
CMS (2007) 4:313–353
DOI 10.1007/s10287-006-0026-8

O R I G I NA L PA P E R

Solving two-stage stochastic programming problems
with level decomposition

Csaba I. Fábián · Zoltán Szőke

Published online: 22 August 2006
© Springer-Verlag 2006

Abstract We propose a new variant of the two-stage recourse model. It can
be used e.g., in managing resources in whose supply random interruptions may
occur. Oil and natural gas are examples for such resources. Constraints in the
resulting stochastic programming problems can be regarded as generalizations
of integrated chance constraints. For the solution of such problems, we propose
a new decomposition method that integrates a bundle-type convex program-
ming method with the classic distribution approximation schemes. Feasibility
and optimality issues are taken into consideration simultaneously, since we
use a convex programming method suited for constrained optimization. This
approach can also be applied to traditional two-stage problems whose recourse
functions can be extended to the whole space in a computationally efficient
way. Network recourse problems are an example for such problems. We report
encouraging test results with the new method.

Keywords Stochastic recourse models · Decomposition ·
Successive approximation

Mathematics Subject Classification 90C15 Stochastic programming

C. I. Fábián (B)
Department of Operations Research, Loránd Eötvös University of Budapest, P.O. Box 120,
Budapest 1518, Hungary
e-mail: fabian@cs.elte.hu

Z. Szőke
Doctoral School in Applied Mathematics, Loránd Eötvös University of Budapest, Budapest,
Hungary

314 C. I. Fábián, Z. Szőke

0 Introduction

In this paper, we identify classes of two-stage recourse problems where the
expected recourse function can be extended to the whole space in a compu-
tationally efficient way. Network recourse problems constitute such a problem
class. Two-stage recourse problems belonging to such classes can be formu-
lated as constrained convex programming problems. This formulation is called
standard model in the paper.

We also propose a new variant of the two-stage recourse model. Called
relaxed model in the paper, this can be regarded as a generalization of the well-
known integrated chance constrained model of Klein Haneveld (1986). We also
give economic interpretations of the relaxed model. One of them substantially
differs from traditional two-stage recourse models. It deals with the design and
operation of a system that consumes certain resources in whose supply random
interruptions may occur.

For the above models, we propose a new solution method that we call Level
Decomposition. The method consists of two known components:

• The first component is an approximative version of the Constrained Level
Method of Lemaréchal et al. (1995). The approximative method was pro-
posed by Fábián (2000).

• The second component involves the classic discretization and bounding
methods worked out by Kall (1980), Kall and Stoyan (1982), and Birge and
Wets (1986).

The novelty of Level Decomposition is the way these two components are inte-
grated, and the fact that the master problem is solved by a convex programming
method suited for constrained optimization.

In a typical implementation of the traditional solution framework, the main
module is the distribution approximation scheme, and the submodule is the
two-stage stochastic problem solver. To what extent the approximation should
be refined between solver calls, is a difficult question, to which Mayer (1998)
proposed a heuristic method. In Level Decomposition, the main module is the
solver, and the approximating coarse distributions are refined in accordance
with the solution process of the master problem.

Using a convex programming method suited for constrained optimization
means that feasibility and optimality issues are taken into consideration simul-
taneously. The bundle-type regularization extends to both feasibility and opti-
mality issues. We avoid feasibility cuts that are constituents of the Benders
family of solution methods.

We report encouraging test results with Level Decomposition.
The paper is organized as follows

In the remaining part of this section we outline the traditional two-stage
recourse model, and the classic decomposition methods used for its solution.
Section 1 formulates two-stage recourse models and new variants.

Solving two-stage stochastic programming problems 315

Section 2 describes the inexact convex programming method to be used in the
decomposition. Section 3 gives an algorithmic description of Level Decom-
position.
Section 4 deals with implementation issues. Test problems are described and
parameter settings specified in Section 5. Test results are reported in section 6.
The results of the paper are summarized and potential fields of application
are suggested in section 7.

The models and the solution method proposed in this paper were worked out
by the first author. The method was implemented and tested with joint effort of
the authors.

0.1 The traditional two-stage recourse model and the classic decomposition
methods

Two-stage stochastic programming problems derive from such models where
decisions are made in two stages and the observation of some random event
takes place in between. Hence the first decision must be made when the out-
come of the random event is not yet known. For example, the first stage may
represent the decision on the design of a system; and the second stage, a deci-
sion on the operation of the system under certain circumstances. The aim may
be to find a balance between investment cost and long-term operation costs.
Comprehensive treatment of these models and their solution methods can be
found in Kall and Wallace (1994), Prékopa (1995), Birge and Louveaux (1997),
Mayer (1998), Ruszczyński and Shapiro (2003), and Kall and Mayer (2005).

In case the random parameters do not have a finite distribution, discretiza-
tion methods are applied to make the problem tractable for solvers. Description
of these methods can be found in the above-mentioned books, a practical and
comprehensive one in Mayer (1998). Although these methods were originally
devised for the discrete approximation of a continuous distribution, they can as
well be applied to approximate a discrete distribution with a coarser one. Mayer
successfully applied discretization methods for this purpose. In the context of
discrete finite distributions, the possible outcomes of the random events are
called scenarios.

In this paper we consider linear models. There are two traditional ways of
formulating the problem as a mathematical programming problem:

(a) as a linear programming problem of a specific structure: For each scenario,
a subproblem is included that describes the second-stage decision in case
this scenario realizes. These subproblems are called recourse problems.
The subproblems are linked by the first-stage variables, i.e., the variables
representing the first-stage decision.

(b) as a convex programming problem on the first-stage variables. Recourse
problems are not explicitly included, but feasibility of the recourse prob-
lems is enforced by cuts on the feasible region. The objective function is
not known explicitly, but supporting hyperplanes can be constructed to its
graph.

316 C. I. Fábián, Z. Szőke

The above two formulations are equivalent from a mathematical point of view.
They only differ in that they suggest (apparently) different solution approaches.
Dantzig and Madansky (1961) observed that the dual of the linear programming
problem (a) fits the prototype for the Dantzig–Wolfe decomposition (Dantzig
and Wolfe 1960). Based on the convex programming (b) formulation, Van Slyke
and Wets (1969) worked out a cutting-plane method called L-shaped Method.
It turned out to be the same as the Benders (1962) decomposition method, spe-
cialized for the linear programming problem (a). Hence the L-shaped Method
on the one hand, and the Dantzig–Wolfe decomposition applied to the dual of
the problem (a) on the other hand, are identical methods. The cutting-plane
formulation has the advantage that it gives a clear visual impression of the
procedure.

In their pure forms, decomposition or cutting-plane methods are impractical:
they are known to be unstable, the convergence is slow, and hence the number
of the master iterations is large. Implementations must deal with a constantly
growing master problem. (There is no effective constraint reduction strategy,
because the master problem tends to be dual degenerate.) Several stochastic
programming decomposition methods were proposed to improve efficiency.
Practical descriptions can be found in Mayer (1998), Ruszczyński (2003), and
in Kall and Mayer (2005).

The Regularized Decomposition Method of Ruszczyński (1986) successfully
mitigates the above-mentioned difficulties. It is a bundle-type method for the
minimization of the sum of polyhedral convex functions over a convex poly-
hedron. The bundle-type penalty term in the objective function of the master
problem stabilizes the procedure, and decreases the number of the iterations
required. Moreover, this method lays an emphasis on keeping the master prob-
lem of a tractable size. The penalty term in the objective function eliminates
dual degeneracy, and enables an effective constraint reduction strategy.

In the Regularized Decomposition Method, feasibility of the solution is
attained by imposing explicit constraints on the first-stage variables. These
constraints, called feasibility cuts, are constituents of the Benders family of
decomposition methods. Imposing feasibility cuts may cause the scope of opti-
mization to alternate between minimizing the objective function and finding a
solution that satisfies existing cuts.

Implementation strategies of the Regularized Decomposition (RD) Method
for two-stage stochastic problems are described by Ruszczyński and Świȩta-
nowski (1997). They implemented the method, and solved several problems,
each with a growing scenario set. Their test results show that the number of the
RD master iterations required is a slowly increasing function of the number of
the scenarios.

Inexact cuts represent another possibility of improvement on pure-form
decomposition methods. Inexact cuts were used by Szántai (1988) in a heuristic
scheme for the solution of probabilistic constrained stochastic programming
problems.

For two-stage stochastic programming problems with relatively complete
recourse, an inexact cut method was proposed by Zakeri et al. (2000).

Solving two-stage stochastic programming problems 317

(Relatively complete recourse means that no extra action is needed to enforce
feasibility of the recourse problems.) Before starting the procedure, they choose
a decreasing sequence of tolerances which converges to 0. In the i-th iteration,
the inexact cut is generated with a tolerance not larger then the i-th element
in the pre-set sequence. Zakeri et al. (2000) report substantial improvements
over the exact (pure) decomposition method. They did not apply any distri-
bution approximation scheme. Accuracy of the cuts was regulated through
decreasing the stopping tolerance for the linear programming solver used for
solving the recourse problems.

1 New variants of two-stage recourse models

The first-stage and second-stage decision vectors will be denoted by x ∈ IRn

and y ∈ IRs, respectively. The random event will be represented by the random
vector ξ . Realizations of ξ will be denoted by ξω (ω ∈ �). Formally, (�, A, P)
is a probability space. The probability distribution can be either continuous or
discrete.

There are two optimization problems to be solved. The second-stage prob-
lem or recourse problem is formulated by assuming that the first-stage decision
has been made, and the random event has been observed. Supposing that the
realization ξω has occurred (ω ∈ �), the recourse problem is

min qTy
subject to

Tωx + Wy = dω,
y ≥ 0,

(1)

where q ∈ IRs, dω ∈ IRr are given vectors, and Tω ∈ IRr×n, W ∈ IRr×s are
given matrices. Formally, d is a random vector, T is a random matrix ; and the
random vector ξ consists of the components of d and T.

Having fixed ω ∈ �, let Kω denote the set of those x vectors for which the
recourse problem (1) is feasible. This is a convex polyhedron that we assume
to be nonempty. For x ∈ Kω, let f (x, ξω) denote the optimal objective value
of the recourse problem (1). We assume that f (x, ξω) > −∞ (x ∈ Kω). Or
equivalently, we assume that the dual of the recourse problem is feasible:

max zT(dω − Tωx)
subject to

zTW ≤ qT .
(2)

Feasibility of the dual problem does not depend on x or ξ . The function f (. , ξω) :
Kω → IR is a polyhedral (i.e., piecewise linear) convex function.

Customary formulation prescribes that the second-stage problems should be
feasible for any realization of ξ . Formally, x should belong to the convex set
K := ⋂

ω∈� Kω. If the distribution is discrete finite then K is a polyhedron.

318 C. I. Fábián, Z. Szőke

The customary formulation of the first-stage problem that represents the first
decision, is as follows:

min cTx + IE (f (x, ξ))
subject to

Ax = b, x ≥ 0,
x ∈ K,

(3)

where c ∈ IRn, b ∈ IRm are given vectors, and A ∈ IRm×n is a given matrix.
This model is called a fixed recourse model, since the matrix W is not random.
Though a random q vector is also allowed generally. The model originates from
Dantzig (1955) and Beale (1955), and mathematical characterization was given
by Wets (1974).

In the present special case it is easy to see that the expectation in the objec-
tive exists and is finite, provided ξ has a finite expectation, which we assume
henceforth. F(x) := IE (f (x, ξ)) is called expected recourse function. This is a
convex function with the domain K.

In this paper we assume that the polyhedron X := {x | Ax = b, x ≥ 0} is
nonempty and bounded. Let us introduce auxiliary variables in the recourse
problems (1). The new variables are represented by the vector s = (s1, . . . , sr)

T.
We add a new term to the objective function which penalizes infeasibility. Here
w is a fixed (large) weight, and ‖s‖� is a norm of the auxiliary vector:

min qTy + w‖s‖�
subject to

Tωx + Wy + s = dω,
y ≥ 0.

(4)

In order retain linearity, we use either ‖s‖� = ‖s‖1 := |s1| + · · · + |sr| or
‖s‖� = ‖s‖max := max {|s1|, . . . , |sr|} .

The above problem is a generalization of the formulation proposed by
Prékopa (1995, chapter 12.10). Having formulated the recourse problem with
inequality constraints, Prékopa introduced non-negative slack variables, and
penalized them with different positive weights. Equation (4) is indeed a gen-
eralization: the equality constraints in (4) can be transformed into inequalities
by including negative unit vectors in W; and different penalties for different
slack variables can be expressed by row scaling. Prékopa observes that we get
an extension of the recourse function if the penalties are large enough, but he
does not examine the necessary magnitude. In the forthcoming standard model
formulation we will describe a sufficient condition.

Via equivalent linear programming formulations, it is easy to verify that the
dual of problem (4) takes the form

max zT(dω − Tωx)
subject to
zTW ≤ qT,
‖z‖�	 ≤ w,

(5)

Solving two-stage stochastic programming problems 319

where the norm ‖ ‖�	 depends on the selection of the norm ‖ ‖� in (4): for
‖ ‖� = ‖ ‖1 we have ‖ ‖�	 = ‖ ‖max ; and for ‖ ‖� = ‖ ‖max we have ‖ ‖�	 = ‖ ‖1 .
In the forthcoming discussion, we will consider problems (4) and (5) as linear
programming problems.

Problem (4) is feasible for any x ∈ IRn. Let fw(x, ξω) denote the optimal
objective value (possibly −∞). This is increasing in w. We show that the objec-
tive function is bounded if w is large enough: Let z denote a feasible solution
of (2) that we have assumed to exist. Let w := ‖z‖�	 . If we have w ≥ w then z
is a feasible solution of (5), providing a lower bound for the objective value of
(4). The bound w is easily computable and has a reasonable magnitude. In what
follows we assume that w ≥ w holds. Hence we have fw(x, ξω) > −∞ for any
x ∈ IRn.

fw(. , ξω) is a polyhedral convex function, and fw(x, ξω) ≤ f (x, ξω) holds for
any x ∈ Kω. Hence the expectation Fw(x) := IE (fw(x, ξ)) is a convex func-
tion, and Fw(x) ≤ F(x) holds for any x ∈ K. The constraint ‖z‖�	 ≤ w in (5)
implies that the function fw(. , ξω) is Lipschitz continuous with the constant
Cw‖Tω‖. (The multiplicator C depends only on the norm used and the dimen-
sion r.) Hence the expectation function Fw(x) is also Lipschitz continuous with
the constant Cw IE (‖T‖). Finiteness of IE (‖T‖) follows from ξ having a finite
expectation.

Let g(x, ξω) denote the measure of the inconsistency of the recourse problem,
defined as follows:

g(x, ξω) := min ‖s‖�
subject to

Tωx + Wy + s = dω,
y ≥ 0.

(6)

This problem has an optimal solution for any x ∈ IRn. g(. , ξω) is a non-negative
polyhedral convex function, and we have g(x, ξω) = 0 if and only if x ∈ Kω. By
considering the dual of (6) it is easy to see that g(. , ξω) is Lipschitz continu-
ous with the constant C‖Tω‖. Let G(x) := IE (g(x, ξ)) denote the expectation
of the inconsistency measure. Our assumptions assure finiteness of the expec-
tation. G(x) is a convex function, and Lipschitz continuous with the constant
C IE (‖T‖). Owing to the non-negativity of g(x, ξω), we have that x ∈ K is equiv-
alent to G(x) = 0. Instead of this equation we will use the further equivalent
constraint G(x) ≤ 0 that is more convenient in convex programming context.

We will consider two convex programming models.

1.1 Standard model

This is but a re-statement of the traditional two-stage linear stochastic program-
ming problem, which is only possible under the following assumption:

Assumption 1 The function fw(. , ξω) is an extension of f (. , ξω), i.e. fw(x, ξω) =
f (x, ξω) (x ∈ Kω) holds for each ω ∈ �.

320 C. I. Fábián, Z. Szőke

From Assumption 1 it follows that the function Fw is an extension of the
expected recourse function F. In this model, we will denote the extended func-
tions by f (. , ξω) and F, omitting subscripts. With this notation, the first-stage
problem (3) can be written in the following form:

min cTx + F(x)
subject to

x ∈ X,
G(x) ≤ 0.

(7)

In this model we assume that K ∩ X is not empty.
It is easy to verify that Assumption 1 holds for large enough w: Let

w := max ‖z‖�	

while z sweeps through the set of the feasible basic solutions of the system
zTW ≤ qT, i.e., of the constraint set of problem (2). (Basic solutions are defined
through first converting the system into an equality system by adding slack
variables.)

Proposition 2 Assumption 1 holds if we have w ≥ w.

Proof Given ω ∈ � and x ∈ Kω, the problem (2) has an optimal solution.
Hence an optimal basic solution also exists, let z� denote one of those.

Since we have ‖z�‖�	 ≤ w by the definition of w, it follows that z� is a feasible
solution of (5) for w ≥ w. Problem (5) being a tightened version of (2), z� is
also an optimal solution of (5). �	
w is not easily computed, but there are well-known upper bounds for the norm
of a basic feasible solution of a linear programming problem, see e.g. Schrijver
(1986). In general, these bounds are too large for practical applications. Though
in many special cases of practical interest, usable bounds can be computed for w:

• Combinatorial nature of the recourse problems can often be exploited. For
example, if we have a network recourse problem, then forthcoming Propo-
sition 3 gives a usable bound.

• If W is an integer matrix, then the bound given by Klafszky and Terlaky
(1992) will often be of a usable magnitude.

• If the matrix W contains only non-negative components, then a bound can
be constructed using the minimal nonzero element.

Proposition 3 If problem (1) is a network problem, and the norm ‖ ‖� = ‖ ‖1

is used, then we have w ≤ ‖q‖1 . In case the norm ‖ ‖� = ‖ ‖max is used, we have
w ≤ r‖q‖1 .

Proof Easily follows from the construction of the dual vector in the network
simplex method, see e.g. Kennington and Helgason (1980). �	

Solving two-stage stochastic programming problems 321

Remark 4 Assumption 1 does not generally make the constraint G(x) ≤ 0
redundant in problem (7). Although in case of a discrete finite probability dis-
tribution, this constraint indeed becomes redundant for large enough w, this
magnitude may be excessively large. Typically this is the case if we have a large
number of scenarios with small individual probabilities.

Remark 5 When we start solving a general problem, we may not know whether
the weight w has been set large enough. However, it is enough to check Assump-
tion 1 in an optimal solution:

Suppose that having set the penalty w by guess, we solved the problem

min cTx + Fw(x)
subject to

x ∈ X,
G(x) ≤ 0.

Let x� denote an optimal solution (entailing x� ∈ K).
Assume that fw(x�, ξω) = f (x�, ξω) holds for each ω ∈ �. It follows that

Fw(x�) = F(x�). Since we have Fw(x) ≤ F(x) (x ∈ K), it follows that x� is an
optimal solution of the original problem (3).

Checking Assumption 1 in a certain point causes no theoretical difficulty if
the distribution is finite discrete.

1.2 Relaxed model

The following convex programming problem is a relaxation of the traditional
two-stage linear stochastic programming problem:

min cTx + Fw(x)
subject to

x ∈ X,
G(x) ≤ �,

(8)

where � ≥ 0 is a given parameter (assumed to be large enough to make the
problem feasible).

Interpretation of the relaxed model depends on whether the following
assumption holds:

Assumption 6 For each ω ∈ � and x ∈ IRn, an optimal basic solution (y�, s�) of
problem (4) is also an optimal solution of problem (6).

It is easy to verify that Assumption 6 holds for large enough w: Given ω ∈ �,
let us consider the affine half-space

H := {
x ∈ IRn} × {

w ≥ w
} ⊂ IRn+1.

322 C. I. Fábián, Z. Szőke

(The bound w had been defined earlier to guarantee that problem (4) has an
optimal solution.) Given a basis B of problem (4), let FB denote the set of those
x vectors for which B is a feasible basis. FB is a closed convex polyhedron.
Similarly, let DB denote the set of those w ≥ w values for which B is a dual
feasible basis. DB is a closed interval (possibly infinite). B is an optimal basis
for (x, w) ∈ FB × DB. Problem (4) has an optimal solution, hence an optimal
basis exists, for any x ∈ IRn and w ≥ w. It follows that taking all bases into
consideration, the prism-like sets FB × DB cover the affine half-space H.

Since there are finitely many bases, there exists a bound w such that the ray
{w ≥ w} is disjunct from each finite interval DB. The affine half-space

{
x ∈ IRn} ×

{
w ≥ w

}
⊆ H

is covered exclusively by such prism-like sets FB × DB for which the interval
DB is infinite.

Though the set FB depends on ω, the set DB does not. It follows that the
bound w is the same for each ω ∈ �.

Proposition 7 Assumption 6 holds if we have w ≥ w.

Proof Given ω ∈ � and x ∈ IRn, let B� be such basis that FB� × DB� contains

the point
(
x, w

)
. Let (y�, s�) denote the basic solution belonging to B�.

Due to the selection of w, the prism-like set FB� × DB� contains the whole

ray {x} ×
{

w ≥ w
}

. Hence (y�, s�) is an optimal solution of (4) for any w ≥ w.

We show that (y�, s�) is also an optimal solution of problem (6). Indeed,
problems (4) and (6) have identical feasible sets. Let (y, s) be a feasible solu-
tion. Then

qTy − qTy� ≥ w
(‖s�‖� − ‖s‖�

)

holds for any w ≥ w. The left-hand side does not depend on w, hence the right-
hand side needs to be non-positive. �	
Although Assumption 6 is in general stronger than Assumption 1, we have

Proposition 8 Any number w, w > w is an appropriate selection for the bound w.

Proof The problems (4) and (5) are a primal-dual pair of linear programming
problems. For any such pair of problems, there is a natural one-to-one mapping
between the set of the bases of the primal problem, and the set of the bases of
the dual problem. We sketch the construction of this mapping.

In both problems, let us add a respective slack variable to each constraint.
The feasible interval of a slack variable is determined so that the corresponding
constraint will transform into equality. For a constraint originally in equality
form, we add a slack variable whose feasible interval consist of the single value
0. (A problem with slacks added this way is said to be in computational form

Solving two-stage stochastic programming problems 323

by Maros (2003b).) The column indexes originally existing in the problems are
called structurals as opposed to slacks.

There is a natural matching between primal slack indexes and dual structural
indexes. Similarly, there is a natural matching between primal structural indexes
and dual slack indexes.

Let B be a basis of the primal problem. Its natural pair B′ will be identified
by selecting a certain set of column indexes in the dual problem. Namely, B′
will contain those dual structural indexes that match primal slack indexes not
basic in B. Similarly, B′ will contain those dual slack indexes that match primal
structural indexes not basic in B.

B′ is indeed a basis of the dual problem: Let B and B′ denote the matrices
corresponding to B and B′, respectively (i.e., the square matrix B contains those
columns of the primal problem that are basic in B. The square matrix B′ contains
those columns of the dual problem that belong to B′) The common part of B
and B′ is a square submatrix that we denote by S. To be precise, S is a submatrix
of B, and ST is a submatrix of B′. The column indexes belonging to S are the
primal structural indexes that are basic in B. The row indexes belonging to S
in the primal problem are those whose respective slack variables are not basic
in B. Since B is not singular, it follows that S is not singular. From the latter, it
follows that B′ is not singular.

It is easily seen that B′ is a feasible basis of the dual problem if and only if B
is a dual feasible basis of the primal problem.

In the present case, w was defined in such a manner that problem (5) has the
same set of feasible bases for any w > w. (If the feasible domain of problem (2)
is unbounded, then the basic solutions belonging to the same feasible basis B′
for different w > w values, are represented by different points on the same ray
of the feasible domain.)

From the natural mapping of the bases, it follows that problem (4) has the
same set of dual feasible bases for any w > w. Hence the ray {w > w} is disjunct
from each finite interval DB. �	

Corollary 9 In case of network recourse problems, the bound given in Proposi-
tion 3 assures that Assumption 6 also holds.

Namely, any number w, w > ‖q‖1 is an appropriate selection for w, in case
the norm ‖ ‖� = ‖ ‖1 is used. And any number w, w > r‖q‖1 is an appropriate
selection in case the norm ‖ ‖� = ‖ ‖max is used.

In the remaining part of this section we show the relationship between the
relaxed model and the well-known and frequently used integrated chance con-
straints. Moreover we present interpretations of the relaxed model.

Relationship with integrated chance constraints. Assume that we have
W = −I, q = 0.

Having fixed ω ∈ �, the recourse problem (1) is feasible if and only if
Tωx ≥ dω holds (e.g., in a financial application, Tx could stand for the random
yield of a portfolio x which should at least meet a certain benchmark d).

324 C. I. Fábián, Z. Szőke

Let us use the norm ‖ ‖� = ‖ ‖max . The inconsistency measure g(x, ξω) defined
in (6) reduces to

g(x, ξω) :=
∥
∥
∥

[
dω − Tωx

]
+

∥
∥
∥

max

where []+ denotes the positive parts of the components of a real vector. Then

G(x) := IE
(∥

∥
∥

[
d − Tx

]
+

∥
∥
∥

max

)

represents the expected shortfall, and the constraint G(x) ≤ � is a joint-form
integrated chance constraint as defined by Klein Haneveld (1986). (We must
mention that in finance, the term expected shortfall is used in meanings differ-
ent from the above. Financial definitions involve an α-quantile and conditional
expectation.)

Remark 10 Since we have set q = 0, it follows that Assumption 6 obviously
holds for any w > 0, i.e., fw(x, ξω) = wg(x, ξω) holds for x ∈ IRn, ω ∈ �. It
follows that we have Fw(x) = wG(x) (x ∈ IRn).

Klein Haneveld examines two problems. The first is an integrated chance
constrained problem that he denotes by ICC3(�) and defines for � ≥ 0:

min cTx
subject to

x ∈ X,

IE
(∥

∥
∥

[
d − Tx

]
+

∥
∥
∥

max

)
≤ �.

The second is a recourse problem that Klein Haneveld denotes by L3(w) and
defines for w ≥ 0:

min cTx + wIE
(∥

∥
∥

[
d − Tx

]
+

∥
∥
∥

max

)

subject to
x ∈ X.

Klein Haneveld proves that the problems ICC3(�) and L3(w) are in a sense
equivalent for certain (�, w) pairs.

To establish the connection with the relaxed model, let us restrict our atten-
tion to the case w > 0. Our relaxed model incorporates both the integrated
chance constraint G(x) ≤ � occurring in ICC3(�); and the penalty term wG(x)
occurring in L3(w). (We have wG(x) = Fw(x) according to Remark 10.) The
equivalence established by Klein Haneveld implies that either the integrated
chance constraint or the penalty term may be redundant in this special form of
the relaxed model. Both may be needed, however, from a practical point of view.

Let us now return to the system design interpretation of the stochastic model.
The first-stage variables represent system design; and the second-stage variables

Solving two-stage stochastic programming problems 325

describe the operation of the system under certain circumstances. Here the aux-
iliary vector s represents external resources consumed by the system. The weight
w represents the unit price of these external resources. The interpretation of
the relaxed model depends on whether Assumption 6 holds.

Economic interpretation, expensive resources. Suppose that w is large and
hence Assumption 6 holds. Then the constraint G(x) ≤ � expresses a restriction
on the expected amount of external resources consumed. Such constraints can
be used to avoid over-dependence on certain resources. For example, in case
of modeling energy supplies of an economy, political aspects can be taken into
account.

Economic interpretation, cheap resources. Suppose that w is small and hence
Assumption 6 does not hold. (Even Assumption 1 may not hold.) Then the sys-
tem takes advantage of the low price of the external resources by consuming
more of them than inevitably required. This is the normal mode of operation,
described by the optimal solution of problem (4).

Suppose, however, that temporary shortages in external resources are
expected to occur from time to time. The system must remain operational
in case a temporary restriction on external resources should be imposed some-
time in the future. During shortages, the system switches to emergency operation
mode, described by an optimal solution of problem (6). The constraint G(x) ≤ �

expresses a restriction on the expected amount of external resources consumed
in emergency operation mode. The parameter � may depend on the estimated
lengths of shortages and on storage capacity, i.e., the magnitude of the reserve
of external resources that can be aggregated during periods of normal supply.

Operation costs of the normal mode are expressed by the term Fw(x). Emer-
gency operation mode is more expensive. (During a shortage, the system can
not take advantage of the low price of external resources.) Suppose, however,
that normal operation is possible in most of the time. Then the overall operation
cost remains Fw(x).

In this interpretation, (8) is not a ‘traditional’ two-stage recourse model.

Remark 11 In these latter economic models, both the parameter � and the
weight w are determined by factors outside the scope of the models. The weight
may be determined e.g., by market equilibrium.

Given a certain weight w, the decision maker needs to know whether the first
or the second interpretation is relevant. Let x� be an (approximate) optimal
solution offered by some solution process. If Assumption 6 holds in x�, then
the first interpretation is relevant.

Checking Assumption 6 in a certain point causes no theoretical difficulty if
the distribution is finite discrete.

2 The Level methods

The Level Method and the Constrained Level Method were proposed by
Lemaréchal et al. (1995). These are bundle-type methods that can be presented
in simple form, and proved very effective in practice. Fábián (2000) proposed

326 C. I. Fábián, Z. Szőke

inexact versions of these methods. First we sketch the exact methods, then de-
scribe the inexact versions. In order to avoid duplication, details will be given
in the second part.

The Level Method solves the problem

min φ(x)
subject to

x ∈ X,
(9)

where X ⊂ IRn is a convex bounded polyhedron, and φ a real-valued convex
function, Lipschitzian relative to X. This is an iterative method, a direct gen-
eralization of the classical cutting-plane method. A cutting-plane model of φ
is maintained using function values and subgradients computed at the known
iterates. This is the upper cover of the linear support functions drawn at the
known iterates. Hence this is a polyhedral convex lower approximation of φ.

The level sets of this model function are rather stable, and can be used for
regularization. The next iterate is obtained by projecting the current iterate
onto a certain level set of the current model function. (By projecting, we mean
finding the point of the level set closest to the current iterate.) Each iteration
requires the solution of a linear programming and a convex quadratic pro-
gramming problem. The linear problem determines the level set to be used for
regularization. The quadratic problem determines the projection of the current
iterate onto this level set.

A lower bound for the optimum of the problem (9) is obtained by minimiz-
ing the model function over X. An upper bound is, on the other hand, the best
function value found. The difference between the upper and lower bounds is
called the gap. Lemaréchal et al. prove the following efficiency estimate: To
obtain a gap smaller than ε, it suffices to perform

κ

(
D	
ε

)2

(10)

iterations, where D is the diameter of the feasible polyhedron, 	 is a Lipschitz
constant of φ, and κ is a constant that depends only on the parameter of the
algorithm.

The Constrained Level Method solves the problem

min φ(x)
subject to

x ∈ X,
ψ(x) ≤ 0,

(11)

where X ⊂ IRn is a convex bounded polyhedron, and φ,ψ are real-valued
convex functions, Lipschitzian relative to X. For the sake of simplicity of the
discussion we also assume that ψ is non-negative. (This can always be supposed

Solving two-stage stochastic programming problems 327

for non-differentiable problems.) Hence the last constraint in (11) actually
means ψ(x) = 0.

Let O� denote the optimal objective value of the above problem. If O� is
known in advance, then the quality of an approximate solution x ∈ X can be
measured by

e(x) = max
{
φ(x)− O�, ψ(x)

}
.

For example, e(x) = 0 means that x is optimal. The original problem is equiva-
lent to the convex problem

min e(x)
subject to

x ∈ X.
(12)

The Lagrangian dual of the above problem can be written as

max
0≤α≤1

h(α), (13)

where

h(α) = min
x∈X

α
(
φ(x)− O�

) + (1 − α)ψ(x).

The Constrained Level Method is an iterative method that maintains cutting-
plane models of φ and ψ . Using these model functions, a lower approximation
is computed for O�. Moreover, a cutting-plane model is constructed for the
dual objective function. This is a polyhedral concave upper approximation of
h. The maximum of this upper approximating function over the [0, 1] interval
is obviously an upper bound for the maximum of the dual problem (13). The
latter maximum is 0 from duality. Hence the aim is to direct the search for
new iterates in such a manner that the maximum of the upper approximating
function decreases beyond some preset stopping tolerance. If this is achieved,
then a near-optimal solution can be constructed.

The Constrained Level Method is a primal-dual method. Given a dual iterate
α ∈ [0, 1], the primal iterate x ∈ X is selected by applying an unconstrained-
Level-Method-type iteration to the convex function αφ + (1 − α)ψ . The dual
iterate is left unchanged as long as possible. Hence the Constrained Level
Method consists of runs of the Level Method.

The method requires no Slater assumption and the efficiency is not affected
by large Lagrange multipliers. Lemaréchal, Nemirovskii, and Nesterov prove
the following efficiency estimate: To obtain an ε-optimal solution (i.e. x� ∈ X
satisfying e(x�) ≤ ε), it suffices to perform

κ

(
D	
ε

)2

ln

(
D	
ε

)

(14)

328 C. I. Fábián, Z. Szőke

iterations, where D is the diameter of the feasible polyhedron, 	 is a common
Lipschitz constant of φ and ψ , and κ is a constant that depends only on the
parameters of the method.

Lemaréchal et al. report on successful application of the above methods to
a variety of problems. The experimental results suggest much better practical
behavior than the above estimates. Another factor of efficiency is the computa-
tional effort of a single iteration. As mentioned earlier, each iteration requires
the solution of a linear programming and a convex quadratic programming
problem. The current sizes of these problems depend on the size of the bundle,
i.e., on the amount of the information used to construct the current approxi-
mating models. For the unconstrained case, Lemaréchal et al. propose a bundle
reduction strategy that preserves the theoretical efficiency estimate of the Level
Method. (The cutting planes that are not active in the evaluation of the current
gap can be omitted after certain iterations.) Lemaréchal et al. also report on
the practical behavior of the reduction strategy. In their experiments, bundle
reduction caused no substantial increase in the number of iterations. Moreover,
the size of the bundle never exceeded 2n, where n is the dimension of the space
in which the optimization is performed. Although tests were made with the
Level Method, the results are instructive for the constrained case, because the
constrained method consists of runs of the unconstrained method.

The inexact methods only differ from the exact methods in the use of accu-
racy tolerances that we denote by δ. Let us consider the convex programming
problem (9), and assume that given a point x̌ ∈ X and some accuracy of δ > 0,
we can construct a linear function l satisfying

l ≤ φ and φ(x̌)− l(x̌) ≤ δ.

The gradient of this linear function is clearly a δ-subgradient of φ at x̌. (Basic
theory of approximate subgradients can be found in Lemaréchal (1982).) We
will say that l is a δ-support function of φ at x̌. Assume, moreover, that for any
possible x̌ and δ, our δ-support functions satisfy the Lipschitz condition with a
constant not depending on x̌ or δ.

The Inexact Level Method works in the following way. Suppose that given the
point x� and accuracy δ�, we constructed a δ�-support function l�(� = 1, . . . , k).
The cutting-plane model of φ is

φk(x) = max
1≤�≤k

l�(x) (x ∈ IRn).

A lower and an upper bound for the optimum is computed as

νk = min
x∈X

φk(x) and τk = min
1≤�≤k

φk(x�)+ δ�. (15)

The gap between the above bounds is �k = τk − νk.

Solving two-stage stochastic programming problems 329

Let 0 < λ < 1 be some preset parameter. The next iterate xk+1 is computed
by projecting the current iterate xk onto the level set {x | φk(x) ≤ νk + λ�k},
i.e., by the solution of the convex quadratic problem

min ‖x − xk‖2

subject to
x ∈ X,

φk(x) ≤ νk + λ�k.

(16)

The accuracy parameter for the next cutting plane is prescribed as δk+1 = γ�k,
where γ is a constant parameter satisfying 0 < γ < (1 − λ)2.

Fábián (2000) proved that the efficiency estimate (10) also holds for the
Inexact Level Method. (Only the constant κ is different from that of the exact
method, and depends on the parameters λ and γ .) The proof follows the steps
of the proof for the exact method: starting from x1, let us consider the maximal
sequence of iterations x1 → x2, . . . , xs−1 → xs, at the end of which the gap ‘has
not been reduced much’, i.e., the following inequalities hold:

(1 − λ)�1 ≤ �s , (1 − λ)�1 > �s+1 .

The iteration xs → xs+1 will be called critical. The above construction is
repeated starting from xs+1. Thus the iterations are grouped into finite se-
quences, and the sequences are separated with critical iterations. The number
of the sequences cannot be large: Consider the gap at the start of each se-
quence; these gaps are decreasing at an exponential rate (the quotient being
1−λ). Moreover, it turns out that each sequence has its respective stability cen-
ter; a feasible point towards which the iterates of this sequence are attracted.
This crucial property allows the computation of upper bounds on the lengths of
the sequences.

Remark 12 The method works as well with a more general selection of νk
instead of the minimum defined in (15). The efficiency estimate remains valid
if νk satisfies the following two requirements: νk ≤ τk, and φk(x̌) ≤ νk for some
x̌ ∈ X.

Let us now consider the constrained convex programming problem (11). The
Inexact Constrained Level Method works in the following way. Suppose that
given the point x� and the accuracy δ�, we constructed the δ�-support function
l� for φ; and l

�

� for ψ(� = 1, . . . , k). The cutting-plane models of φ and ψ will be

φk(x) = max
1≤�≤k

l�(x) and ψk(x) =
[

max
1≤�≤k

l
�

�(x)
]

+
(x ∈ IRn),

where [.]+ means the positive part of a real number. A lower approximation
for the optimum O� can be computed as

Ok = min { φk(x) | x ∈ X, ψk(x) ≤ 0 } .

330 C. I. Fábián, Z. Szőke

Moreover, a polyhedral concave upper approximating function of the dual
objective function h can be constructed as

hk(α) = min
1≤�≤k

α (φk(x�)+ δ� − Ok)+ (1 − α) (ψk(x�)+ δ�) (0 ≤ α ≤ 1).

Its maximum,
Hk = max

0≤α≤1
hk(α) (17)

is an upper bound for the maximum of the dual problem (13) that is 0. The aim is
to direct the search for new iterates in such a manner that Hk decreases beyond
some preset stopping tolerance ε > 0. If this is achieved, then a near-optimal
solution can be constructed in the form of a convex combination of former
iterates:

x� =
k∑

�=1

��x�. (18)

A viable convex combination can be found through the solution of the following
linear programming problem, the variables of which are �1, . . . , �k, and ϑ :

min ϑ

subject to
k∑

�=1

�� (φk(x�)+ δ�)− Ok ≤ ϑ ,

k∑

�=1

�� (ψk(x�)+ δ�) ≤ ϑ ,

k∑

�=1

�� = 1,

�1, . . . , �k ≥ 0.

The dual of the above problem is equivalent to the one-dimensional maximi-
zation problem (17). Hence in the optimal solution we have ϑ = Hk. From the
convexity of the feasible polyhedron X, and of the functions φ and ψ , it follows
that the convex combination (18) is near-optimal with the tolerance Hk, i.e.
e(x�) ≤ Hk.

The iterates are selected in the following way: first a dual iterate αk is
selected such that hk(αk) is ‘sufficiently close’ to Hk. Consider the interval
Ik = [αk,αk] ⊆ [0, 1] on which hk is non-negative. Let the subinterval Îk ⊂ Ik
be obtained by shrinking Ik towards its center with the factor (1 − µ), where
0 < µ < 1 is some preset parameter. Owing to the concavity of hk, it easily
follows that

hk(α) ≥ µ

2
Hk (19)

Solving two-stage stochastic programming problems 331

holds for any α ∈ Îk. Specifically, the dual iterate is selected as follows: let α1 be
the center of the interval I1. For k > 1, the dual iterate is left unchanged if pos-
sible, i.e., if the former iterate αk−1 falls into Îk, then let αk = αk−1. Otherwise
let αk be the center of the interval Ik.

After this, the primal iterate xk+1 is selected by applying an Inexact-Level-
Method-type iteration to the convex functionαkφ+(1−αk)ψ . For 1 ≤ � ≤ k, the
linear function αkl�+ (1−αk)l

�

� is a δ�-support function at x�. Hence αkφk + (1−
αk)ψk is an appropriate cutting-plane model ofαkφ+(1−αk)ψ . According to the
construction of the Inexact Level Method, we get τk = min1≤�≤k αkφk(x�)+(1−
αk)ψk(x�)+δ�. The lower level is selected specially as νk = αkOk. (The selection
is in accordance with Remark 12.) This gives the gap �k = τk − νk = hk(αk).
Hence the next primal iterate xk+1 will be the projection of the former iterate
xk onto the level set

{
x ∈ X

∣
∣ αkφk(x)+ (1 − αk)ψk(x) ≤ αkOk + λhk(αk)

}
.

The accuracy parameter for the next cutting plane is prescribed as δk+1 = γ�k,
where γ is a constant parameter satisfying 0 < γ < (1 − λ)2.

This procedure is iterated until the gap hk(αk) becomes small enough.
(Inequality (19) ensures that Hk decreases with the gap.) Since the dual iterate
is left unchanged as long as possible, the method consists of runs of the Inexact
Level Method.

Fábián (2000) proved that the efficiency estimate (14) also holds for the inex-
act method. (Only the constant κ is different from that of the exact method,
and depends on the parameters λ,µ and γ .)

By setting the tolerances δ to 0 in the above discussion, the reader gets a
description of the exact methods of Lemaréchal et al. The inexact methods
inherit the stability of the exact methods.

The bundle reduction technique proposed by Lemaréchal et al. can be
adapted to the constrained method. After critical iterations, we can omit the
cutting planes that are inactive in the computation of each of the following
objects: the current approximation Ok of the optimum, the current dual iterate
αk, and the current upper level τk. (After reduction, the size of the bundle
is at most n + 12.) This reduction strategy preserves the theoretical efficiency
estimates, but it is heuristic in the sense that there is no theoretical bound on
the size of the bundle between critical iterations.

The quadratic problems to be solved in course of the method are special ones.
Namely, they are least squares problems for which several numerically efficient
algorithms exist, see e.g. Björck (1996).

3 Level decomposition

We apply the Inexact Constrained Level Method to the standard model (7) and
to the relaxed model (8). The relevant convex programming problems can be
obtained by substituting

332 C. I. Fábián, Z. Szőke

φ(x) := cTx + F(x), ψ(x) := G(x), (20)

and
φ(x) := cTx + Fw(x), ψ(x) := [G(x)− �]+ , (21)

respectively, in the general constrained convex programming problem (11).
Function information of appropriate accuracy will be provided by an oracle to
be described in this section. In the case of the relaxed model, the parameters w
and � are assumed to be determined. Inexact function data means that given x̌,
we approximately compute the exact quantities Fw(x̌) and G(x̌)− �.

The framework of the method used for the solution of the master problem
is the following:

Initialize.
Set the stopping tolerance ε > 0.
Set the parameters λ,µ, and γ (0 < λ,µ < 1; 0 ≤ γ < (1 − λ)2).
Find a starting point x1 ∈ X.
Set the starting accuracy δ1 > 0.
Let k := 1 (iteration counter).

Update bundle.
Given the point xk and the accuracy δk,
call the oracle to construct the δk-support functions lk and l

�

k for φ and ψ ,
respectively.

Define the upper covers φk(x) := max
1≤�≤k

l�(x), ψk(x) :=
[

max
1≤�≤k

l
�

�(x)
]

+
.

Compute the lower approximation of the optimum
Ok := min {φk(x) | x ∈ X, ψk(x) ≤ 0} .
Define the function hk(α) := min

1≤�≤k
α(φk(x�)− Ok)+ (1 − α)ψk(x�)+ δ�,

and compute its maximum Hk := max
0≤α≤1

hk(α).

Check for optimality.
If Hk < ε, then near-optimal solution found;
compute best point according to (18), and stop.

Find dual iterate.
Determine the interval Ik = [αk,αk] ⊆ [0, 1] on which hk takes non-negative
values. Let |Ik| denote the length of Ik.
Compute αk:
• for i = 1, let α1 := 1

2 (α1 + α1),

• for i > 1, let αk :=
⎧
⎨

⎩

αk−1, if αk + µ
2 |Ik| ≤ αk−1 ≤ αk − µ

2 |Ik|,
1
2 (αk + αk), otherwise.

Find primal iterate.

Solving two-stage stochastic programming problems 333

Let xk+1 be the optimal solution of the convex quadratic programming prob-
lem

min ‖x − xk‖2

subject to
x ∈ X,

αkφk(x)+ (1 − αk)ψk(x) ≤ αkOk + λhk(αk).

Loop.
Let δk+1 := γhk(αk).
Increment k.
→Update bundle.

This method regularizes both feasibility and optimality issues. Moreover the
size of the master problems can be controlled by the bundle reduction tech-
nique described at the end of previous section1. The γ parameter controls the
accuracy prescribed for the oracle. (If we set γ = 0 in Initialization, then we get
the exact method.)

In the remaining part of this section, we deal with the operation of the ora-
cle. With the notations of the standard model, we describe the construction of
respective δ-support functions for the functions F(x) and G(x) at a given point
x̌. In the case of the relaxed model the procedure is the same, only the notation
differs: (21) needs to be used instead of (20).

Effort can be spared by two means: by approximation of the distribution, and
by approximate solution of the recourse problems. Both means are optional.
In fact the distribution can only be approximated under the dimensionality
assumption (22) to be formulated in the forthcoming subsection; however,
discretization is needed if the original distribution is continuous. If the repre-
sentation (22) does not hold, then a Sample Average Approximation (SAA)
scheme can be applied. Such schemes are mentioned in section 7.

We employ the two kinds of approximation in a proportion controlled by
the constant parameter 0 ≤ θ ≤ 1: with θ = 1, the original distribution is used
throughout; with θ = 0, the recourse problems are solved exactly. (The recourse
problems are solved using a linear programming method that returns a primal
feasible and a dual feasible solution with a duality gap less then δ̃ = θδ.)

3.1 Approximation of the distribution

In order to alleviate notation, we assume in this subsection that Tω = T (ω ∈ �)
holds. Since only the right-hand-side vector d is random, we have ξ ≡ d. We will
use the notation ξ . However, the forthcoming discussion can be easily extended
to allow a random T matrix.

1 Although we implemented this bundle reduction technique, it was never used in course of the
solution of our stochastic test problems. In our test runs, the number of the master iterations was
always much less then the number of the variables in the master problem. (Our test results are
reported in section 6.)

334 C. I. Fábián, Z. Szőke

We assume moreover that our random parameters can be traced back to
but a few random parameters. Namely, we assume that ξ linearly depends on a
low-dimensional random vector, i.e.,

ξω = Sηω (ω ∈ �), (22)

where S is an r × r̃-matrix, and ηω (ω ∈ �) are realizations of an r̃-dimensional
random vector η.

Nearness in the support of η can be exploited by applying the classic dis-
cretization and bounding methods of Kall (1980), Kall and Stoyan (1982), Bir-
ge and Wets (1986), Frauendorfer and Kall (1988), and Frauendorfer (1988).
Although these methods were originally devised for the discrete approxima-
tion of a continuous distribution, they can as well be applied to approximate a
discrete distribution with a coarser one. Mayer (1998) have successfully applied
discretization methods for this purpose.

Discretization and bounding methods partition the support of η into cells.
The weight of a cell C is defined as

pC := IP (η ∈ C) .

We assume there are no empty cells. The conditional expectation

FC(x) := IE (f (x, Sη) | η ∈ C) (23)

is considered as a function of x ∈ IRn. Obviously

F(x) =
∑

C

pCFC(x) (x ∈ IRn).

Based on the cell structure, two coarsely distributed discrete random vectors
are constructed instead of η; namely η for lower approximation, and η for upper
approximation. The construction is such that η yields lower approximating func-
tions

FC(x) ≤ FC(x) (x ∈ IRn)

for each cell C; and η yields upper approximating functions

FC(x) ≥ FC(x) (x ∈ IRn).

Lower and upper approximating functions for the expected recourse function
are constructed as

F(x) =
∑

C

pCFC(x) and F(x) =
∑

C

pCFC(x).

Solving two-stage stochastic programming problems 335

Traditionally, approximation schemes are used in the following framework. An
approximating problem is constructed instead of the problem (7) by replacing
the expected recourse function with a lower approximating function F(x). The
approximating problem is solved, let x� denote the optimal solution. The upper
approximating function F(x) is evaluated at x�. If the difference F(x�)−F(x�) is
not significant, then the procedure stops. Otherwise the approximating coarse
distributions are refined, and the above procedure is iterated. Hence the tra-
ditional framework prescribes the (exact) solution of a series of approximate
problems. The objective functions of these problems are successive approxima-
tions of the true objective function.

In the traditional framework, effort may be wasted on optimization (and
hence on expensive function evaluations) when the approximation is not accu-
rate. In a typical implementation of the traditional framework, the main module
is the distribution approximation scheme, and the submodule is the two-stage
stochastic problem solver. To what extent the approximation should be refined
between solver calls, is a difficult question. The following observation shows
the intricacy and importance of this question.

Let us observe that even the traditional framework makes use of inexact cuts.
The solution of each approximate problem may start with a cutting-plane model
of the expected recourse function inherited from the predecessor problem.
Since the predecessor problem has been constructed using an approximation of
the distribution coarser then the current one, the inherited cutting-plane model
contains cuts that are inexact in the current problem. Alternatively, one might
either build a cutting-plane model from scratch each time one sets to solve an
approximate problem, or recompute all existing cuts after each refinement of
the distribution approximation. Both of these alternatives demand considerable
effort.

To control accuracy in the traditional framework, Mayer (1998) proposed a
heuristic method.

In contrast to the traditional framework, the Level Decomposition Method
solves the single problem (7). The approximating coarse distributions are
refined in accordance with the solution process of the master problem.

In course of the present project we adapted the simplest bounding methods
to the Level Decomposition framework. Our cells are r̃-dimensional intervals.

The lower approximating distribution is constructed using Jensen’s inequal-
ity: η has as many realizations as the number of the cells. The realization cor-
responding to cell C is constructed by concentrating into the barycenter the
weight of those η realizations that fall into the cell C. In order to ease the
forthcoming discussion, let us introduce the notation P(x, η) and P

�
(x, η) for

the following special forms of the problems (4) and (6), respectively:

min qTy + w‖s‖1

subject to
Tx + Wy + s = Sη,

y ≥ 0,

min ‖s‖1

subject to
Tx + Wy + s = Sη,

y ≥ 0.

336 C. I. Fábián, Z. Szőke

For each cell C and any x, the lower approximating function value FC(x) is
defined as the optimum of the problem P(x, η

C
), where η

C
:= IE (η | η ∈ C) is

the realization of η corresponding to C. In order to get an estimate of FC(x̌),
we solve the problem P(x̌, η

C
) approximately, setting the tolerance of the LP

duality gap to δ̃ = θδ. Let zC denote the (near-optimal) dual feasible solution
returned by the linear programming method. Let us define the linear functions

lC(x) = zC
T

(
Sη

C
− Tx

)
and l(x) =

∑

C

pC lC(x) (x ∈ IRn).

We have lC(x) ≤ FC(x) since zC is a dual feasible solution of the problem
P(x, η

C
) for any x. It follows that l(x) ≤ F(x) for any x. Moreover we have

‖zC‖max ≤ w owing to the dual feasibility of zC. Hence in Euclidean norm,
‖zC‖ ≤ √

rw. It follows that lC(x) and hence l(x) are Lipschitz continuous with
the constant

√
rw‖T‖. With the values LC = lC(x̌) and L = l(x̌) obviously we

have
LC ≤ FC(x̌) ≤ LC + δ̃ and hence L ≤ F(x̌) ≤ L + δ̃. (24)

The upper approximating distribution is constructed using the Edmundson-
Madansky inequality, hence the realizations of η correspond to the vertices of
the cells. Let η

j
C (j = 1, . . . , 2r̃) denote the realizations of η corresponding to

the vertices of C. By definition, FC(x) is a certain convex combination of the
optimal objective values of the problems P(x, ηj

C). In order to get an estimate

of FC(x̌), we approximately solve the problems P(x̌, ηj
C) with a duality gap less

than δ̃. Let (yj
C, sj

C) and zj
C denote the (near-optimal) primal and dual feasible

solutions, respectively, that the linear programming method returns. Let

UC =
2r̃

∑

j=1

�
j
C

(
qTyj

C + w‖sj
C‖1

)
and U =

∑

C

pCUC,

where the coefficients �j
C are the same as those of the convex combination that

produced FC(x̌). Obviously we have

UC ≥ FC(x̌) ≥ UC − δ̃ and hence U ≥ F(x̌) ≥ U − δ̃.

Comparing this to (24) we get

U − L ≥ F(x̌)− F(x̌) ≥ U − L − 2δ̃. (25)

If δ ≥ U − L holds, then l(x) is a δ-support function of the expected recourse
function F(x) at x̌. Moreover l(x) is Lipschitz-continuous with a constant not
depending on x̌ or δ.

Solving two-stage stochastic programming problems 337

In case of the function G(x), we construct the linear functions l
�

C(x), l
�
(x),

and the bounds L
�

C, L
�
, U

�

C, U
�

in a similar way, through approximate solution

of problems of the type P
�
(x, η). If both δ ≥ U − L and δ ≥ U

� − L
�

holds, then
the oracle returns l as a δ-support function of F, and l

�
as a δ-support function

of G. (The cell structure is retained for use in further oracle calls.) Otherwise
the approximation is refined. We subdivide the cell that maximizes the product

pC max
{

UC − LC − δ, U
�

C − L
�

C − δ
}

.

The above product should be positive for some cells, otherwise the oracle would
have returned the current support functions. Let Č denote the cell selected for
subdivision, and η

j

Č
(j = 1, . . . , 2r̃) the realizations of η corresponding to the

vertices of Č.
The coordinate along which to cut is chosen as follows: Let et (t = 1, . . . , r̃)

denote the unit vectors in the space of the η values. Having t fixed, the edges
of Č parallel to et are marked, i.e. the edge between the j th and j ′th vertices
is marked if η

j

Č
− η

j ′
Č

= uet holds. The optimal objective value of the recourse
problem P(x̌, η) is considered as a function of η, and nonlinearity of this function
is measured along the marked edges. A possible measure of nonlinearity along
the (j , j ′) edge is based on function values and et-directional derivatives at the
endpoints. Since we have solved the relevant recourse problems approximately,
we only have approximate function values, namely

v =
(

Sη
j

Č
− Tx̌

)
Tzj

Č
and v′ =

(
Sη

j ′
Č

− Tx̌
)

Tzj
′

Č
.

Approximations of the directional derivatives are computed as

ς = et
TSTzj

Č
and ς ′ = et

TSTzj
′

Č
.

To simplify notation, let us transform the interval [ηj
Č

, η
j ′
Č

] into [0, u], and define

the [0, u] → IR function χ(o) = max
{
v + ςo, v′ + ς ′(o − u)

}
. Moreover, let π

denote the [0, u] → IR linear function whose graph contains the points (0, v)
and (u, v′). We define a measure of nonlinearity along the (j , j ′) edge as

ϑt(j , j ′) = max
0≤o≤u

|χ(o)− π(o)| .

(The tolerance δ̃ for the LP duality gap may play a role in the above measure.
However, if we have δ̃ � δ, then the effect of the cell structure will be domi-
nant.)

In case of the function G(x), we consider the optimal objective value of
the problem P

�
(x̌, η) as a function of η, and define the nonlinearity measure

338 C. I. Fábián, Z. Szőke

ϑ
�

t (j , j ′) in a way similar to the above. A common measure of nonlinearity, in
the direction t, of the recourse and constraint function approximations will then
be

ϑt = max
(j ,j ′)

ϑt(j , j ′)+ ϑ
�

t (j , j ′),

where maximization is considered for edges parallel to et. We cut the cell Č
along the coordinate 1 ≤ t ≤ r̃ for which ϑt is maximal. Our cut is positioned in
the barycenter η

Č
. Neither of the new cells will be empty unless all the realiza-

tions ηω ∈ Č lie on the same hyperplane. In this case, however, the coordinate
t would not have been selected for cutting.

The approximating distributions η and η are then refined in accordance with
the cell structure. This procedure is iterated until δ-supporting functions are
found.

3.2 Solution of the linear programming subproblems

We must solve many similar subproblems with increasing accuracy. We can use
either simplex-type or interior-point methods.

The subproblems P(x, η) differ only in the right-hand-side vectors. If the
representation (22) holds, then the possible right-hand-side vectors all come
from a low-dimensional affine space. Similarity of the subproblems can easily
be exploited by simplex-type methods. Optimal basic solutions together with
the corresponding bases can be stored and reused as starting points for later
runs. This procedure is called warm start.

If the distribution approximation of the previous section is employed, then
the optimal basis of the problem corresponding to the barycenter of a cell will
make a good starting dual feasible basis for the problems corresponding to
the vertices of this cell (i.e., we set θ = 0 to find exact solutions; after solving
the problem P(x̌, η

C
) the optimal basis is saved, and the problems P(x̌, ηj

C) are
solved by dual simplex method starting from the saved basis). A similar scheme
can be used for the problems P

�
. More sophisticated schemes are described in

Gassmann and Wallace (1996).
New methods and implementation strategies proposed by Maros (2003b) led

to substantial improvement in the efficiency of the dual simplex method.
On the other hand, interior-point methods seem more convenient to finding

approximate solutions of the subproblems. There are effective interior-point
methods that generate pairs of solutions; one of the pair being primal feasi-
ble, the other dual feasible. The LP duality gap is decreasing at each step. A
state-of-art survey of such methods can be found in Roos et al. (1997), where
the following efficiency estimate is proven: Let δ̃ = θδ > 0 be a prescribed
accuracy. In order to decrease the LP duality gap below δ̃, the primal-dual log-
arithmic barrier method and the predictor-corrector method require 2

√
d ln υ/δ̃

iterations, where d is the dimension of the problem (in our case max(r, s)); and

Solving two-stage stochastic programming problems 339

υ measures the LP duality gap at the starting point. This estimate implies that
considerable effort can be spared by early termination.

There are infeasible versions of these methods, where primal and dual feasi-
bility is expected to be attained together with optimality. In practice, however,
infeasibility is usually reduced much earlier than optimality is attained. Hence
early termination is possible with such methods, too. These infeasible methods
have a very good reputation, supported by many computational studies, see e.g.
Andersen and Andersen (2000), and Gondzio and Grothey (2003).

Remark 13 If Assumption 6 holds, then by solving a recourse problem of the
type (4), we also solve the related recourse problem of the type (6). Hence in
this case the estimation of the infeasibility measure requires but a negligible
computational effort.

4 Implementation issues

Our test program package was written in C language. The input is compati-
ble with the SMPS format though it relies on special naming conventions that
simplify data handling in case of two-stage problems.

The structure of our Level Decomposition implementation is depicted in
Figure 1. The solver consists of three components. The main module is an imple-
mentation of the Inexact Constrained Level Method. An approximation scheme
provides recourse and constraint function information in the form of cuts of
appropriate accuracy. The CPLEX callable library is used for the solution of
the linear and quadratic subproblems arising from decomposition, and for the
solution of the recourse problems constructed in the approximation scheme.

Inexact

Constrained

Level Method
Approximation

Scheme

CPLEX Callable

Library

recourse and constraint
function evaluations

linear and quadratic
subproblems recourse problems

Fig. 1 The structure of our Level Decomposition implementation

340 C. I. Fábián, Z. Szőke

Our implementation of the Inexact Constrained Level Method includes the
bundle reduction technique mentioned in section 2, which means that inactive
cuts are discarded after certain iterations. The dynamically changing bundle is
stored in chained lists, where each element represents a single cut (the rele-
vant δ-subgradient and function value are stored). Once a cut is discarded, the
appropriate list element is unlinked form the active chain, and linked on the
inactive chain.

In our implementation of the approximation scheme, the original distribu-
tion needs to be discrete. (We approximate a discrete distribution with coarser
ones.) We are going to sketch the data structures using the notation of sec-
tion 3.1. The cell structure is stored as a binary tree. Leaf elements of the tree
represent cells. A cell cut is represented by linking two new leaf elements to
the appropriate tree element (which ceases to be a leaf). Given a cell C, the
following data are stored in the corresponding leaf element:

• the number NC and the total weight pC of those η-realizations that fall into
this cell.

• coordinates of the barycenter η
C

.
• the gradient of the linear function lC(x), together with the lower approxima-

tion LC of FC(x̌). The upper approximation UC of FC(x̌). (Here x̌ denotes
the current iterate of the master problem, in accordance with the notation
of the previous section.)

• analogous data for the constraint function: the gradient of the linear function
l
�

C(x), together with the lower approximation L
�

C. The upper approximation

U
�

C.

The η-realizations are stored in a separate list. Those falling into a given cell
are chained to the corresponding leaf element. We also maintain a list of the
cell vertices. The vertices of a given cell are chained to the corresponding leaf
element.

The data structures in our distribution approximation scheme are similar
to those proposed by Mayer (1998). He implemented the L-Shaped Method
imbedded into a classical approximation scheme.

We mention the technical detail that we do not approximate the distribu-
tion over cells having NC � 2r̃. For such cells we make exact computation.
(The rationale is that for such a cell, η would have more realizations than the
original η.)

In the present implementation, the recourse problems are solved exactly (i.e.,
with high precision; with the notation of the previous section it means working
with θ = 0 and hence δ̃ = 0). The reason for not exploiting inexact solutions is
that convergence of the CPLEX optimizer can be controlled through a relative
tolerance, while our framework would require using an absolute tolerance. This
is a purely technical problem that could be resolved by closer integration of the
LP solver.

For the solution of the recourse problems we can presently apply either the
CPLEX dual simplex optimizer or the CPLEX barrier optimizer. The CPLEX

Solving two-stage stochastic programming problems 341

dual simplex optimizer supports warm starts, while the CPLEX barrier opti-
mizer presently does not.

5 Test problems and parameter setting

We tested with variants of the following two problems, taken from the Portable
Stochastic Programming Test Set (POSTS) compiled by Derek Holmes. POSTS
is available through the Stochastic Programming Community home page:
http://stoprog.org.

PLTEXPA2 is the linear relaxation of a stochastic capacity expansion problem.
Problem sizes are: m = 62, n = 188, r = 104, s = 272.
Only the right-hand-side vector d contains random parameters. In the
original problem only seven components are random.

STORMG2 is based on a cargo flight scheduling application described by Mul-
vey and Ruszczyński (1995).

Problem sizes are: m = 187, n = 121, r = 526, s = 1, 259.
Only the right-hand-side vector d contains random parameters. In the
original problem only 118 components are random.

We changed the objective function of the PLTEXPA2 problem. Moreover we
changed the distributions of the right-hand-side vectors in both test problems.
The distributions we use have nothing in common with the original ones. In
our variants, all components of the d vectors are stochastic. In case of the
PLTEXPA2 problem, the 104-dimensional ξ ≡ d vector linearly depends on a
6-dimensional random η vector. In case of the STORMG2 problem, there is no
linear dependence among the 526 components of the d vector. We created two
sets of test problems:

PLTEXPA2, standard model. For the problems in this set, the S matrix and
the realizations of the η vector were generated in such a manner that the
first-stage problems (7) would be feasible. We sketch the construction: First
a point x̂ ∈ X is selected. (Feasibility of the first-stage problem is ensured by
making x̂ a feasible solution.) After this, r̃ points are selected form the trans-
lated cone Tx̂ + {

Wy | y ≥ 0
}
. Let these points be denoted by s1, . . . , sr̃. For

t = 1, . . . r̃, the ray {ust | u ≥ 0} intersects the translated cone. Let [st, st] denote
the intersection interval. Realizations of η are generated so that Sη falls into
the convex hull of the points s1, s1, . . . , sr̃, sr̃. (The S matrix is constructed by
concatenating the columns s1, . . . , sr̃.)
We created six STOCH files containing 100,000, 200,000, …, 600,000
scenarios, respectively.
The weight in the objective function was set to w = 2, 000. This setting
assures that Assumption 1 holds, hence we indeed solved a ‘traditional’ two-
stage recourse problem. The setting w = 2, 000 was found through trials with
different settings. (PLTEXPA2 is a capacity expansion problem, hence the
recourse problems have a special combinatorial structure. In our opinion,

342 C. I. Fábián, Z. Szőke

it is because of this special structure that Assumption 1 holds with such a
moderately sized weight.)

STORMG2, relaxed model. The realizations of the η vector are samples from the
526-dimensional normal distribution having expectation vector 1 = (1, . . . , 1)T

and covariance matrix I. The norm ‖ ‖� = ‖ ‖1 is used in the objective func-
tion with the weight w = 2, 000. In the constraint G(x) ≤ �, we set � = 2, 000.
This is an arbitrary choice of parameters. We checked that � is large enough
to make the relaxed problem (8) feasible. We also checked that Assump-
tion 6 does not hold with the present setting of w. (This is not a ‘traditional’
two-stage recourse problem.)
We created twenty STOCH files containing 1000, 2000, … 20,000 scenarios,
respectively.

The CORE files of our variants of the test problems, and the STOCH files of
our PLTEXPA2 standard model test set are available via the Internet at the
address http://www.cs.elte.hu/∼fabian/testproblems.

Test runs were made on a personal computer having 1, 536 MHz CPU clock
frequency and 1, 033 Mb memory. We used Linux operating system. In this
project our aim was building a test system in which different options are
easily implemented and compared. Efficiency was considered of secondary
importance.

In case of the PLTEXPA2-variants, we applied the distribution approxima-
tion scheme described in subsection 3.1. The STORMG2-variants were solved
without approximation.

The starting iterate x1 was always selected by minimizing a randomly gener-
ated linear objective function over the feasible polyhedron X. The parameters
controlling the underlying convex programming method were set to λ= 0.5,
µ = 0.5. In order to set the rest of parameters, we made some preliminary test
runs. Let us sum up the results of these preliminary runs:

PLTEXPA2-variants. The original PLTEXPA2 problems have the peculiarity
that the expected value of perfect information (EVPI) is very small. For PLT-
EXPA2_16, e.g., the optimal objective value is about −9.47935 and EVPI
∼ 10−6 holds.
Though we changed the objective function and the distribution, our PLTEX-
PA2-variants inherited the above peculiarity. For our problems, the optimal
objective value is about 95, 699.908 and EVPI ∼ 0.64 holds.
For the solution of these problems we set the starting accuracy to δ1 = 1e6.
In order to see the influence of the parameter γ that controls the accuracy
prescribed for the oracle, we solved the 600,000-scenario standard-model test
problem with different settings. The problem was solved with eight-digit accu-
racy of the optimal objective value. The data in Table 1 are representative of
our results. Larger γ values lead to more iterations, but less cells in the approx-
imation scheme. Solution times show a strong correlation with the number
of the LP optimizer calls. These quantities rise towards the endpoints of the
examined interval. We decided use γ = 0.15 for the test runs.

Solving two-stage stochastic programming problems 343

Table 1 Results of preliminary test runs for tuning the run-time parameter γ that controls the
accuracy prescribed for the oracle

γ Iterations Cells 1,000 calls Solution time

0.01 >19 >12,451 >10,892 >2,000

0.03 22 11,984 9,574 1,669

0.06 25 11,637 9,500 1,608

0.09 28 11,203 9,925 1,664

0.12 30 10,652 9,070 1,396

0.15 33 10,352 9,078 1,348

0.18 37 10,284 9,854 1,467

0.21 42 10,213 11,010 1,658

The 600,000-scenario PLTEXPA2 standard model was solved with different settings. Stopping
tolerance prescribed eight-digit accuracy each time. Row headers show the different γ settings.
Columns contain: numbers of iterations, numbers of cells in the approximation scheme, numbers
of CPLEX dual simplex optimizer calls in thousands, solution times in minutes. The > symbols in
the first row indicate that we could not solve the problem with the setting γ = 0.01, due to memory
shortage. Larger γ values lead to more iterations, but less cells in the approximation scheme

We found that the standard-model problems are close to having relatively
complete recourse. Having started optimization from a point in X \ K, the
feasible region X ∩K was reached in a few master iterations, and infeasibility
never occurred in later iterations.

STORMG2-variants. The optimal objective values of these problems were be-
tween 5, 282, 300 and 5, 282, 600. We found EVPI to be around 4, 000.
For the solution of these problems we set the starting accuracy to δ1 = 1e4.
The setting γ = 0 formally expresses that these problems were solved without
approximation of the expected recourse function.

6 Test results

Let us sum up details of the tests that were run on the different problem sets:

PLTEXPA2, standard model. Problems from this set were solved with four
different settings of the optimality tolerance: the solution process was
terminated when the accuracy of the optimum reached five, six, seven, or
eight digits, respectively.
Each problem was solved twice with each setting of the optimality tolerance;
first by using the CPLEX dual simplex solver, and second time, by using
the CPLEX barrier solver, for the solution of the recourse problems. When

344 C. I. Fábián, Z. Szőke

using the dual simplex solver, we exploited the warm-start facility in a scheme
described in section 3.2. When using the barrier solver, we could not exploit
the similarity of the recourse problems.
Tables 2,3,4,5 and 6 summarize the results of those test runs where warm
starts were exploited. In these tables, column headers show the prescribed
accuracy in digits. In Tables 3,4,5 and 6, row headers show the numbers of the
scenarios.
Test results of the runs not exploiting warm starts were very much similar to
those cited in Tables 2,3 and 4. (Differences were under 10%.) In solution
times, however, we found substantial differences: the barrier solver runs took
50–200% more time than the dual simplex solver runs.

STORMG2, relaxed model. These problems were solved with eight digit accu-
racy of the optimum. The recourse problems were solved by the CPLEX
barrier solver. (There is no exploitable similarity in the recourse problems be-
cause the random vector is high dimensional and has independent
components.)
Test results are summed up in Table 7.

Table 2 shows that in case of our PLTEXPA2 problem set, the Inexact
Constrained Level Method converged at a steady rate: it required five or six
master iterations to achieve an additional exact digit in optimum. However, the
effort required for the expected recourse function evaluations grew rapidly with

Table 2 PLTEXPA2 standard model: Numbers of master iterations required to achieve different
numbers of accurate digits in optimum

Accuracy in digits 5 6 7 8

Iterations 17 22 27 - 28 33

Iteration numbers proved virtually independent of the number of the scenarios. In case of 7-digit
accuracy, the program made 27 iterations for some scenario numbers, and 28 iterations for others

Table 3 PLTEXPA2 standard model: Numbers of cells in the approximation scheme.

5 6 7 8

100,000 110 1,259 1,943 2,205

200,000 30 1,591 3,131 4,080

300,000 27 1,211 3,491 5,096

400,000 26 816 5,033 7,074

500,000 26 523 4,404 7,983

600,000 27 810 6,126 10,352

Column headers show the prescribed accuracy in digits. Row headers show the numbers of the
scenarios.

Solving two-stage stochastic programming problems 345

Table 4 PLTEXPA2 standard model: Numbers of CPLEX optimizer calls in thousands

5 6 7 8

100,000 51 680 1,756 2,731

200,000 29 659 2,160 4,347

300,000 29 452 2,296 5,371

400,000 29 290 3,119 6,496

500,000 29 192 2,434 7,168

600,000 28 279 3,381 9,078

Calls required for the estimation of the expected recourse function and of the infeasibility measure
are both counted

Table 5 PLTEXPA2 standard model: Solution times (in minutes) belonging to runs that exploit
warm starts

5 6 7 8

100,000 2 64 291 551

200,000 2 32 264 794

300,000 3 19 270 983

400,000 3 11 320 1,049

500,000 3 10 216 1,148

600,000 4 13 264 1,348

Recourse problems were solved by the CPLEX dual simplex solver

the accuracy prescribed. (The numbers of the cells in the approximation scheme
and the numbers of the CPLEX optimizer calls are shown in Tables 3 and 4.)
Solution times shown in Table 5 reflect the growing effort of approximation.

On the other hand, the effort of the function evaluations did not grow in
proportion with the number of the scenarios. Let us consider the solution times
in Table 5, and divide each item with the corresponding sample size given in
the row header ; these ratios show a decreasing tendency.

Algorithmic structure of the Level Decomposition (LD) Method is such that
the number of the LD master iterations required to solve a problem is inde-
pendent of the number of the scenarios. Our test results seem to reinforce this
theoretical observation.

For both of our test sets, the respective sets of the scenarios can be consid-
ered as random samples from the same continuous distribution. In this view,

346 C. I. Fábián, Z. Szőke

Table 6 PLTEXPA2 standard model: Optimal objective values of the sample problems

8

100,000 95,699.682

200,000 95,699.817

300,000 95,699.863

400,000 95,699.885

500,000 95,699.899

600,000 95,699.908

These data belong to solutions of eight-digit accuracy in optimum. Row headers show the numbers
of the scenarios

we solved two different continuous problems by Monte Carlo sampling. Sam-
pling of the random parameters is often used in practice, and the estimators of
the optimal value and the optimal solution are well investigated. A state-of-art
survey can be found in Shapiro (2003). We mention the following consistency
result. Let O�

N and S�N denote the optimal objective value, and the set of the
optimal solutions, respectively, of the approximating problem constructed using
a sample of size N. Let O� and S� denote the optimal objective value, and the
set of the optimal solutions, respectively, of the true problem. Then

O�
N → O� (26)

and
D(S�N , S�) := sup

x∈S�N

dist(x, S�) → 0 (27)

with probability 1 as N → ∞. (Here dist(x, S�) means the distance from x to
S�.)

The above consistency result also holds for the relaxed model (8) if the param-
eter � is properly set. (With large enough �, the Slater condition is satisfied.
Together with the present assumptions, it implies consistency – see Remark 8
in Shapiro (2003).)

Our test results are in accordance with (26) and (27). Regarding our first
test set, Table 6 shows optimal objective values of our discrete problems for
different sample sizes. Regarding our second test set, optimal objective values
are shown in the last column of Table 7. The sequence of the optimal objective
values seems to converge in both cases, though the convergence is much slower
for the relaxed model.

In case of the standard model, the sequence of the optimal objective val-
ues is noticeably monotonic. This characteristic is explained by the following
inequality found by Norkin et al.(1998); and Mak et al. (1999):

Solving two-stage stochastic programming problems 347

Table 7 STORMG2 relaxed model.

Iterations Solution time Optimum

1,000 23 42 5,282,318.0

2,000 26 93 5,282,339.8

3,000 22 119 5,282,351.4

4,000 26 187 5,282,304.0

5,000 23 207 5,282,329.8

6,000 26 282 5,282,341.7

7,000 22 277 5,282,380.4

8,000 22 316 5,282,380.6

9,000 27 436 5,282,413.7

10,000 30 540 5,282,424.2

11,000 26 515 5,282,427.9

12,000 23 498 5,282,429.6

13,000 23 538 5,282,427.2

14,000 22 553 5,282,443.4

15,000 22 595 5,282,459.7

16,000 22 634 5,282,431.9

17,000 23 706 5,282,444.7

18,000 23 747 5,282,451.2

19,000 25 853 5,282,431.7

20,000 21 755 5,282,424.9

Each of these problems was solved with eight-digit accuracy. Row headers show the numbers of
the scenarios. Columns contain: numbers of master iterations, solution times in minutes, optimal
objective values

IE
(
O�

N

) ≤ IE
(
O�

N+1

) ≤ O�. (28)

This inequality was originally proved for the relatively complete recourse case,
but it readily generalizes for the standard (incomplete recourse) model (7). It
may not hold for the relaxed model (8), though.

The eight-digit optimal solutions of our PLTEXPA2 problems have Euclid-
ean norms of about 540, and they could be covered by a ball having a radius of

348 C. I. Fábián, Z. Szőke

0.23. However, the spread is determined by a peculiar flatness of the objective
function, rather than by sample sizes: We have solved the same 600,000-scenario
problem with 8-digit accuracy several times, and found the spread of the mini-
mizers to be in the magnitude of 1.

We mention that if the true problem has a single optimal solution and the
ε-optimal set is small for small ε, then minimizers of the sample problems may
converge very quickly, and the sequence may even stabilize for relatively small
sample sizes. Linderoth et al. (2002) present extensive numerical experience
regarding this phenomenon, and theoretical explanation was given by Shapiro
and Homem-de-Mello (2000).

The 8-digit optimal solutions of our STORMG2 problems have Euclidean
norms of about 535, and they could be covered by a ball having a radius of
0.68. However, these approximate optimal solutions lie along a straight line in
the 121-dimensional space: projecting them onto a certain hyperplane we got
points that could be covered by a ball having a radius of 0.08. This observation
is in accordance with that of Linderoth et al. who observed that the ε-optimal
set of the STORM problem is close to being a short line segment, rather than a
large multidimensional basin. (STORM is similar to STORMG2.)

Remark 14 The eight-digit accuracy has little practical relevance: In general,
probability distributions are coming via statistical estimates which are far less
accurate. (In the present cases, the sample sizes allowed only five to six accurate
digits.)

With setting such small stopping tolerances, our aim was only to explore the
boundaries of the usability of the method. Let us mention that when we had
prescribed an accuracy of no more than six digits, we observed quite reasonable
solution times even with the present experimental version of the solver.

7 Conclusions and prospects

This paper contains the following new results:
• We examine conditions under which the expected recourse function can

be extended to the whole space, and identify problem classes where this
extension can be done in a computationally efficient way. Network recourse
problems constitute such a problem class.
Such extension is also necessary in case of two-stage stochastic models using
probabilistic constraints, see Prékopa (1995, chapter 12.10). Hence Propo-
sition 3 and Corollary 9 has application in this field, too.

• By using the above extension and by explicitly accounting for infeasibility
in the recourse subproblems, we formulate traditional two-stage stochastic
programming problems as constrained convex programming problems. This
formulation is called standard model in the paper.
This approach is practicable only if the expected recourse function can
be extended in a computationally efficient way. In general, applicability
critically depends on the magnitude of the penalty parameter w. Though
Remark 5 justifies a heuristic procedure for setting the penalty parameter.

Solving two-stage stochastic programming problems 349

• We propose a new variant of the two-stage recourse model called relaxed
model in the paper. This can be regarded as a generalization of the well-
known integrated chance constrained model of Klein Haneveld (1986).
We also give economic interpretations of the relaxed model. One of them
substantially differs from traditional two-stage recourse models. It deals
with the design and operation of a system that consumes certain resources
in whose supply random interruptions may occur.

• For the above models, we propose a new solution method, called Level
Decomposition in the paper. The method consists of two known compo-
nents.
• The first component is an approximative version of the Constrained

Level Method of Lemaréchal, Nemirovskii, and Nesterov (1995). The
approximative method was proposed by Fábián (2000).

• The second component involves the classic discretization and bounding
methods worked out by Kall (1980), Kall and Stoyan (1982), and Birge
and Wets (1986).

The novelty of Level Decomposition is the way these two components are
integrated, and the fact that the master problem is solved by a convex pro-
gramming method suited for constrained optimization.
In a typical implementation of the traditional solution framework, the main
module is the distribution approximation scheme, and the submodule is
the two-stage stochastic problem solver. To what extent the approximation
should be refined between solver calls, is a difficult question, to which Mayer
(1998) proposed a heuristic method. In Level Decomposition, the main mod-
ule is the solver, and the approximating coarse distributions are refined in
accordance with the solution process of the master problem. At each step, we
have an estimate of how closely the optimum has been approached. At the
beginning of the procedure, a rough approximation of the expected recourse
function may be used. As the optimum is approached, the accuracy of the
function evaluations can gradually be increased through gradual refinement
of the approximating distributions. (In a single function evaluation, higher
accuracy requires larger effort from the distribution approximation scheme.
On the other hand, rough approximations may result in an increased number
of iterations. Efficiency requires finding a balance between different efforts.
Table 1 contains some experimental results concerning this issue: measures
of various computational efforts are presented for different settings of the
run-time parameter that controls accuracy prescribed for the approximation
scheme.)
Using a convex programming method suited for constrained optimization
means that feasibility and optimality issues are taken into consideration
simultaneously. The bundle-type regularization extends to both feasibil-
ity and optimality issues. We avoid feasibility cuts that are constituents of
the Benders family of solution methods. The price to be paid is that mea-
suring infeasibility generally requires extra computational effort. Though
Remark 13 shows that for certain problem classes, the extra effort is negli-
gible.

350 C. I. Fábián, Z. Szőke

We report encouraging test results with Level Decomposition. However,
its utility can only be assayed by systematic comparisons with benchmark
methods.

Simplex versus interior-point methods for the solution of the recourse prob-
lems. The cell structure of the distribution approximation offers natural means
for batching recourse problems on the basis of similarity. Our test results show
that the use of warm starts substantially decreases the time required for the
solution of the recourse subproblems. It means that the dual simplex method is
a good choice for the recourse problem solver. Efficiency can be enhanced by
applying the special dual phase-II method of Maros (2003a).

Interior-point methods are reputed to have difficulties with warm start. How-
ever, Gondzio and Grothey (2003) proposed a reoptimization method to over-
come these difficulties. They tested their method with an infeasible primal-dual
solver, and report a substantial speedup. As a starting point, reoptimization
needs a well-centered solution of the former problem. (An optimal solution
of the former problem is not suitable, because it is close to the boundary of
the feasible region.) This fact luckily coincides with our aim of finding near-
optimal solutions. Measuring the utility of interior-point warm starts in Level
Decomposition requires further investigation.

7.1 Possible fields of application

Sample average approximation. SAA frameworks are an alternative to dis-
cretization in case the representation (22) does not hold. In general, batches
of sample problems are solved, and some optimality condition is tested by
statistical tools. For example, Norkin et al. (1998) and Mak et al. (1999)
construct confidence intervals for the optimality gap using the inequality (28).
Besides estimating optimality gap, Shapiro and Homem-de-Mello (1998)
propose another test based on the verification of the Karush–Kuhn–Tucker
conditions.

Linderoth et al. (2002) used these statistical tools in estimating the optimum
and in testing for (approximate) optimality. They solved two-stage stochastic
programming problems with astronomical numbers of scenarios like 6 × 1081.
They produced good approximate solutions through sampling. (They used a
trust-region method on a computational grid for the solution of their sample
problems.)

If one uses Level Decomposition for the solution of sample problems in
SAA frameworks, then the optimality tolerance can be tuned in accordance
with sample sizes and with the number of the sample problems.

Models with probabilistic constraints. Prékopa (1973) proposed prescrib-
ing the feasibility of the recourse problem (1) by a probability ≥ p (with
0 < p < 1, given parameter). In case the random vector has a logconcave dis-
tribution, logconcavity of the probabilistic constraint follows from the theory
developed by Prékopa (1971). There are effective tools for the estimation of the
probabilistic constraint function ; a state-of-art survey can be found in Prékopa

Solving two-stage stochastic programming problems 351

(2003). On the other hand, the expected recourse function can be estimated
through discretization (or through sampling). The two types of estimation may
be used in a common framework.

Models with Conditional-Value-at-Risk objectives and constraints. The CVaR
risk measure was proposed by Rockafellar and Uryasev (2000). They derived a
representation of CVaR that makes it tractable in optimization problems. An
overview of CVaR-optimization models and methods can be found in Prékopa
(2003) and in Kall and Mayer (2005).

Based on the polyhedral representation of Künzi-Bay and Mayer (2006),
Fábián (2005, 2006) proposed decomposition frameworks for handling CVaR
objectives and constraints in two-stage stochastic models. Approximation of
CVaR requires less effort than exact computation. This feature suggests that
Level Decomposition may be useful for the solution of such problems.
Acknowledgments The authors would like to thank András Prékopa for sug-
gesting this research and continuous encouragement, and Tamás Terlaky for his
constructive remarks concerning the application of interior-point methods. We
are grateful to István Maros and to the anonymous Referees for many valuable
comments and suggestions that led to substantial improvement of the paper.

References

Andersen ED, Andersen KD (2000) The MOSEK interior-point optimizer for linear programming:
an implementation of the homogeneous algorithm. In: Frenk H, Roos K, Terlaky T, Zhang S,
(eds) High performance optimization. Kluwer, Dordrecht, pp 197–232

Beale EML (1955) On minimizing a convex function subject to linear inequalities. J R Stat Soc Ser
B 17:173–184

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems.
Numer Math 4:238–252 republished in Comput Manage Sci 2:3–19 (2005)

Birge JR, Louveaux FV (1997) Introduction to Stochastic Programming. Springer, Berlin
Heidelberg New York

Birge JR, Wets RJ-B (1986) Designing approximation schemes for stochastic optimization prob-
lems, in particular for stochastic programs with recourse. In: Prékopa A, Wets RJ-B (eds)
Stochastic Programming 84, Vol 1. Mathematical Programming Study 27:54–102

Björck Å(1996) Numerical methods for least squares problems. Society for Industrial and Applied
Mathematics, Philadelphia

Dantzig GB (1955) Linear programming under uncertainty. Manage Sci 1:197–206
Dantzig GB, Madansky A (1961) On the solution of two-stage linear programs under uncertainty.

In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol
1: pp 165–176. University of California Press, Berkeley

Dantzig GB, Wolfe P (1960) The decomposition principle for linear programs. Oper Res 8:101–111
Fábián CI (2000) Csendes T, Rapcsák T (eds) Bundle-type methods for inexact data. Central Eur

J Oper Res 8 (special issue); 35–55
Fábián CI (2005) Decomposing CVaR minimization in two–stage stochastic models. Stochastic

Programming E-Print Series 20
Fábián CI (2006) Handling CVaR objectives and constraints in two-stage stochastic models. RUT-

COR Research Report, vol 5
Frauendorfer K (1988) Solving SLP recourse problems with arbitrary multivariate distributions –

the dependent case. Math Oper Res 13:377–394
Frauendorfer K, Kall P (1988) A solution method for SLP recourse problems with arbitrary distri-

butions – The independent case. Probl Control Inf Theory 17:177–205
Gassmann HI, Wallace SW (1996) Solving linear programs with multiple right–hand sides: pricing

and ordering schemes. Ann Oper Res 64:237–259

352 C. I. Fábián, Z. Szőke

Gondzio J, Grothey A (2003) Reoptimization with the primal-dual interior point method. SIAM
J Optim 13:842–864

Kall P (1980) Solving complete fixed recourse problems by successive discretization. In: Kall P,
Prékopa A (eds) Recent Results in Stochastic Programming, Lecture Notes in Economics and
Math. Systems 170. Springer, Berlin, Heidelberg New York, pp 135–138

Kall P, Mayer J (2005) Stochastic Linear Programming: Models, Theory, and Computation. Inter-
national series in operations research and management science. Springer, Berlin Heidelberg
New York

Kall P, Stoyan D (1982) Solving stochastic programming problems with recourse including error
bounds. Math Opernforsch Stat Ser Optim 13:431–447

Kall P, Wallace SW (1994) Stochastic programming. Wiley, Chichester
Kennington JL, Helgason RV (1980) Algorithms for Network Programming. Wiley, New York
Klafszky E, Terlaky T (1992) On the ellipsoid method. Radov Mat 8:269–280
Klein Haneveld WK (1986) Duality in stochastic linear and dynamic programming. Lecture Notes

in Economics and Mathematical Systems, vol 274. Springer, Berlin Heidelberg New York
Künzi-Bay A, Mayer J (2006) Computational aspects of minimizing conditional value-at-risk. Com-

put Manage Sci 3:3–27
Lemaréchal C (1982) Basic theory in nondifferentiable optimization. Research Report No. 181,

Institut National de Recherche en Informatique at en Automatique, Domaine de Voluceau,
Rocquencourt, France

Lemaréchal C, Nemirovskii A, Nesterov Yu (1995) New variants of bundle methods. Math Program
69:111–147

Linderoth JT, Shapiro A, Wright SJ (2002) The empirical behavior of sampling methods for sto-
chastic programming. Optimization Technical Report 02-01. Computer Science Department,
University of Wisconsin-Madison

Mak W-K, Morton D, Wood RK (1999) Monte Carlo bounding techniques for determining solution
quality in stochastic programs. Oper Res Lett 24:47–56

Maros I (2003a) A generalized dual phase-2 simplex algorithm. Eur J Oper Res 149:1–16
Maros I (2003b) Computational techniques of the simplex method. Kluwer, Boston
Mayer J (1998) Stochastic linear programming algorithms. Gordon and Breach, Amsterdam
Mulvey JM, Ruszczyński A (1995) A new scenario decomposition method for large scale stochastic

optimization. Oper Res 43:477–490
Norkin VI, Pflug GCh, Ruszczyński A (1998) A branch and bound method for stochastic global

optimization. Math program 83:425–450
Prékopa A (1971) Logarithmic concave measures with applications to stochastic programming.

Acta Sci Math (Szeged) 32:301–316
Prékopa A (1973) Contributions to the theory of stochastic programming. Math Program 4:202–221
Prékopa A (1995). Stochastic Programming. Kluwer, Dordrecht
Prékopa A (2003) Probabilistic programming. In: Ruszczyński A, Shapiro A (eds) Stochastic Pro-

gramming, Handbooks in Operations Research and Management Science vol 10, pp 267–351
Elsevier, Amsterdam

Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–41
Roos C, Terlaky T, Vial J-Ph (1997) Theory and Algorithms for Linear optimization. Wiley,

Chichester
Ruszczyński A (1986) A regularized decomposition method for minimizing the sum of polyhedral

functions. Math Program 35:309–333
Ruszczyński A (2003) Decomposition methods. In: Ruszczyński A, Shapiro A (eds) Stochas-

tic Programming. Handbooks in Operations Research and Management Science, vol 10,
pp 141-211 Elsevier, Amsterdam

Ruszczyński A, Shapiro A (2003) Stochastic Programming Models. In: Ruszczyński A, Shapiro A
(eds)Stochastic Programming. Handbooks in Operations Research and Management Science,
vol 10, pp 1-64 Elsevier, Amsterdam

Ruszczyński A, Świȩtanowski A (1997) Accelerating the regularized decomposition method for
two-stage stochastic linear problems. Eur J Oper Res 101:328–342

Schrijver A (1986) Theory of linear and integer programming. Wiley, Chichester
Shapiro A (2003) Monte Carlo sampling methods. In: Ruszczyński A, Shapiro A (eds) Sto-

chastic Programming, Handbooks in Operations Research and Management Science, vol 10
pp 353–425 Elsevier, Amsterdam

Solving two-stage stochastic programming problems 353

Shapiro A, Homem-de-Mello T (1998) A simulation-based approach to two-stage stochastic pro-
gramming with recourse. Math Program 81:301–325

Shapiro A, Homem-de-Mello T (2000) On the rate of convergence of Monte Carlo approximations
of stochastic programs. SIAM J Optim 11:70–86

Szántai T (1988) A computer code for the solution of probabilistic-constrained stochastic pro-
gramming problems. In: Ermoliev Yu, Wets RJ-B (eds) Numerical Techniques for Stochastic
Optimization. Springer, Berlin Heidelberg New York

Van Slyke R, Wets RJ-B (1969) L-Shaped linear programs with applications to optimal control and
stochastic programming. SIAM J Appl Math 17:638–663

Wets RJ-B (1974) Stochastic programs with fixed recourse: the equivalent deterministic program.
SIAM Review 16:309–339

Zakeri G, Philpott AB, Ryan DM (2000) Inexact cuts in Benders decomposition. SIAM J Optim
10:643–657

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

