda function � : X × X → R is a weakly convex-concave

function and �(x, x) = 0 for x ∈ X ,
(iii) the optimum response function Z(x) is single valued and continuous on

X,
(iv) the residual term r(x, y; z) is uniformly continuous on X w.r.t. z for all

x, y ∈ X ,
(v) the residual terms satisfy

r(x, y; y) − µ(y, x; x) ≥ β(‖x − y‖) x, y ∈ X , (27)

where β(0) = 0 and β is a strictly increasing function (i.e., β(t2) > β(t1) if
t2 > t1),
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(vi) the relaxation parameters αs satisfy

– either (non-optimised step)

(a) αs > 0,
(b)

∑∞
s=0 αs = ∞,

(c) αs → 0 as s → ∞.

– or (optimised step)

αs = arg min
α∈[0,1)

{
max
y∈X

�(xs+1(α), y)

}
. (28)

Remark 1 It is interesting to note that one can consider the relaxation algorithm
as either performing a static optimisation or calculating successive actions of
players in convergence to an equilibrium in a real time process. If all payoff func-
tions are known, one can directly find the Nash equilibrium using the relaxation
algorithm. However, if only one player’s payoff function and all players’ past
actions can be accessed, or computed, then at each stage in the real time process
one calculates the optimum response for that player, assuming that the other
players will play as they had in the previous period. In this way, convergence
to the Nash normalised equilibrium will occur as s → ∞. By taking sufficiently
many iterations of the algorithm, the Nash equilibrium will be determined with
a specified precision.

4 Management and economics of coupled constraint equilibria

The managerial aspect of enforcing compliance to standards, and the enforce-
ment process economics will be illustrated using the solution to the River Basin
Pollution Game (see Krawczyk 2005, compare Haurie and Krawczyk 1997). For
a discussion of the same aspects in an energy generation context see Contreras
et al. (2004).

4.1 Formulation of a River Basin Pollution Problem

Three players j = 1, 2, 3 are located along a river. Each of them is engaged in an
economic activity (paper pulp producing, say) at a chosen level xj. Their joint
production externalities (pollution) must satisfy environmental constraints set
by a local authority.

It is assumed that one pollutant is produced in the quantity that is a linear
(not crucial for the algorithm’s convergence) function of agent’s output xj i.e.,

pollution = ejxj

where ej is the emission coefficient of player j, given in Table 1. The pollu-
tion is expelled into the river, where it disperses, decays and, finally, reaches a
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Table 1 Constants for the River Basin Pollution game

Player j c1j c2j ej δj1 δj2

1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750

monitoring station in the amount of
∑

j δj�ejxj, where δj� is the decay-and-trans-
portation coefficient from player j to location �. In the game, two monitoring
stations � = 1, 2 are located along the river, at which the local authority has
set maximum pollutant concentration levels K�. So, the constraint on pollution
that is imposed by the local authority at location � is

q�(x) =
3∑

j=1

δj�ejxj ≤ K�, � = 1, 2. (29)

Each player j is supposed to maximise the net profit (also referred to as
payoff)

φj(x) = [d(1) − d(2)(x1 + x2 + x3)]xj︸ ︷︷ ︸
revenue

− (c1j + c2jxj)xj︸ ︷︷ ︸
cost

. (30)

The economic constants d(1) and d(2) determine the inverse demand law and
are set to 3.0 and 0.01, respectively. The values for the cost function coefficients
c1j and c2j are given in Table 1; finally K� = 100, � = 1, 2 . Notice that Player 3
is “inefficient” in that his emission and cost (see coefficients ej and c13) are the
largest.

4.2 Equilibrium solution

The game,

φj(x∗) = max
q�(yj|x∗)≤K�,�=1,2

φj(yj|x∗), j = 1, 2, 3 (31)

in which agents maximise profits (30) subject to actions satisfying jointly linear
constraints (29), is a coupled constraint game. The NIRA approach will be used
to compute an equilibrium to this game.

Although our game is diagonally strictly concave, exploiting this feature is
not needed here. Instead, it is shown below that the Nikaido–Isoda function is
weakly convex–concave for the game at hand. This is sufficient for the relaxation
algorithm to converge to an equilibrium of the river basin pollution game.
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We assume that the players share the responsibility for satisfying the
constraints evenly or “in solidarity” i.e., ri = 1, i = 1, 2, 3. The Nikaido-Isoda
function in this case is

�(x, y) =
3∑

j=1

(φj(yi|x) − φj(x))

= [d(1) − d(2)(y1 + x2 + x3) − c11 − c21y1]y1

+ [d(1) − d(2)(x1 + y2 + x3) − c12 − c22y2]y2

+ [d(1) − d(2)(x1 + x2 + y3) − c13 − c23y3]y3 −
3∑

j=1

φj(x). (32)

Notice that the set defined by equations (29) is convex. Condition (v) of the
convergence theorem (Theorem 5) follows from strict positive-definiteness of
the matrix Q(x, x) (see (24))

Q(x, x) = �xx(x, y)|y=x − �yy(x, y)|y=x

=



4c21 + 4d(2) 2d(2) 2d(2)

2d(2) 4c22 + 4d(2) 2d(2)

2d(2) 2d(2) 4c23 + 4d(2)





= 2 d(2)




1 1 1
1 1 1
1 1 1



 + 2




2c21 + d(2) 0 0

0 2c22 + d(2) 0
0 0 2c23 + d(2)



 . (33)

The other assumptions of Theorem 5 also are satisfied.
Using a starting guess of x = (0, 0, 0) in NIRA’ suite of Matlab programs

(see Berridge and Krawczyk 1997) the convergence result was obtained

x∗ = (21.14, 16.03, 2.73),

which yields net profits φ∗ = (48.41, 26.92, 6.61). The first constraint is active
i.e., q1(x) = K1 = 100 and the corresponding equilibrium Lagrange multiplier15

λ1 = 0.5744 . The second constraint is non active (q2(x) = 81.17 hence the slack
is 18.83) and λ2 = 0.

15 In NIRA, the Lagrange multipliers are computed as the constraints’ shadow prices by a con-
strained optimisation routine (fmincon) used in min-maximisation of �(x, y) s.t. (x, y) ∈ X.
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4.3 Management of equilibria

4.3.1 A self-enforced constrained equilibrium

We can compel the players to obey an equilibrium solution by applying
Pigouvian taxes. This is straightforward to show for the equilibrium solution x∗.

Use the Lagrange multipliers λ1 = 0.5744, λ2 = 0 to create a new, uncou-
pled (or unconstrained) game. For the active constraint, place a charge on each
player in the amount of

T(x) ≡ Tj,1(λ1, 1, x) = λ1 max(0, q1(x) − K1), (34)

where λ1 = 0.5744, is the penalty coefficient for violating the first constraint.
Since T(x) is a non-smooth penalty function [see (34), compare(10)], there will
always exist coefficients λ1 sufficiently large to ensure that agents adhere to
the environmental constraints (29) (see Shor 1985). In other words, for “large”
λ1, the pollution produced by agents’ optimal solutions will satisfy the environ-
mental standard. Applying the taxes as above modifies the payoff functions,
which now become φ̃j

φ̃j(x) = Rj(x) − Fj(x) −
∑

�

T(x)

or

φ̃(x) = [d(1) − d(2)(x1 + x2 + x3) − c1j − c2jxj]xj

− λ1 max



0,
3∑

j=1

δj1ejxj − K1



 , j = 1, 2, 3. (35)

Where the parameters are as in Table 1.
The new equilibrium problem with payoff functions φ̃j and uncoupled con-

strains has the Nash equilibrium point x∗∗ defined by the equation

φ̃j(x∗∗) = max
yj≥0

φ̃j(yj|x∗∗) j = 1, . . . n. (36)

Following Krawczyk and Uryasev (2000), a conjecture has been made based on
the general theory of non-smooth optimisation (see, for example Shor 1985)
that, for the environmental constraint satisfaction, the penalty coefficient λ1
should be greater than or equal to the Lagrange multiplier corresponding to
first of the constraints (29). In the numerical experiments, λ1 was set to equal
the “final” Lagrange multiplier that was observed during the calculation of the
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constrained equilibrium by algorithm (26). For this setup, the unconstrained
equilibrium x∗∗ was approximately equal to the constrained equilibrium x∗.16

In Krawczyk and Uryasev (2000) cross-sectional graphs were produced17 to
plot the modified payoff functions for each player. Each payoff function appears
non-smooth and achieves its maximum at point x∗.

4.3.2 A social planner’s solutions

It is interesting to observe that the third player’s production is very small as
compared to the others’. As said, this player is obviously “inefficient” in terms
of his (or her) cost function as well as (poor) abatement technology (see high c13
and e3). The inefficiency of the third player is even more evident from a coop-
erative or social planner’s problem solution. If the social planner’s problem is
defined as

x̂ = arg max
q�(x)≤K�,�=1,2

{φ1 + φ2 + φ3} (37)

the optimal solution is

x̂ = (24.63, 14.66, 0.4) ,

the slack on the second constraint is larger than before (q2(x) = 80.45) and the

corresponding joint profit
∑3

i=1
φ1(x̂) = 82.21, which is more then the sum

of the competitive equilibrium profits
∑3

i=1
φ1(x∗) = 81.94 .

It is also possible to compute the taxes that compel the players to produce
(and pollute) at the cooperative (or efficient) solution levels x̂. A new set of
Lagrange multipliers has to be computed and a new distribution of the burden
of satisfying the constraints needs to be decided. The latter requirement means
that weights ri, i = 1, 2, 3 in formulae (9) and (10) cannot be [1, 1, 1] and have
to be calculated.

The weights and the Lagrange multipliers could be established through the
solution of the following problem

compute r1, r2, r3 s. t. (38)

x̂ = arg max r1φ1(y1|x̂)

x̂ = arg max r2φ2(y2|x̂)

x̂ = arg max r3φ3(y3|x̂)




 (39)

16 In general, the new unconstrained Nash equilibrium x∗∗ may not equal exactly the constraint
equilibrium x∗, see Shor (1985).
17 Repeated in Krawczyk (2005).
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where each maximisation is constrained by pollution q�(yj|x∗) ≤ K�, � = 1, 2,
j = 1, 2, 3. A solution to (38), (39) (which is not a coupled constrained game18)
was obtained in Krawczyk (2005) as

r̄ = [1.001 0.778 0.91818]; λ1 = 0.54341, λ2 = 0.

The modified payoff functions diminished by the taxes can now be defined:

φ̄j(x) = [d(1) − d(2)(x1 + x2 + x3) − c1j − c2jxj]xj

− λ1

rj
max



0,
3∑

j=1

δj1ejxj − K1



 , j = 1, 2, 3 (40)

and the equilibrium of the uncoupled game with the modified payoffs

φ̄j(x̄) = max
yj≥0

φ̄j(yj|x̄), j = 1, . . . n. (41)

can be computed. This game was solved in Krawczyk (2005) and the solution x̄
was the same as the social planner’s solution x̂. This confirms that, through a set
of specially designed Pigouvian taxes, an efficient solution can be made a Nash
equilibrium.

4.4 Economics of constrained equilibria

Solutions to coupled constraint games can give us information on how an econ-
omy might react to an introduction of (new) standards of production, external-
ities, transmission capacities etc. Accordingly, the socio-economic implications
of the standards can be assessed. Some implications are discussed below in
relation to the River Basin Game considered in previous sections.

Of importance to the regulator are efficiency issues. The sum of payoffs
(wealth) generated by the efficient solution x̂ happens to be numerically close
to the competitive equilibrium x∗. This would suggest that rather than enforc-
ing the former through a somewhat arbitrary weight modification (from [1 1 1]
to r̄) the regulator will prefer to rely on the equilibrium solution, in which all
agents are treated as equal.

As said, the data in Table 1 suggests that Player 3 is inefficient. In the con-
strained equilibrium, this agent is ascribed 8% of the total payoff. Rather expect-
edly, under the efficient solution this agent receives much less (which is about
0.5% of the total payoff). This might raise questions regarding efficiency of the
“generalised” Nash equilibrium.

In general, no Nash equilibrium is Pareto efficient. While the observa-
tion about assigning 8%, instead of 0.5%, of payoff to a player who appears

18 Hence does not have to have a unique solution.
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inefficient might be worrisome for this game, it is worthwhile to note that in
the unconstrained equilibrium (i.e., if x ∈ Rn) this player’s participation level
in wealth creation would be about 44%. This is because the unconstrained
equilibrium of this game is

x0 = (55.3497, 14.9139, 53.6841) (42)

which generates the payoffs to players [61.272, 13.346, 57.636]. We may con-
clude that for this game, “playing” a coupled constrained game improves effi-
ciency with respect to the unconstrained game.

5 Concluding remarks

This paper deals with models suitable to study an important class of games aris-
ing in politico-economic contexts of compliance to standards or quotas. Such
contexts comprise problems of environmental management, electricity gener-
ation and transmission and internet switching. Their common features is that
the players’ strategy spaces are coupled.

In broad terms, numerical solutions to such games can be obtained through
gradient projection, quasi-variational inequalities and min-maximisation of the
Nikaido–Isoda function.

The Nikaido–Isoda function was utilised to compute a coupled constraint
equilibrium of a game representative for coupled constraint contexts. Manage-
rial aspects of making a constrained equilibrium a self-enforced Nash equilib-
rium (or decoupling the game) were highlighted and economics of compliance
to standards was discussed. In general terms, decoupling is straightforward for
suitably concave games and requires players’ payoffs modifications based on the
constraints’ Lagrange multipliers. “Playing” a coupled constraint equilibrium
can improve the solution’s relative efficiency.
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Başar T (1987) Relaxation techniques and asynchronous algorithms for online computation of

non-cooperative equilibria. J Econ Dyn Control 11:531–549
Berridge S, Krawczyk J (1997) Relaxation algorithms in finding Nash equilibria. Economic Working

Papers Archive. URL: http://econwpa.wustl.edu/eprints/comp/papers/9707/9707002.abs
Contreras J, Klusch M, Krawczyk JB (2004) Numerical solutions to Nash–Cournot Equilibria

in Coupled Constraint Electricity Markets. [doi:10.1109/TPWRS.2003.820692 Copyright 2004
IEEE.] IEEE Trans Power Syst 19(1):195–206



204 J. Krawczyk

Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity prob-
lems I and II. Springer, Berlin Heidelberg New York

Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge
Haurie A, Krawczyk JB (1997) Optimal charges on river effluent from lumped and distributed

sources. Environ Model Assess 2(3):93–106
Haurie A, Krawczyk JB (2002) An introduction to dynamic games, internet textbook. URL:

http://ecolu-info.unige.ch/ haurie/fame/textbook.pdf
Hobbs B, Pang J-S (2006) Nash-Cournot equilibria in electric power markets with piecewise linear

demand functions and joint constraints. Operations Research (in press)
Harker PT (1991) Generalized Nash games and quasivariational inequalities. Eur J Oper Res

54:81–94
Ichiishi T (1983) Game theory for economic analysis. Academic Press, New York
Kesselman A, Leonardi S, Bonifaci V (2005) Game-theoretic analysis of internet switching with

selfish users. In: Proceedings of the first international workshop on internet and network eco-
nomics, WINE, Lectures Notes in Computer Science, Vol 3828, pp 236–245

Krawczyk JB (2005) Coupled constraint Nash equilibria in environmental games. Resour Energy
Econ 27(2):157–181

Krawczyk JB, Uryasev S (2000) Relaxation Algorithms to find Nash equilibria with economic
applications. Environ Model Assess 5:63–73

McKenzie LW (1959) On the existence of general equilibrium for a competitive market. Econome-
trica 27:54–71

Nikaido H, Isoda K (1955) Note on noncooperative convex games. Pac J Math 5(1):807–815
Nagurney A (1993) Network economics: a variational inequality approach. Kluwer, Boston
Nurminski EA (1982) Subgradient method for minimizing weakly convex functions and ε-subgra-

dient methods of convex optimization. Progress in Nondifferentiable Optimization: Collabo-
rative Proceedings CP-82-S8, Laxenburg, Austria, International Institute for Applied Systems
Analysis, pp 97–123

Pang JS, Fukushima M (2005) Quasi-variational inequalities, generalized Nash equilibria and multi-
leader-follower games. Comput Manage Sci 1:21–56

Randall A (1987) Resource economics. Wiley, New York
Robinson SM (1993) Shadow prices for measures of effectiveness. II. General model. Oper Res

41(3):536–548
Rosen JB (1965) Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica 33(3):520–534
Tidball M, Zaccour G (2005) An environmental game with coulpling constraints. Environ Model

Assess 10:153–158
Shor NZ (1985) Minimization methods for non-differentiable functions. Springer, Berlin Heidel-

berg New York
Uryasev S, Rubinstein RY (1994) On relaxation algorithms in computation of noncooperative

equilibria. IEEE Trans Autom Control 39(6):1263–1267


	Numerical solutions to coupled-constraint(or generalised Nash) equilibrium problems
	Abstract
	Introduction
	Coupled constraint equilibrium
	Name and history
	The class of games with feasibility sets interactions
	Mathematical model
	Numerical solutions to coupled constraint games
	Numerical approach
	Rosen's algorithm
	Quasi-variational inequalities
	The NIRA approach
	What is NIRA?
	Nikaido--Isoda function
	Mathematics of NIRA
	Management and economics of coupled constraint equilibria
	Formulation of a River Basin Pollution Problem
	Equilibrium solution
	Management of equilibria
	A self-enforced constrained equilibrium
	A social planner's solutions
	Economics of constrained equilibria
	Concluding remarks
	References

