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Abstract. This paper presents a fuzzy bilevel programming approach to solve the
flow shop scheduling problem. The problem considered here differs from the stan-
dard form in that operators are assigned to the machines and imposing a hierarchy
of two decision makers with fuzzy processing times. The shop owner considered
higher level and assigns the jobs to the machines in order to minimize the flow
time while the customer is the lower level and decides on a job schedule in order to
minimize the makespan. In this paper, we use the concepts of tolerance membership
function at each level to define a fuzzy decision model for generating optimal (sat-
isfactory) solution for bilevel flow shop scheduling problem. A solution algorithm
for solving this problem is given.
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1 Introduction

Bilevel programming problem viewed as a problem with two DMs at two different
hierarchical levels. The higher level decision maker (HLDM), the leader, selects
his or her decision vector first and the lower level decision maker (LLDM), the
follower, select his or her decision afterward based on the decisions of the higher
level. The leader knows the functions of the followers, who may or may not know
the functions of the leader.

The Stackelberg solution has been employed as a solution approach to bilevel
programming problems, and a number of solution algorithms for obtaining the
solution have been developed [3,4,15,16]. Recently Lai [10] and Shih, Lai and Lee
[13] have proposed a solution concept different from the concept of Stackelberg
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concept. Brad and Moore have been proposed a branch and bound algorithm for
treating the bilevel programming problem [5].

Karlof and Wang [8] developed two level branch and bound algorithm to solve
an altered form of the standard flow shop scheduling problem modeled as a bilevel
programming problem in a deterministic case. In this paper, we will use the concept
of tolerance membership function to obtain the compromise of the various objective
functions of the crisp programming problem. In fact the fuzzy decision making
which allows various different degree of control is ideally suited for a manufacturing
problems like the flow shop scheduling problem. In addition, this approach has the
following advantages [17]:

1. The problem is simplified and the representation is more realistic and practical.
This is because we are treating a fuzzy and not well defined problem as it is.

2. The use of membership functions to represent the goals of the DMs in different
levels offers exceptional flexibility for the decisions proposed.

The flow shop scheduling problem is to process n jobs by m machines where
each job has the same ordering of machines. The objective function is to min-
imize the makespan or others. The structure of the paper is as follows, Sect. 2
contains a brief introduction to bilevel programming. The description of the flow
shop scheduling problem with bilevel programming and a solution algorithm to
solve it is introduced in Sect. 3. In Sect. 4, we use the concepts of membership
functions as well as the bilevel programming flow shop scheduling problem at
each level, to develop a fuzzy decision model. In Sect. 5, we develop a solution
algorithm to solve the problem of concern. An illustrative example is provided in
Sect. 6 to demonstrate the efficiency of the proposed algorithm. Section 7 groups
conclusions.

2 Bilevel programming

Bilevel programming (BLP) problem involves two optimization problems where the
constraints region of the first problem is implicitly determined by another optimiza-
tion problem. Bilevel programming, a tool for modeling decentralized decisions,
consists of the objective of the leader at its first level and that of the follower at the
second level. BLP has been proved to be NP-hard problem.

According to the formulation of Karlof and Wang [8] for the BLP problem, we
have decision vectors, x1 and x2, where the higher level DM has control over the
vector x1 and the lower level DM has control over the vector x2. Let S be the set of
feasible choices {(x1, x2)}. Let f1 and f2 denotes the performance functions for
the DMs. The BLP problem can be stated as:

max
x1

f1(x1, x2) higher level (1a)

where x2 solves
max
x2

f2(x1, x2) lower level (1b)
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subject to
(x1, x2) ∈ S.

Then S1 = {(x1, x
∗
2 ) |f2 (x1, x

∗
2 ) = maxx2 f2(x1, x2)}is the level one feasible

region and S is the level two feasible region.

3 The flow shop scheduling problem

In standard flow shop scheduling problem, n jobs i1, ..., in are processed in a shop
containing m machines (j = 1, ..., m) where each job contains m operations and
every job follows the same ordering of machines as it is processed. In this problem,
we have many objective functions such as makespan, number of idle machines or
total flow time as stated in [1,2,6,11,12]. In this paper we consider makespan and
flow time. The makespan is the time from when the first job begins on the first
machine until when the last job finishes on the last machine. The flow time of each
job is the time from when the first job begins on the first machine until the time
when that job finishes on the last machine. The total flow time is the sum of the
flow times of the jobs.

Now suppose there are m operators in the shop. The shop owner has to pay the
operators based on the total flow time of the jobs, while the customer’s charges
based on the makespan of the jobs. Thus the objective of the shop owner is to
minimize the total flow time while the objective of the customer is to minimize
makespan. According to the time schedule, the customer has to decide the jobs
ordering. The shop owner is the higher level and the customer (reacting to the shop
owner decision) is the lower level as stated in Karlof and Wang [8].

Now let us define some necessary variables to formulate the problem

mkij = Makespan associated with operator schedule i and job schedule j ,
f tij = Flow time associated with operator schedule i and job schedule j ,

tij = Processing time of the job in the ithposition on the j thmachine,

xi+1,j = The idle time on the j thmachine between the end of the job in the

ithposition on the j thmachine and the start of the job (i + 1)thposition
on the j thmachine.

ki = 1, if operator schedule i is chosen; 0, otherwise,
rj = 1, if job schedule j is chosen; 0, otherwise.

Now we formulate the problem of concern as a bilevel programming problem

min
∑
i,j

f tij .rj .ki higher level (2a)

where rj solves

min
∑
i,j

mkij .rj .ki lower level (2b)
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subject to

m!∑
j=1

rj = 1

n!∑
j=1

ki = 1

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m!

3.1 Determining makespan

For each operator schedule and given n jobs, we have n! orderings to arrange
these jobs. We have to find an ordering which minimize the makespan. For any
sequence w = i1, ..., in, of jobs, let Ciq,j be the completion time of job iq on
machine mj , q = 1, ..., n; j = 1, ..., m. Then since the start time of job iq on
the first machine is the same as the completion time of job iq−1 on that machine,
q = 2, ..., n and the job iq can be processed on mj as soon as possible after both are
completed on mj−1 and the job iq−1 completes on mj(q = 2, ..., n; j = 2, ..., m),
we have the next relations

Ciq,1 = Ciq−1,1 + tiq ,1

Ciq,j = max
[
Ciq,j−1, Ciq−1,j

] + tiq ,j

q = 1, ..., n; j = 2, ..., m

where

Ci0,j = 0, j = 1, ..., m.

(3)

hence the makespan which is denoted by mk is equal to Cin,m and is calculated by
using (3) successively for j = 1, .., m for each q(q = 1, ..., n) in increasing order.

3.2 Determining flow time

The flow time of each job is the time from when the first job begins on the first
machine until the time when that job finishes on the last machine. Then the total
flow time is the sum of the flow times of each job. We can see that:
the flow time of the job in the first position is

f t1 = x1m + t1m

the flow time of the job in the second position is

f t2 = x1m + t1m + x2m + t2m
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the flow time of the job in the nth position is

f tn = x1m + t1m + x2m + t2m + ... + xnm + tnm

therefore the total flow times is given by:

f t =
n∑

i=1

(n + 1 − i)(xim + tim). (4)

Let k be the job sequence and then k + 1 represents the next sequence. For
a particular sequence k, let mkk and f tk be the makespan and flow time of that
sequence respectively. To determine the idle times, we have the following three
cases:

(a) When Ciq,j−1 > Ciq−1,j holds there arises an idle time of the machine mj of
the amount

xiq ,j−1 ≡ Ciq,j−1 − Ciq−1,j , q = 2, ..., n; j = 2, ..., m

(b) When Ciq,j−1 < Ciq−1,j holds there arises a waiting time for processing on
machine mj of the job iq of the amount

Wiq,j ≡ Ciq−1,j − Ciq,j−1, q = 2, ..., n; j = 2, ..., m

(c) When Cj−1,iq = Ciq−1,j holds they become

xiq ,j−1 = 0, q = 2, ..., n; j = 2, ..., m.

Note that x1i = 0, 1 ≤ i ≤ n. Let l denotes the operator schedule, the notation
l = l + 1 means go to the next sequence of operator schedule. Now we summarize
an algorithm steps to determine the makespan and its corresponding flow time.

Algorithm 1

Step 1. Set l equal to the first operator schedule.
Step 2. Set k equal to the first job sequence.
Step 3. Determine the makespan mkk by using the relations (3).
Step 4. Calculate the idle time as follows

Do q = 2, n

(a) If Ciq,j−1 > Ciq−1,j then set

xiq ,j−1 ≡ Ciq,j−1 − Ciq−1,j , j = 2, ..., m.

(b) If Ciq,j−1 < Ciq−1,j holds, then there is no idle time.
(c) If Cj−1,iq = Ciq−1,j holds then set

xiq ,j−1 = 0, j = 2, ..., m.

End do
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Step 5. Determine the total flow time by using equation (4).
Step 6. Set k = k + 1, if k exceeds last sequence go to step 7; otherwise go to step

3.
Step 7. Set l = l + 1, if l ≤ the last operator schedule go to step 2.
Step 8. Stop.

4 Fuzzy bilevel programming

Shih, Lai and Lee [13] introduced the concept of compensatory operators for ad-
justing the decision making process between the different levels and also between
the decision makers of the same level. Sinha [14] suggested a fuzzy mathematical
programming approach to obtain the solution of multi-level linear programming
problem by using linear membership functions. In our approach, we will use the
concept of tolerance membership functions and apply it to the flow shop scheduling
problem as follows: Consider the fuzzy decision making process applied to a bilevel
programming. The HLDM specifies the preferred values of his or her variables and
goals with certain amount of tolerance. This information is represented by the use of
membership functions and passed to the LLDM. LLDM obtains his or her optimum
based on goals and preferences of the higher level and then presents the results to
the higher level. If the higher level agrees with the proposed solutions, a final de-
cision is reached and this decision or solution is referred as a satisfactory solution.
If he or she rejects this proposal, the DMs in both levels will need to re-evaluate
and changes the goals and decision as well as their corresponding tolerances. This
process is continued until the satisfactory solution is reached. This strategy is very
flexible. Since the DMs in both levels first seek their optimal solutions in isolation,
it does not violate the non-cooperative idea [7,9].

4.1 HLDM problem

First, HLDM solves the following flow shop scheduling problem:

min
t̄

f t (t̄) =
n∑

i=1

(n + 1 − i)(xim + t̄ )rj ki (5)

subject to

m!∑
j=1

rj = 1,

n!∑
j=1

ki = 1,

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m! t̄ > 0,
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where t̄ = (tim, i = 1, ..., n), t̄ ∈ Rn.
To build membership function, goals and tolerances should be determined first.

However, they could hardly be determined without meaningful supporting data.
For the flow time objective function, we should first find individual best solution
f t∗ and individual worst solution f t− where

f t∗ = min
t̄

f t (t̄), f t− = max
t̄

f t (t̄). (6)

Goals and tolerances can then be reasonably set for best solution. This data can
then be formulated as the following membership function of fuzzy set theory

µf t [f t
(
t̄
)] =




1, if f t (t̄) < f t∗
(
f t− − f t (t̄)

)
(
f t∗ − f t−

) ,

0, if f t (t̄) ≥ f t∗.

if f t∗ ≤ f t (t̄) ≤ f t− (7)

Now, we can get the solution of the HLDM problem by solving the following
Tchebycheff problem [17]:

max λ (8)

subject to

µf t [f t (t̄)] ≥ λ,

λ ∈ [0, 1],
m!∑

j=1

rj = 1,

n!∑
j=1

ki = 1,

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m!

whose solution is assumed to be [t̄H , f tH , λH ].

4.2 LLDM problem

Second, in the same way, the LLDM independently solves:

min
t̄

mk(t̄) =
∑
i,j

(xim + t̄ )rj ki (9)
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subject to

m!∑
j=1

rj = 1,

n!∑
j=1

ki = 1,

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m!
t̄ > 0, i = 1, ..., n

where t̃ = (tim, i = 1, ..., n), t̃ ∈ Rn.
For the makespan objective function, the individual best solution mk∗ and in-

dividual worst solution mk− where

mk∗ = min
t̄

mk, mk− = max
t̄

mk. (10)

This information can then be formulated as the following membership functions of
fuzzy theory:

µmk[mk(t̄)] =




1, if mk(t̄) < mk∗
(
mk− − mk(t̄)

)
(
mk∗ − mk−) ,

0, if mk(t̄) ≥ mk−.

if mk∗ ≤ mk(t̄) ≤ mk− (11)

We can now get the solution of LLDM problem by solving the following Tcheby-
cheff problem:

max β (12)

subject to

µmk[mk(t̄)] ≥ β, i = 1, ..., n

β ∈ [0, 1],
m!∑

j=1

rj = 1,

n!∑
j=1

ki = 1,

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m!.

Whose solution is assumed to be [t̄L, mkL, βL].
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Now the above solution of HLDM and LLDM are disclosed. However, two
solutions are usually different because of conflicts of nature between two levels
objective functions [15]. The HLDM knows that using the optimal decision t̄H as
a control factors for LLDM is not practical. It is more reasonable to have some
tolerance that gives the LLDM an extent feasible region to search for his or her
optimal solution, and also reduce searching time or interactions. In this way, the
range of the decision t̄ should be around t̄H with its maximum tolerance t̄1 and the
following membership function can be stated as:

µ′̄
t
(t̄ ) =




t̄ − (t̄H − t̄1)

t1
im

, if t̄H − t̄1 ≤ t̄ ≤ t̄H ;

(t̄H + t̄1) − t̄

t̄1 , if t̄H ≤ t̄ ≤ t̄H + t̄1;

0, otherwise.

(13)

where t̄H is the most preferred solution, the (t̄H − t̄1) and (t̄H + t̄1) is the worst
acceptable decision and that satisfaction is increasing within the interval of [t̄H −
t̄1, t̄H ] and decreasing within [t̄H , t̄H + t̄1], and other decisions are not acceptable.

In order to supervise the LLDM to search for solutions in the right direction,
the HLDM should define his or her goal with tolerance to the LLDM. The HLDM’s
goals may reasonably consider that f t < f tH is absolutely acceptable and f t ≥
f tH is absolutely unacceptable. This is due to the fact that the LLDM obtained
the optimum at (t̄L), which in turn provides the HLDM the objective function
value f t ′, makes any f t > f t ′ unattractive in practice. The following membership
function of the HLDM can be stated as:

µ′
f t [f t (t̄)] =




1, if f t (t̄) < f tH ;
(
f t ′ − f t (t̄)

)
(
f tH − f t ′

) , if f t ′ ≤ f t (t̄) < f tH ;

0, if f t (t̄) ≥ f t ′.

(14)

For each possible solution available to the HLDM, the LLDM may be willing to
build a membership function for his or her objective function so that he or she can
rate the satisfaction of each solution. The LLDM has the following membership
function for his/her goals:

µ′
mk[mk(t̄)] =




1, if mk(t̄) < mkL;
(
mk′ − mk(t̄)

)
(
mkL − mk′) , if mk′ ≤ mk(t̄) < mkL;

0, if mk(t̄) ≥ mk′.

(15)

where mk′ = mk[(t̄)]. Because of mkL is the best solution of (12), mk(t̄) < mkL

is impossible while the HLDM gives more constraints to the LLDM. The LLDM
will not accept any mk(t̄) > mkL for some reason as the HLDM, stated above [13].
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Now, in order to generate the satisfactory solution for both DM’s, we can solve
the following Tchebycheff problem:

max δ (16)

subject to

[(t̄H + t̄1) − t̄]/t̄1 ≥ δ,

[t̄ − (t̄H − t̄1)]/t̄1 ≥ δ,

µ′
f t [f t (t̄)] = [f t ′ − f t (t̄)][

f tH − f t ′
] ≥ δ,

µ′
mk[mk(t̄)] = [mk′ − mk(t̄)][

mkL − mk′] ≥ δ,

δ ∈ [0, 1],
m!∑

j=1

rj = 1,

n!∑
j=1

ki = 1,

ki ∈ {0, 1}, i = 1, ..., n!
rj ∈ {0, 1}, j = 1, ..., m!.

Where δ is the overall satisfaction. By solving problem (16), if the HLDM is satisfied
with this solution, then a satisfactory solution is reached. Otherwise, he or she should
provide new membership functions for the fuzzy variables and objectives to LLDM
until a satisfactory solution is reached.

5 The bilevel programming algorithm

First, we have to solve the HLDM and LLDM separately. Two solutions are usually
different because of conflicts of nature between two levels objective functions. In
our proposed algorithm, if the HLDM satisfied with the solution of problem (16),
(we denote to this solution by (t̄0, f t0, mk0)) a satisfactory solution is reached.
If not satisfied, the high level should provide a new membership functions for the
decision variables and the objective to the lower level. This process is continued
until a satisfactory solution is reached. Combined with the set of decisions and the
tolerances, this solution becomes a satisfactory solution of problems (2a) and (2b).
The proposed algorithm can be summarized in the following steps.
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Algorithm 2.

Step 1. The HLDM and the LLDM solves his or her problem (2a) and (2b) respec-
tively by using Algorithm 1.

Step 2. The HLDM solves his or her problem as follows:
(2a). Find individual solution by solving (5) and (6), we get f t∗ and f t−.

(2b). By using (7), build the membership functions µf t (t̄), then solve (8) whose
solution is [t̄H , f tH , λH ].

Step 3. The LLDM solves his or her problem as follows:
(3a). Find individual solution by solving (9) and (10), we get mk∗ and mk−.
(3b). By using (11), build the membership functions µmk(t̄), then solve (12)

whose solution is [t̄L, mkL, βL].
Step 4. If [t̄H , f tH , λH ] = [t̄L, mkL, βL], the optimal or preferred solution of

the system is obtained. Stop. Otherwise, go to Step 5.
Step 5. The HLDM decides his or her tolerances on the goal and the decisions

in terms of membership functions by using (13) and (14). Meanwhile,
the LLDM also decides his or her tolerance on the goal in terms of the
membership functions by using (15). These membership functions will
serve as extra constraints in forming problem (16).

Step 6. Solve problem (16). If the DMs at each level are satisfied with the solution,
an optimal (satisfactory) solution is reached. Stop. Otherwise, go to step 5
to obtain new membership functions.

6 Illustrative example

Consider a simple example with three machines (and three operators) and three
jobs. The time table of the three operators is as follows:

Job 1 Job 2 Job 3

Operator 1 Machine 1 1 6 5
Machine 2 4 2 7
Machine 3 10 8 4

Operator 2 Machine 1 9 7 3
Machine 2 3 9 5
Machine 3 2 3 6

Operator 3 Machine 1 6 8 2
Machine 2 7 8 5
Machine 3 6 6 1

Let l = 123 be the first operator schedule and k = 123 be the first job schedule.
Makespan of this sequence is calculated as in the following table
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iq 1 2 3

Ciq ,1 1 7 12
Ciq ,2 4 16 21
Ciq ,3 10 16 23

Then the Makespan at this sequence which is denoted by mk1 is equal to 23. From
the above table we get x13 = 4, x23 = 6, x33 = 0, then

f t =
3∑

i=1

(3 + 1 − i)(xi3 + ti3) = 3(4 + 6) + 2(6 + 6) + 1 = 55.

By the same way, we calculate the makespan of the sequences k =
132, 213, 231, 312 and 321 as in the following tables

k = 132

iq 1 3 2
Ciq ,1 1 6 12
Ciq ,2 4 11 21
Ciq ,3 10 12 27

mk2 = 27 and f t2 = 65

k = 213

iq 2 1 3
Ciq ,1 6 7 12
Ciq ,2 15 18 23
Ciq ,3 21 27 28

mk4 = 29 and f t4 = 100

k = 231

iq 2 3 1
Ciq ,1 6 11 12
Ciq ,2 15 20 23
Ciq ,3 21 22 29

mk3 = 28 and f t3 = 87

k = 312

iq 3 1 2
Ciq ,1 5 6 12
Ciq ,2 10 13 22
Ciq ,3 11 19 28

mk5 = 28 and f t5 = 76

k = 321

iq 3 2 1
Ciq ,1 5 11 12
Ciq ,2 10 20 23
Ciq ,3 11 26 32

mk6 = 32 and f t6 = 100

and by the same way we can calculate the rest of job schedules for each operator
schedules (l = 132, 213, 231, 312 and 321). We find that minimum flow time is
equal to 55 and minimum makespan equal to 23 which are achieved at l = 123 and
k = 123. Then go to Algorithm 2.
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First, the HLDM solves his or her problem as follows:

1. Finds the optimal solution by solving (5) and (6), we get

(f t∗, f t−) = (55, 109)

2. By using (7), build membership function µf t (t̄) then solve (8) as follows:

max λ

subject to

−3t13 − 2t23 − t33 + 54λ ≥ −85,

λ ∈ [0, 1],
t13, t23, t33 > 0

whose solution is (tH13, t
H
23, t

H
33) = (1, 1, 1), f tH = 30 and λH = 1.

Second, the LLDM solves his or her problem as follows:

1. Finds the optimal solution by solving (9) and (10), we get

(mk∗, mk−) = (23, 32)

2. By using (11), build membership function µmk(t̄) then solve (12) as follows:

max β

subject to

−t13 − t23 − t33 + 9β ≥ −22,

β ∈ [0, 1],
t13, t23, t33 > 0

whose solution is (tL13, t
L
23, t

L
33) = (1, 1, 2), mk− = 14 and βL = 1.

Third,

1. Assume the HLDM’s control decision variables tHi3 , i = 1, ..., 3 is around 0
with the tolerances 1, 2, and 3 respectively.

2. By (13), (14) and (15), build membership functions µ′̄
t
(t̄ ), µ′

f t (t̄), µ
′
mk(t̄). The

LLDM then solves the following problem of (16):

max δ
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subject to

t13 − δ ≥ 0,

−t13 − δ ≥ −2,

t23 − 2δ ≥ −1,

−t23 − 2δ ≥ −3,

t33 − 3δ ≥ −2,

−t33 − 3δ ≥ −4,

−3t13 − 2t23 − t33 + δ ≥ −7,

−t13 − t23 − t33 − δ ≥ −3,

t13, t23, t33 > 0,

δ ∈ [0, 1].
Whose solution is

(t0
13, t

0
23, t

0
33) = (0.86, 0.71, 0.57), (f t0, mk0) = (28.57, 12.14) and δ = 0.86.

If the HLDM is satisfied with the above solution, then a satisfactory solution
is reached. Otherwise, he or she should provide new membership functions for
the control variable and objectives to the LLDM until a satisfactory solution is
reached.

7 Conclusions

This paper has proposed a bilevel flow shop scheduling model and a solution al-
gorithm for solving this problem. This solution uses the concepts of tolerance
membership functions at each level to develop a fuzzy decision model for generate
satisfactory solution for the problem of concern.

Based on Lai’s satisfactory solution concepts, the proposed solution algorithm
proceeds from higher level (shop owner) to lower level (customer) in a natural and
straightforward manner. The HLDM specifies his or her objectives and decisions
with possible leeway, which are described by membership function of fuzzy set
theory. This information then constraints the LLDM feasible space. The novelties of
our approach are mainly concentrated in the use of tolerance membership functions
at each level and the introduction of an algorithm to solve a bilevel flow shop
scheduling problem using these functions. An illustrative example has been given
to demonstrate the efficiency of the proposed algorithm.

However, there are some open points in this area such as:

1. Fuzzy approach is needed for multi-level flow shop scheduling problem.
2. On the basis of the proposed method, other membership functions such as

piecewise, exponential, hyperbolic, hyperbolic-inverse or some specific power
functions may be needed for practical reasons.
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