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Abstract In this paper, we develop an evolutionary variational inequality
model of the Internet with multiple classes of traffic and demonstrate its util-
ity through the formulation and solution of a time-dependent Braess paradox.
The model can handle time-dependent changes in demand as a consequence
of developing news stories, following, for example, natural disasters or catas-
trophes or major media events. The model can also capture the time-varying
demand for Internet resources during a regular weekday with its more regu-
lar rhythm of work and breaks. In addition, the model includes time-varying
capacities on the route flows due to, for example, government interventions or
network-type failures.
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1 Introduction

The Internet has revolutionized the way in which we work, interact, and con-
duct our daily activities. It has affected the young and the old as they gather
information and communicate and has transformed business processes, finan-
cial investing and decision-making, and global supply chains. The Internet has
evolved into a network that underpins our developed societies and economies.

In this paper, we develop a dynamic network model of the Internet that is
based on evolutionary variational inequality theory. The motivation for this
research comes from several directions:

1. The need to develop a dynamic, that is, time-dependent, model of the In-
ternet, as argued, for example, by computer scientists (see Roughgarden
2005). For example, the demand for Internet resources itself is dynamic
and, hence, an underpinning modeling framework must be able to handle
time-dependent constraints. Indeed, as noted on page 10 of Roughgarden
(2005), “A network like the Internet is volatile. Its traffic patterns can change
quickly and dramatically ... The assumption of a static model is therefore
particularly suspect in such networks.”

2. Analogues have been identified between transportation networks and
telecommunication networks and, in particular, the Internet, in terms of
decentralized decision-making, flows and costs, and even the Braess para-
dox, which allows us to take advantage of such a connection (cf. Beckmann
et al. 1956; Beckmann 1967; Braess 1968; Dafermos and Sparrow 1969;
Dafermos 1972; Cantor and Gerla 1974; Gallager 1977; Bertsekas and Tsit-
siklis 1997; Bertsekas and Gallager 1987; Korilis et al. 1999; Boyce et al.
2005).

3. The development of a fundamental dynamic model of the Internet will
allow for the exploration and development of different incentive mecha-
nisms, including dynamic tolls and pricing mechanisms in order to reduce
congestion and also aid in the design of a better Internet, a dynamic net-
work, par excellence.

It has been shown (cf. Roughgarden 2005 and the references therein) that dis-
tributed routing, which is common in computer networks and, in particular, the
Internet, and “selfish” (or “source” routing in computer networks) routing, as
occurs in the case of user-optimized transportation networks, in which travel-
ers select the minimum cost route between an origin and destination, are one
and the same if the cost functions associated with the links that make up the
paths/routes coincide with the lengths used to define the shortest paths. In this
paper, we assume that the costs on the links are congestion-dependent, that
is, they depend on the volume of the flow on the link. Note that the cost on
a link may represent travel delay but we utilize “cost” functions since these
are more general conceptually than delay functions and they can include, for
example, tolls associated with pricing, etc. Of course, it is important to also
emphasize that, in the case of transportation networks, it is travelers that make
the decisions as to the route selection between origin/destination (O/D) pairs
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of nodes, whereas in the case of the Internet, it is algorithms, implemented in
software, that determine the shortest paths. Here we assume that these routing
algorithms are informed about the cost functions associated with the routes and
the volumes of flow on the routes/links in the network and select routes so as
to minimize cost. For additional background on telecommunication networks,
see Resende and Pardalos (2006).

The methodology that we will utilize for the formulation and analysis of the
Internet is that of evolutionary variational inequalities. We believe that such
a methodology is quite natural for several reasons. First, historically, finite-
dimensional variational inequality theory (cf. Dafermos 1980; Nagurney 1993,
and the references therein) has been used to generalize static transportation
network equilibrium models dating to the classic work of Beckmann, McGuire,
and Winsten (1956), which also forms the foundation for selfish routing and
decentralized decision-making on the Internet (see, e.g., Roughgarden 2005).
Secondly, there has been much research activity devoted to the development
of models for dynamic transportation problems and it makes sense to exploit
the connections between transportation networks and the Internet (see also
Nagurney and Dong 2002). In addition, evolutionary variational inequalities
(EVIs), which are infinite-dimensional, have been used to model a variety of
time-dependent applications, including time-dependent spatial price problems,
financial network problems, dynamic supply chains, and electric power networks
(cf. Daniele et al. 1999; Daniele 2003, 2004; Daniele 2006; Nagurney et al. 2006;
and Nagurney 2006).

In particular, evolutionary variational inequalities (EVIs) were introduced
in the 1960s by Brezis (1967) and Lions and Stampacchia (1967), and have been
used in the study of partial differential equations and boundary value problems.
They are part of the general theory of variational inequalities, which has devel-
oped today into a wide-spanning area of research with important applications
in control theory, optimization, game theory, operations research, economics,
and engineering, notably, in transportation science as well as in logistics (see,
for example, Smith 1979; Dafermos 1980; Florian and Los 1982; Dafermos and
Nagurney 1984; Nagurney 1989; Zhao and Dafermos 1991; Ran and Boyce 1996;
Nagurney and Siokos 1997; Nagurney 2006, and the references therein). The
form of EVI problem that we consider in this paper in a generalization of the
one introduced by Daniele et al. (1999) to the case of multiple classes of traffic.
We can expect that a variety of time-dependent demand structures will occur
on the Internet as individuals seek information and news online in response
to major events or simply go about their daily activities whether at work or at
home. Hence, the development of a dynamic network model of the Internet is
timely. The model that we propose can handle not only time-varying multiclass
demands but also time-varying capacities on the multiclass route flows. The
latter we can expect to be useful in the case of decreases in capabilities due to
network failures or imposed bounds on the Internet traffic on certain routes,
due, for example, to policy interventions by governments.

The structure of the paper is as follows. In Sect. 2 we present the evolutionary
variational inequality formulation of the Internet with a focus on the multiclass
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flows, multiclass costs, and equilibria. In particular, we consider that there are
different classes or “jobs” on the Internet and that the equilibrium conditions
are associated with each class. We also provide a numerical multiclass dynamic
network examples in which the equilibrium trajectories are computed. In Sect. 3
we illustrate the novelty of this framework in the context of a time-dependent
Braess (1968) paradox in which the corresponding evolutionary variational
inequalities are explicitly solved.

2 Evolutionary variational inequalities and the Internet

We model the Internet as a network G = [N, L], consisting of the set of nodes
N and the set of directed links L. The set of links L consists of nL elements.
The set of origin/destination (O/D) pairs of nodes is denoted by W and consists
of nW elements. We denote the set of routes (with a route consisting of links)
joining the origin/destination (O/D) pair w by Pw. We assume that the routes
are acyclic. We let P with nP elements denote the set of all routes connecting all
the O/D pairs in the Internet. Links are denoted by a, b, etc; routes by r, q, etc.,
and O/D pairs by w1, w2, etc. We assume that the Internet is traversed by “jobs”
or “classes” of traffic and that there are K “jobs” with a typical job denoted
by k.

Let dk
w(t) denote the demand, that is, the traffic generated, between O/D

pair w at time t by job class k. The flow on route r at time t of class k, which is
assumed to be nonnegative, is denoted by xk

r (t) and the flow on link a of class k
at time t by f k

a (t).
Since the demands over time are assumed known, the following conservation

of flow equations must be satisfied at each t:

dk
w(t) =

∑

r∈Pw

xk
r (t) ∀w ∈ W, ∀k, (1)

that is, the demand associated with an O/D pair and class must be equal to the
sum of the flows of that class on the routes that connect that O/D pair. We
assume that the traffic associated with each O/D pair is divisible and can be
routed among multiple routes/paths. Also, we must have that

0 ≤ xk
r (t) ≤ µk

r (t) ∀r ∈ P, ∀k, (2)

where µk
r (t) denotes the capacity on route r of class k at time t.

We group the demands at time t of classes for all the O/D pairs into the
KnW-dimensional vector d(t). Similarly, we group all the class route flows at
time t into the KnP-dimensional vector x(t). The upper bounds/capacities on
the routes at time t are grouped into the KnP-dimensional vector µ(t).



The Internet 359

The link flows are related to the route flows, in turn, through the following
conservation of flow equations:

f k
a (t) =

∑

r∈P

xk
r (t)δar ∀a ∈ L, ∀k, (3)

where δar = 1 if link a is contained in route r, and δar = 0, otherwise. Hence,
the flow of a class on a link is equal to the sum of the flows of the class on routes
that contain that link. All the link flows at time t are grouped into the vector
f (t), which is of dimension KnL.

The cost on route r at time t of class k is denoted by Ck
r (t) and the cost on a

link a of class k at time t by ck
a(t).

For the sake of generality, we allow the cost on a link to depend upon the
entire vector of link flows at time t, so that

ck
a(t) = ck

a(f (t)) ∀a ∈ L, ∀k. (4)

In view of 3, we may write the link costs as a function of route flows, that is,

ck
a(x(t)) ≡ ck

a(f (t)) ∀a ∈ L, ∀k. (5)

Of course, one special case of (4) would include separable link cost functions
in which the cost on a link of a class depends only upon the flow on that link of
that class.

The costs on routes are related to costs on links through the following equa-
tions:

Ck
r (x(t)) =

∑

a∈L

ck
a(x(t))δar ∀r ∈ P, ∀k, (6)

that is, the cost on a route of class k at a time t is equal to the sum of costs on
links of that class that make up the route at time t. We group the route costs
at time t into the vector C(t), which is of dimension KnP. Note that the form
of (6) also allows such cases as separable route cost functions in which the cost
on a route of a class depends only upon the flow of traffic of that class on that
route. Furthermore, (6) captures the case in which the cost on a route of a class
depends on the total volume of traffic on a route expressed as the sum of the
flows of all classes on that route (as well as the sums of flows of the classes on
other route(s)).

We now define the feasible set K. We consider the Hilbert space L =
L2([0, T] , RKnP) (where [0, T] denotes the time interval under consideration)
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given by

K =
{

x ∈ L2([0, T] , RKnP) : 0 ≤ x(t) ≤ µ(t) a.e. in [0, T];
∑

p∈Pw

xk
p(t) = dk

w(t)∀w, ∀k a.e. in [0, T]
}

. (7)

We assume that the capacities µk
r (t), for all r and k, are in L, and that the

demands, dk
w ≥ 0, for all w and k, are also in L. Further, we assume that

0 ≤ d(t) ≤ �µ(t) a.e. on [0, T], (8)

where � is the KnW × KnP-dimensional O/D pair-route incidence matrix, with
element (kw, kr) equal to 1 if route r is contained in Pw, and 0, otherwise. Here
we assume that all classes can use all the routes. (If there are restrictions then
the matrix � can be adapted accordingly.) Due to (8), the feasible set K is
nonempty. It is easily seen that K is also convex, closed, and bounded. Note
that we are not restricted as to the form that the time-varying demands for the
O/D pairs take since convexity of K is guaranteed even if the demands have a
step-wise structure, or are piecewise continuous.

The dual space of L will be denoted by L∗. On L×L∗ we define the canonical
bilinear form by

〈〈G, x〉〉 :=
T∫

0

〈G(t), x(t)〉dt, G ∈ L∗, x ∈ L. (9)

Furthermore, the cost mapping C : K → L∗, assigns to each flow trajectory
x(·) ∈ K the cost trajectory C(x(·)) ∈ L∗.

We are now ready to state the dynamic multiclass network equilibrium con-
ditions governing the Internet, assuming shortest path routing. In particular,
we assume that the traffic associated with each O/D pair and class is selfishly
routed to minimize the cost incurred for each class, given the other flows in
the network, and subject to the capacity constraints. These conditions are a
generalization of the Wardrop (1952) first principle of traffic behavior (see also,
e.g., Beckmann et al. 1956; Dafermos and Sparrow 1969; Dafermos 1972, 1982;
Nagurney 1993) to include multiple classes, the time dimension, and capacities
on the route flows. Of course, if the capacities are very large and exceed the
demand for a class at each t, then the upper bounds are never attained by the
route flows and the conditions below will collapse, in the case of fixed time t, to
the well-known multiclass static network equilibrium conditions (see Dafermos
1972, 1982 and the references therein).

Definition 1 (Dynamic multiclass network equilibrium) A multiclass route flow
pattern x∗ ∈ K is said to be a dynamic network equilibrium (according to the
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generalization of Wardrop’s first principle) if, at each time t, only the minimum
cost routes for each class not at their capacities are used (that is, have positive flow)
for each O/D pair unless the flow of that class on a route is at its upper bound
(in which case those class routes’ costs can be lower than those on the routes
not at their capacities). The state can be expressed by the following equilibrium
conditions which must hold for every O/D pair w ∈ W, every route r ∈ Pw, every
class k; k = 1, . . . , K, and a.e. on [0, T]:

Ck
r (x∗(t)) − λk∗

w (t)

⎧
⎨

⎩

≤ 0 if xk∗
r (t) = µk

r (t),
= 0 if 0 < xk∗

r (t) < µk
r (t),

≥ 0 if xk∗
r (t) = 0.

(10)

Hence, conditions (10) state that all utilized routes not at their capacities
connecting an O/D pair have equal and minimal costs at each time t in [0, T],
where that minimal cost is denoted by λk∗

w (t). If a route flow of a class is at its
capacity then its cost can be lower than the minimal cost for that O/D pair and
class. Of course, if we have that µk

r = ∞, for all routes r ∈ P and classes k;
k = 1, . . . , K, then the dynamic equilibrium conditions state that all used routes
connecting an O/D pair of nodes for a given class have equal and minimal route
costs at each time t. For fixed t, the latter conditions coincide with a multi-
class version of Wardrop’s first principle (see Dafermos 1972, 1982) governing
static transportation network equilibrium problems. Note that this concept, but
in the case of a single class, has also been applied to static models of the In-
ternet (cf. Roughgarden (2005) and the references therein). We note that El
Azouzi (2002) proposed a multiclass network equilibrium model for telecom-
munications (including the Internet) but the model is subsumed by the model
of Dafermos (1982). In addition, that model was static. Here, (10) includes the
time dimension.

The standard form of the EVI that we work with is

determine x∗ ∈ K such that 〈〈F(x∗), x − x∗〉〉 ≥ 0 ∀x ∈ K. (11)

We now establish the following theorem.

Theorem 1 x∗ ∈ K is an equilibrium flow according to Definition 1 if and only
if it satisfies the evolutionary variational inequality:

T∫

0

〈C(x∗(t)), x(t) − x∗(t)〉dt ≥ 0 ∀x ∈ K. (12)

Proof We first prove that equilibrium conditions (10) imply the evolutionary
variational inequality (12).



362 A. Nagurney et al.

Assume that (10) holds. Then

K∑

k=1

∑

w∈W

∑

r∈Pw

Ck
r (x∗(t))(xk

r (t) − xk∗
r (t))

=
K∑

k=1

∑

w∈W

⎛

⎜⎜⎝
∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

Ck
r (x∗(t))xk

r (t)+
∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

Ck
r (x∗(t))(xk

r (t) − xk∗
r (t))

+
∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

Ck
r (x∗(t))(xk

r (t) − µk
r (t))

⎞

⎟⎟⎠

≥
K∑

k=1

∑

w∈W

⎛

⎜⎜⎝
∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

λk∗
w (t)(xk

r (t) − xk∗
r (t))+λk∗

w (t)
∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

(xk
r (t) − xk∗

r (t))

+
∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

Ck
r (x∗(t))(xk

r (t) − µk
r (t))

⎞

⎟⎟⎠

≥
K∑

k=1

∑

w∈W

⎛

⎜⎜⎝λk∗
w (t)

∑

r∈Pw
Ck

r (x∗(t))>λk∗
w (t)

(xk
r (t)−xk∗

r (t)) + λk∗
w (t)

∑

r∈Pw
Ck

r (x∗(t))=λk∗
w (t)

(xk
r (t) − xk∗

r (t))

+ λk∗
w (t)

∑

r∈Pw
Ck

r (x∗(t))<λk∗
w (t)

(xk
r (t) − xk∗

r (t))

⎞

⎟⎟⎠

=
K∑

k=1

∑

w∈W

λk∗
w (t)

∑

r∈Pw

(xk
r (t) − xk∗

r (t))=0 a.e in [0, T]. (13)

Hence, (12) is verified.
We now establish that (12) implies (10). The proof is by contradiction.
First of all let us remark that conditions (10) imply:

∀k, ∀w ∈ W, ∀q, s ∈ Pw if Ck
q(x∗(t)) < Ck

s (x∗(t))

then xk∗
q (t) = µk

q(t) or xk∗
s (t) = 0.

In fact:

1. if Ck
q(x∗(t)) ≥ λk∗

w (t), then Ck
s (x∗(t)) > λk∗

w (t) and xk∗
s (t) = 0;
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2. if Ck
q(x∗(t)) < λk∗

w (t) ≤ Ck
s (x∗(t)), then xk∗

q (t) = µk
q(t);

3. if Ck
q(x∗(t)) < Ck

s (x∗(t)) < λk∗
w (t), then xk∗

q (t) = µq(t).

Assume now that equilibrium conditions (10) do not hold. Then, there exists
a k, a w ∈ W, and routes q, s ∈ Pw together with a set E ⊆ [0, T] having positive
measure such that

Ck
q(x∗(t)) < Ck

s (x∗(t)), xk∗
q (t) < µk

q(t), xk∗
s (t) > 0 a.e. on E. (14)

For t ∈ E, let δ(t) = min{µk
q(t) − xk∗

q (t), xk∗
s (t)}. Then, δ(t) > 0 a.e. on E,

and we can construct x ∈ K, such that xk(t) = xk∗(t) outside E and xk
q(t) =

xk∗
q (t) + δ(t), xk

s (t) = xk∗
s (t) − δ(t), with xk

r (t) = xk
r (t), for r �= q, s. Substitution of

this feasible flow into 〈〈C(x∗), x − x∗〉〉 yields

〈〈C(x∗), x − x∗〉〉 =
∫

E

δ(t)(Ck
q(x∗(t)) − Ck

s (x∗(t)))dt < 0, (15)

but this is a contradiction to EVI (12) being satisfied. �

Remark 1 It is important to note that in the proof of Theorem 1 we have, in
effect, a dynamic version of the Nash equilibrium concept in that we show that
a positive reallocation of δ(t) of flow from one route to another of a given
class will result in a worsened route cost. For a survey of networking games
in telecommunications but in a static framework, see Altman et al. (2005).
Daniele et al. (1999) presented dynamic network equilibrium conditions for
transportation networks but considered only a single class of traffic. Here, we
state the dynamic equilibrium conditions in a manner that is more transparent
(cf. (10)), noting that the lower bounds on the route flows on the Internet will
be zero. In addition, we generalize the results of Daniele et al. (1999) to the
case of multiple classes. Finally, the equivalence proof for the EVI formulation
is slightly different from that contained in the previous reference, since here
we use the equilibrium conditions (10) directly, and also we now have multiple
classes of traffic.

We now, for completeness, provide some qualitative properties.

Theorem 2 (cf. Daniele et al. 1999; and Daniele 2006) If C in (12) satisfies any
of the following conditions:

1. C is hemicontinuous with respect to the strong topology on K, and there
exist A ⊆ K nonempty, compact, and B ⊆ K compact such that, for every
y ∈ K \ A, there exists x ∈ B with 〈〈C(x), y − x〉〉 < 0;

2. C is hemicontinuous with respect to the weak topology on K;
3. C is pseudomonotone and hemicontinuous along line segments,

then the EVI problem (12) admits a solution over the constraint set K.

Recall that C :→ L∗, where K is convex, is said to be
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Fig. 1 Network structure of
the multiclass numerical
example

pseudomonotone if and only if, for all x, y ∈ K,

〈〈C(x), y − x〉〉 ⇒ 〈〈C(y), x − y〉〉 ≤ 0;

hemicontinuous if and only if, for all y ∈ K, the function ξ �→ 〈〈C(ξ), y − ξ 〉 is
upper semicontinuous on K;
hemicontinuous along line segments if and only if, for all x, y ∈ K, the function
ξ �→ 〈〈C(ξ), y − x〉〉 is upper semicontinuous on the line segment [x, y].
Moreover, if C is strictly monotone, then the solution of (12) is unique (see,

e.g., Kinderlehrer and Stampacchia 1980).

2.1 A multiclass numerical example

We now present a small multiclass dynamic network equilibrium numerical
example.

Consider a network (small subnetwork of the Internet) consisting of two
nodes and two links as in Fig. 1. There is a single O/D pair w = (1, 2). Since the
routes connecting the O/D pair consist of single links we work with the routes
r1 and r2 directly as in Fig. 1.

There are assumed to be two classes/jobs and the route costs are:

for Class 1:

C1
r1

(x(t)) = 2x1
r1

(t) + x2
r1

(t) + 5, C1
r2

(x(t)) = 2x2
r2

(t) + 2x1
r2

(t) + 10,

for Class 2:

C2
r1

(x(t)) = x2
r1

(t) + x1
r1

(t) + 5, C2
r2

(x(t)) = x1
r2

(t) + 2x2
r2

(t) + 5.

The time horizon is [0, 10]. The demands for the O/D pair

d1
w(t) = 10 − t, d2

w(t) = t.

The upper bounds are: µ1
r1

= µ1
r2

= µ1
r1

= µ2
r2

= ∞.
To solve the associated evolutionary variational inequality, we utilize the

approach set forth in Cojocaru et al. (2005a,b), in which the time horizon T is
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Table 1 Equilibrium route flows for the multiclass numerical example

Equilibrium multiclass route flows at time t
Flow t = 0 t = 2.5 t = 5 t = 7.5 t = 10

x1∗
r1

(t) 6.25 6.25 5.00 2.50 0.00

x1∗
r2

(t) 3.75 1.25 0.00 0.00 0.00

x2∗
r1

(t) 0.00 0.00 1.6̄6 4.16̄6 6.6̄6

x2∗
r2

(t) 0.00 2.50 3.3̄3 3.3̄3 3.3̄3

discretized and the corresponding variational inequality (or, equivalently, pro-
jected dynamical system) at each discrete point in time is then solved. Due to
the simplicity of the network structure, we can easily obtain such solutions by
solving the equilibrium conditions (10) explicitly at the discrete time points.

Obviously, this procedure is correct if the continuity of the solution is guar-
anteed. Continuity results for solutions to evolutionary variational inequalities,
in the case where F(x(t)) = A(t)x(t) + B(t) is a linear operator, A(t) is a con-
tinuous and positive definite matrix in [0, T], and B(t) is a continuous vector
can be found in Barbagallo (2005). Of course, the examples could also be com-
puted via the computational procedure given in Daniele et al. 1999 but here we
utilize a time-discretization approach which also has intuitive appeal. In Table
1 we provide the equilibrium solutions for the multiclass network equilibrium
example at discrete points in time.

In Fig. 2, we provide a graph of the equilibrium route trajectories, where we
display also the interpolations between the discrete solutions given in Table 1.
Since the route cost functions are strictly monotone over the time horizon [0, 10]
we know that the equilibrium trajectories are unique. Moreover, as the theory
predicts, the trajectories are also continuous for this example. It is interesting
to see that after time t = 5 route r2 is never used by class 1, whereas route r1 is
not utilized for class 2 traffic until after t = 2.

For completeness, we also provide the following class O/D pair minimum
costs at times t = 0, 2.5, 5, 7.5 and 10:

λ1∗
w (0) = 17.50, λ1∗

w (2.5) = 17.50, λ1∗
w (5) = 16.6̄6, λ1∗

w (7.5) = 14.16̄6,

λ1∗
w (10) = 11.6̄6

and

λ2∗
w (0) = 8.75, λ2∗

w (2.5) = 11.25, λ2∗
w (5) = 11.6̄6, λ2∗

w (7.5) = 11.6̄6,

λ2∗
w (10) = 11.6̄6.

Remark 2 It is easy to verify that if the first cost term in Cr1 is changed from
“2” to “1” then there are multiple equilibria.
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Fig. 2 Equilibrium trajectories for the multiclass numerical example

3 Evolutionary variational inequalities and the Braess paradox

We further reinforce the elegance and power of the evolutionary variational
inequality model for the Internet as we revisit the Braess (1968) paradox (see
also, Boyce et al. 2005; Braess et al. 2005). Examples of the Braess paradox, orig-
inally formulated for transportation networks, have occurred in cities such as
New York as well as Stuttgart. In addition, the Braess paradox has been noted
to occur not only in transportation networks but also in telecommunication
networks, including the Internet.

Recall that in the Braess paradox, which is an example of a fixed demand
network equilibrium problem, the addition of a new link, which yields a new
route, makes all the “users” in the network worse off. As emphasized in Korilis
et al. (1999), this is also relevant to the Internet. We present an evolution-
ary variational inequality formulation which deepens the understanding of the
Braess paradox and also illustrates dramatically the importance of time-varying
demands and the associated equilibrium flows and costs in what are increasingly
becoming known as noncooperative networks. We assume, hence, that there is
a single class k and we supress the superscript k in the notation below.

3.1 The time-dependent Braess paradox

Assume a network as the first network depicted in Fig. 3 in which there are four
nodes: 1, 2, 3, 4; four links: a, b, c, d; and a single O/D pair w = (1, 4). There are,
hence, two routes available between this O/D pair: r1 = (a, c) and r2 = (b, d).

The networks given in Fig. 3 are due to Braess (1968). We now construct
time-dependent link costs, route costs, and demand for t ∈ [0, T]. It is impor-
tant to emphasize that the case where time t is discrete, that is, t = 0, 1, 2, . . . , T,
is trivially included in the equilibrium conditions (10) and also captured in the
evolutionary variational inequality formulation (12).
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Fig. 3 The time-dependent Braess network example with relevance to the Internet

We consider, to start, the first network in Fig. 3, consisting of links: a, b, c, d.
We assume that the capacities µr1(t) = µr2(t) = ∞ for all t ∈ [0, T]. The link
cost functions are assumed to be given and as follows for time t ∈ [0, T]:

ca(fa(t)) = 10fa(t), cb(fb(t)) = fb(t) + 50,

cc(fc(t)) = fc(t) + 50, cd(fd(t)) = 10fd(t).

We assume a time-varying demand dw(t) = t for t ∈ [0, T].
Observe that at time t = 6, dw(6) = 6, and it is easy to verify that the

equilibrium route flows at time t = 6 are

x∗
r1

(6) = 3, x∗
r2

(6) = 3,

the equilibrium link flows are

f ∗
a (6) = 3, f ∗

b (6) = 3, f ∗
c (6) = 3, f ∗

d (6) = 3,

with associated equilibrium route costs:

Cr1(6) = ca(6) + cc(6) = 83, Cr2 = cb(6) + cd(6) = 83,

and, hence, equilibrium condition (10) is satisfied for time t = 6. This is the
solution to the classical (static) Braess (1968) network without the route addi-
tion.

We now construct and solve EVI (12) for the dynamic network equilibrium
problem over t ∈ [0, T]. We first express the route costs in terms of route flows
for Network 1 in Fig. 3, where we have that, because of the conservation of flow
equations (3), fa(t) = fc(t) = xr1(t) and fb(t) = fd(t) = xr2(t). That is, we must
have that

Cr1(t) = 11xr1(t) + 50, Cr2(t) = 11xr2(t) + 50,
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with the route conservation of flow equations 1 yielding:

dw(t) = t = xr1(t) + xr2(t),

and, hence, we may write

xr2(t) = t − xr1(t).

Similarly, we must have, because of the feasible set K (cf. (7)), the simplicity
of the network topology, and the cost structure, that

x∗
r1

(t) = x∗
r2

(t). (16)

Hence, we may write EVI (12) for this problem as: determine x∗ ∈ K satisfying

T∫

0

(11x∗
r1

(t) + 50) × (xr1(t) − x∗
r1

(t)) + (11x∗
r2

(t) + 50)

×(xr2(t) − x∗
r2

(t))dt ≥ 0 ∀x ∈ K, (17)

which, in view of (16), can be expressed as

T∫

0

(11x∗
r1

(t) + 50) × (xr1(t) − x∗
r1

(t)) + (11(t − x∗
r1

(t))).

×(xr1(t) − x∗
r1

(t))dt ≥ 0 ∀x ∈ K, (18)

which, after algebraic simplification, is

T∫

0

(22x∗
r1

(t) − 11t) × (xr1(t) − x∗
r1

(t))dt ≥ 0 ∀x ∈ K. (19)

But, (19) implies that

22x∗
r1

(t) = 11t for t ∈ [0, T]

or

x∗
r1

(t) = t
2

.

Hence, we also have that x∗
r2

(t) = t
2

.
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Moreover, the equilibrium route costs for t ∈ [0, T] are given by

Cr1(x
∗
r1

(t)) = 5
1
2

t + 50 = Cr2(x
∗
r2

(t)) = 5
1
2

t + 50,

and, clearly, equilibrium conditions (10) hold for ∈ [0, T] a.e.
Assume now that, as depicted in Fig. 3, a new link “e”, joining node 2 to

node 3 is added to the original network, with cost ce(fe(t)) = fe(t) + 10 for
t ∈ [0, T]. The addition of this link creates a new route r3 = (a, e, d) that is
available for the Internet traffic. Assume that the time-varying demand is still
given by dw(t) = t. Note, that for t = 6, for example, the original equilibrium
flow distribution pattern xr1(6) = 3 and xr2(6) = 3 is no longer an equilibrium
pattern, since at this level of flow the cost on route r3, Cr3(6) = 70. Hence, the
traffic from routes r1 and r2 would be switched to route r3.

The equilibrium flow pattern at time t = 6 on the new network (which would
correspond to the classic Braess paradox in a static network equilibrium setting)
is

x∗
r1

(6) = 2, x∗
r2

(6) = 2, x∗
r3

(6) = 2,

with equilibrium link flows:

f ∗
a (6) = 4, f ∗

b (6) = 2, f ∗
c (6) = 2, f ∗

e (6) = 2, f ∗
d (6) = 4,

and with associated equilibrium route costs:

Cr1(6) = 92, Cr2(6) = 92, Cr3(6) = 92.

Indeed, one can verify that any reallocation of the route flows would yield a
higher cost on a route.

Note that, with the route addition, the cost at time t = 6 increased for every
“user” of the network from 83 to 92 without a change in the demand or traffic
rate! This is the classical Braess paradox.

We now solve the evolutionary variational inequality problem 12 for the sec-
ond network in Fig. 3 over the time interval [0, T] to create the time-dependent
Braess paradox.

We may write the route costs for the second network (after the route addi-
tion) in Fig. 3 as a function of the time-dependent route flows, that is,

Cr1(x(t)) = 11xr1(t) + 10xr3(t) + 50, Cr2(x(t)) = 11xr2(t) + 10xr3(t) + 50,

and

Cr3(x(t)) = 10xr1(t) + 21xr3(t) + 10xr2(t) + 10.
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EVI (12) now takes the form: determine x∗ ∈ K (where K is now expanded
to include route r3; see (7)), so that

T∫

0

(11x∗
r1

(t) + 10x∗
r3

(t) + 50) × (xr1(t) − x∗
r1

(t)) + (11x∗
r2

(t) + 10x∗
r3

(t) + 50)

×(xr2(t) − x∗
r2

(t)) + (10x∗
r1

(t) + 21x∗
r3

(t) + 10x∗
r2

(t) + 10)

×(xr3 − x∗
r3

(t))dt ≥ 0 ∀x ∈ K. (20)

Because of the feasible set K, we must have that

xr3(t) = t − xr1(t) − xr2(t) and x∗
r3

(t) = t − x∗
r1

(t) − x∗
r2

(t). (21)

Substitution of (21) into (20), after algebraic simplification, yields

T∫

0

(x∗
r1

(t) − 11(t − x∗
r1

(t) − x∗
r2

(t)) − 10x∗
r2

(t) + 40) × (xr1(t) − x∗
r1

(t))

+(x∗
r2

(t) − 11(t − x∗
r1

(t) − x∗
r2

(t)) − 10x∗
r2

(t) + 40)

×(xr2(t) − x∗
r2

(t))dt ≥ 0 ∀x ∈ K. (22)

Now, since it is clear (because of the network topology and cost structure)
that x∗

r1
(t) = x∗

r2
(t) we can simplify EVI (22) further to

T∫

0

(13x∗
r1

(t) − 11t + 40) × ((xr1(t) + xr2(t)) − 2x∗
r1

(t))dt ≥ 0 ∀x ∈ K. (23)

We now analyze (23). In particular, we consider the term:

(13x∗
r1

(t) − 11t + 40) × (xr1(t) + xr2(t) − 2x∗
r1

(t)) (24)

for a fixed t and analyze when its value is greater than or equal to zero. We note
that if x∗

r1
(t) = 0, then for this term to be greater than or equal to zero, we must

have that −11t + 40 ≥ 0, or t ∈
[

0, 3
7

11

]
. We, hence, obtain that

x∗
r1

(t) = x∗
r2

(t) = 0, x∗
r3

(t) = t for t ∈
[

0, 3
7

11

]
. (25)

On the other hand, if x∗
r1

(t) > 0, we must consider the situation that either
x∗

r3
(t) is also greater than zero or it is equal to zero. We first consider the case
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that x∗
r3

(t) = 0. Then, we know that x∗
r1

(t) = x∗
r2

(t) = t
2

. Substitution of this

expression for x∗
r1

(t) into (24), states that this value is valid for t ∈
(

8
1
9

, ∞
)

.

In the range for t ∈
(

3
7

11
, 8

8
9

]
we obtain that

x∗
r1

(t) = x∗
r2

(t) = 11
13

t − 40
13

, x∗
r3

(t) = − 9
16

t + 43
8

. (26)

Remark 3 For both networks in Fig. 3, with the associated link and route cost
functions, it is easy to verify that the corresponding vector of route costs C(x)

is strictly monotone in route flows x, that is,

〈〈C(x1) − C(x2), x1 − x2〉〉 > 0 ∀x1, x2 ∈ K, x1 �= x2,

since the Jacobian of the route costs is strictly diagonally dominant at each t
and, thus, positive definite. Hence, the corresponding equilibrium route flow
solutions x∗(t) will be unique.

In summary, we have identified three regimes, denoted by I, II, and III,

respectively, and depicted in Fig. 4, where: for dw(t) = t ∈
[

0, t1 = 3
7

11

]

(Regime I):

x∗
r1

(t) = x∗
r2

(t) = 0, x∗
r3

(t) = dw(t) = t;

for dw(t) = t ∈
(

t1 = 3
7

11
, 8

8
9

]
(Regime II), we have that

x∗
r1

(t) = x∗
r2

(t) = 11
13

t − 40
13

, x∗
r3

(t) = − 9
16

t + 43
8

.

Finally, for dw(t) = t ∈
(

t2 = 8
8
9

, T < ∞
]

(Regime III), we have that

x∗
r1

(t) = x∗
r2

(t) = dr1(t)
2

= t
2

, x∗
r3

(t) = 0.

The curves of equilibria are depicted in Fig. 4.

Clearly, one can see from Fig. 4, that in the range
(

0, t1 = 3
7

11

]
, that is, in

Regime I (once the demand is positive), only the new route r3 would be used.

Hence, at a relatively low level of demand, up to a value of 3
7

11
, only the new

route is used. In the range of demands:
(

3
7

11
, 8

8
9

]
, that is, Regime II, all three
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Fig. 4 Equilibrium trajectories of the Braess network with time-dependent demands

routes are used, and in this range the Braess paradox occurs. Finally, once the

demand (recall that dw(t) = t here) exceeds 8
8
9

and we are in Regime III,

then the new route is never used! Thus, the use of an evolutionary variational
inequality formulation reveals that over time the Braess paradox is even more
profound and the addition of a new route may result in the route never being
used. Finally, if the demand lies within a particular range, then the addition of
a new route may result in everyone being worse off, since it results in higher
costs than before the route/link was added to the network.

In particular, the “classical” Braess paradox, in which the addition of the
route makes the “travel” cost higher for everyone, always occurs in Regime
II. In order to find the minimal demand at which the Braess paradox occurs,
we note that in the first network in Fig. 3, the demand will always equally dis-
tribute itself. Hence, on the original network, the equilibrium flow pattern on

each route would be given by
dw(t)

2
= t

2
for t ∈ [0, T] with a minimal route

cost over the horizon being, thus, equal to: 11
(

t
2

)
+ 50. Consider now, the

second network in Fig. 3. We know that in Regime I, only the new route would
be used, assuming shortest path routing, with the minimal route cost, hence,
being given by the expression in this range of demands as 21t + 10. Setting

now, 11
(

t
2

)
+ 50 = 21t + 10, and solving for t, which, is also in this problem

equal to the demand, dw(t), yields t = 2
18
31

= 2.58. For demand in the range

2.58 < dw(t) = t < 8
8
9

= 8.89, the addition of the new route will result in

everyone being worse off. See Fig. 5.
Pas and Principio (1997) obtained precisely this result but using a static

formulation and in the context of transportation networks. The evolutionary
variational inequality formulation provides a compact form for uncovering the
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Fig. 5 Minimum used route costs for Networks 1 and 2

time-dependent paradoxical results. Moreover, since the vector of route costs
is strictly monotone, as argued above, we know that the solution to the evo-
lutionary variational inequality (12) is unique and so the curve of equilibria is
unique, as depicted in Fig. 4. Furthermore, we can see, as the theory predicts,
that the equilibrium trajectories (cf. Fig. 4) are continuous.

Nagurney (2006) also presented this time-dependent Braess paradox but in
the context of dynamic transportation network equilibrium problems. Here, we
provide the complete, explicit, solution of the EVI formulations for Network
1 and for Network 2. Arnott et al. (1993), motivated by the Braess paradox,
presented a paradox in the context of a dynamic transportation network equi-
librium problem in which the routes are fixed but users decide when to travel,
and, hence, the demand is also dynamic. Their focus was, however, on queues
and expanding capacity in a particular network and did not make use of evolu-
tionary variational inequality theory.
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