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Abstract Advantages and limitations of the existing models for practical forecasting of
stock market volatility have been identified. Support vector machine (SVM) have been pro-
posed as a complimentary volatility model that is capable to extract information from multi-
scale and high-dimensional market data. Presented results for SP500 index suggest that SVM
can efficiently work with high-dimensional inputs to account for volatility long-memory and
multiscale effects and is often superior to the main-stream volatility models. SVM-based
framework for volatility forecasting is expected to be important in the development of the
novel strategies for volatility trading, advanced risk management systems, and other appli-
cations dealing with multi-scale and high-dimensional market data.

1. Introduction

Availability of high-resolution and multi-source data increases in many fields of practical
interest including financial industry. However, it is well-known that the majority of advanced
statistical and machine learning algorithms, including neural networks (NN), can encoun-
ter a set of problems called “dimensionality curse” when applied to high-dimensional data
(Bishop 1995). Nonstationarity of the time series can also impose significant limitations on
data available for training that often leads to poor generalization ability of the model. The
latter feature is especially relevant for financial applications.

A promising algorithm that can tolerate high-dimensional and incomplete data is support
vector machine (SVM) (Vapnik 1995, 1998). SVMs have recently been receiving significant
interest due to excellent results in various applications (Cristianini and Shawe-Taylor 2000).
SVM combines the training efficiency and simplicity of linear algorithms with the accuracy
of the best nonlinear techniques as well as systematic approach for optimal generaliza-
tion. In many practical applications SVMs can tolerate high-dimensional and/or incomplete
data and often demonstrate performances superior to the best available techniques includ-
ing classical NNs (Cristianini and Shawe-Taylor 2000). Recent successful applications of
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SVM-based adaptive systems include space–weather forecasting (Gavrishchaka and Ganguli
2001), image/object classification (Pontil and Verri 1998), face detection and recognition
(Osuna et al. 1997), text categorization (Joachims 1998), process identification in high-
energy physics (Vannerem et al. 1999), cancer diagnostic and prognosis (Mangasarian et al.
1995), gene classification (Brown et al. 1999), as well as many other scientific, engineering,
medical, and biological applications.

Financial time-series forecasting is another challenging area where advantages of the
SVM-based systems could be very important. Although some financial applications of the
SVM have been reported (Edelman 2001; Fan et al. 1999; Van Gestel et al. 2001), the full
range of potential SVM applications in finance remains largely unexplored. Recently we
have proposed SVM-based model for the volatility forecasting from the multi-scale and
high-dimensional market data (Gavrishchaka and Ganguli 2003). Application of our model
to foreign exchange data have demonstrated that SVM can efficiently extract information
from the high-dimensional inputs of lagged returns and in many regimes can outperform the
main-stream volatility models.

Similar SVM-based volatility model can also be applied to stock market. Stock volatility
is a very important quantity for derivative pricing, value-at-risk calculations in portfolio risk
management, and as one of the components used for decision making in trading systems.
Although many stylized facts of foreign exchange and stock market data are similar, stock
market has important distinct signatures. This includes such universal features as pronounced
leverage effect (Bouchaud et al. 2001) and importance of trading volume data that is widely
accepted by technical analysts. Individual stock dynamics may also have some specific and
less understood signatures as well as significant psychological component in its response
to the market news. Due to its ability to extract information from the high-dimensional and
incomplete data, SVM is well-suited to incorporate many of the above effects in the unified
framework for stock market volatility forecasting.

In this paper we expand our previous work on SVM-based volatility model (Gavrishchaka
and Ganguli 2003) to demonstrate its performance on stock market data. Daily closing prices
of the SP500 index have been chosen for this purpose. It has been shown that SVM-based
volatility model can be comparable and often superior to the main-stream models such as
generalized ARCH (GARCH) and its generalizations. Other possible configurations of the
SVM-based model for the further improvement of the volatility forecasting are also discussed.

2. Stylized facts of the stock market data

In this section we define the main measures used to characterize financial time series and
describe their universal properties revealed in numerous empirical studies. The time series
that will be used in this paper is shown in Figure 1a. These are daily closing prices of the
SP500 index from 11 October 1999 to 11 November 2003. Nonstationarity of the moving
average of the time series is clear from this figure. The more practical quantity is the return
given by

ri = ln(Si/Si−1), (1)

where i is an index of a homogeneous time sequence (e.g., the end of each trading day) and
Si is the closing index or stock price at time ti . The daily return time series corresponding
to Figure 1a is shown in Figure 1b. The moving average of the return time series is almost
stationary and close to zero. Another important quantity of the financial time series is vola-
tility. Optimal definition of the realized volatility depends on the particular application and
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Fig. 1 a Closing price. b Daily returns. c Autocorrelation function of daily returns (dotted line) and abso-
lute returns (solid line). d lead–lagged correlations of the fine and coarse-grain volatilities as a function of
positive/negative lag in weeks, obtained from the SP500 index data (from 11 October 1999 to 11 November
2003)

properties of the time series of interest. In many cases realized volatility at time ti is defined
as a standard deviation of returns in some interval [ti−n , ti ]. For purposes of this paper we
consider realized volatility to be vi = |ri | or vi = r2

i that is a reasonable choice in many
other applications as well (Dacorogna et al. 2001).

Extensive empirical studies of the stock market data revealed several universal or stylized
facts. Returns have been found to have only very short-range correlation with typical charac-
teristic time as small as just a few minutes (Bouchaud and Potters 1999; Dacorogna et al. 2001;
Mantegna and Stanley 2000). This absence of linear correlation is illustrated in Figure 1c
where dotted line represents the autocorrelation function of daily returns computed from
SP500 closing price. Here data from Figure 1b have been used. On the other hand volatilities
(e.g., represented by absolute values of returns) are clustered and have long-range mem-
ory (up to several months) (Bouchaud and Potters 1999; Dacorogna et al. 2001; Mantegna
and Stanley 2000). The volatility autocorrelation function exhibits hyperbolic (power-law)
behavior. This is illustrated in figure 1c for the same SP500 data (solid line). The other
important fact is that probability density function of returns is fat-tailed and leptokurtic at
small time scales (from several minutes to several days) and approaches Gaussian at larger
scales (Bouchaud and Potters 1999; Dacorogna et al. 2001; Mantegna and Stanley 2000).
Volatilities have also been found to be negatively correlated with corresponding returns.
This leverage effect characteristic for stock market data has been clarified in recent detailed
empirical studies (Bouchaud et al. 2001).



150 CMS (2006) 3:147–160

Recently introduced heterogeneous market hypothesis (Dacorogna et al. 2001) suggests
that traders (market participants) with different time horizons are interested in the volatility
on different time grids. A coarse time grid reflects the view of a long-term trader and a fine
time grid that of a short-term trader. The “coarse” (vc) and “fine” (v f ) volatilities can be
defined as

vc(ti ) = |
n∑

j=1

r(�t∗, ti−1 + j�t∗)|, (2)

and

v f (ti ) =
n∑

j=1

|r(�t∗, ti−1 + j�t∗)|, (3)

where �t∗ = �t/n, �t = ti − ti−1, the first return argument is the time scale over which
return is computed, and the second argument is the time of this return measurement. For
example, if we consider weekly volatility measures (on business time scale), then vc is given
by | ∑5

i=1 ri | and v f by
∑5

i=1 |ri |, where ri is a daily return at the i-th day.
An important effect found for both foreign exchange (Dacorogna et al. 2001) and stock

(Arneodo et al. 1998) markets is asymmetric lead–lag correlation of volatilities. Lagged cor-
relation is a linear correlation of the two time series one of which is shifted (lagged) in time.
Lagged correlation reveals causal relations and information flow structures in the market. To
illustrate effect of asymmetric volatility correlations we consider fine volatility defined by
averaged absolute returns over five working days and coarse volatility defined as absolute
return over a full (working) week (i.e., n = 5 in equations (2), (3)). Lead–lagged correla-
tions of these volatilities obtained from SP500 closing price (from Figure 1a) are shown in
Figure 1d. We see a clear asymmetry: the coarse volatility predicts fine volatility better than
the other way around, i.e., information flows from large to small scales. This is consistent
with heterogeneous market hypothesis since short-term traders can react to clusters of coarse
volatility, while the level of fine volatility does not affect strategies of long-term traders.

In the next section we review some of the existing volatility models. Although there is
no universal volatility model that incorporates or explains all of the stylized market facts,
different models focus on different set of features that finally determines their accuracy and
applicability scope.

3. Limitations of the existing volatility models

There are two general classes of volatility models in a widespread use: deterministic and
stochastic models. Deterministic models consider volatility (conditional variance) to be a
deterministic function of the past returns (and/or other observables) that are described by
some stochastic process (e.g., Wiener process) (Bollerslev 1986; Engle 1982; Engle and
Patton 2001; Tsay 2002). Stochastic volatility models describe volatility by its own stochas-
tic process (Masoliver and Perello 2001; Tsay 2002). Stochastic volatility models are more
flexible than deterministic models. However, it is significantly more difficult to analyze and
calibrate these models from the available market data. Therefore stochastic volatility models
can be impractical for some applications and are not yet widely accepted by practitioners. In
this paper we will consider only deterministic models.

A common example of the deterministic volatility models is autoregressive conditional
heteroskedastic (ARCH)-type models (Bollerslev 1986; Engle 1982). These models assume
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a particular stochastic process for the returns and a simple functional form for the volatility.
Volatility in these models is an unobservable (latent) variable. The most widely used model
of this family is GARCH process (Bollerslev 1986). GARCH(p, q) process defines volatility
as

σ 2
t = α0 +

p∑

i=1

αi r
2
t−i +

q∑

i=1

βiσ
2
t−i , (4)

where return process defined as

rt = σtεt . (5)

Here εt is an identically and independently distributed (i.i.d.) with zero mean and variance 1.
The most common choice for the return stochastic model (εt ) is a Gaussian (Wiener process).
However, to take into account realistic fat-tailed return distributions, GARCH model is also
used with Student-t distribution of returns. Parameters αi and βi from equation are estimated
from historical data by maximizing the likelihood function which depends on the assumed
return distribution.

GARCH and other ARCH-type processes is the most common choice of the volatility
model by practitioners. GARCH process can reproduce a number of known stylized vola-
tility facts including clustering and mean reverting. Explicit specification of the stochastic
process and simplified (linear) functional form for the volatility allows to do simple analysis
of the model properties and its asymptotic behavior. However assumptions of the ARCH-
type models also impose significant limitations. For example, GARCH(p, q) model does not
cover leverage and general nonlinear effects. Model parameter calculation from the market
data is practical only for low-order models (small p and q), i.e., in general, it is difficult
to capture direct long memory effects. As discussed later volatility multiscale effects are
also not covered. Finally, the model gives unobservable quantity that leads to difficulty in
quantifying the prediction accuracy and comparison with other models.

To resolve some of GARCH limitations, a number of extensions have been proposed and
used by practitioners. For example, since GARCH model depends only on the absolute values
of returns (r2

i ), it does not cover leverage effect. Different forms of leverage effect have been
introduced in EGARCH (Nelson 1991), TGARCH (Zakoian 1994), and PGARCH (Ding et
al. 1993) models that are given below.

ln(σ 2
t ) = α0 +

p∑

i=1

αi
|rt−i | + γi rt−i

σt−i
+

q∑

i=1

βi ln(σ 2
t−i ), (6)

σ 2
t = α0 +

p∑

i=1

αi r
2
t−i +

p∑

i=1

γi St−i r
2
t−i +

q∑

i=1

βiσ
2
t−i , (7)

σ d
t = α0 +

p∑

i=1

αi (|rt−i | + γi rt−i )
d +

q∑

i=1

βiσ
d
t−i , (8)

Here γi is a leverage parameter. For TGARCH model St−i = 1 for rt−i < 0 and St−i = 0
otherwise. For PGARCH d is a positive number that can also be estimated together with αi ,
βi , and γi coefficients. However, majority of the mentioned limitations cannot be resolved
in a self-consistent fashion.

A number of nonlinear extensions of the ARCH-type framework have been proposed. For
example, Donaldson and Kamstra (1997) proposed NN-based volatility model. They found
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that a proper modeling of nonlinearities captures volatility effects that are overlooked by
traditional models like GARCH and its extensions.

C. Schittenkopf et al. (1998, Submitted) added a detailed analysis of the distributional
assumptions underlying NN-based volatility models. They found that models with nonG-
aussian distributions (mixture of gaussians or Student-t) are superior to those with Gaussian
distributions. This is due to heteroskedastic nature of the financial time series and fat-tail
nature of return distribution. NonGaussian (mixture of gaussians) models have been formu-
lated as mixture density NNs (Bishop 1995) where appropriate generalization of a simple
Gaussian loss function (mean squared error) is made. In some regimes, mixture density NNs
have been shown to perform significantly better than GARCH-type models. Potential limi-
tations of the NN-based models can be related to high-dimensional inputs (“dimensionality
curse”, Bishop 1995) in such applications as small-scale volatility forecasting.

One of the significant limitations of the existing ARCH-type and similar deterministic
volatility models is their inability to capture the heterogeneity of traders acting at differ-
ent time horizons. For example, if the empirical data can be described as generated by one
GARCH process at one particular data frequency, the dynamics of the data sampled at any
other frequency is theoretically determined by temporal aggregation (or disaggregation) of
the original process. These derived processes at different frequencies can be compared to
empirically estimated processes at the same frequencies. Significant deviation between the-
oretical and empirical results reject hypothesis of only one GARCH process responsible for
data generation (Dacorogna et al. 2001; Engle and Patton 2001). In other words model param-
eters obtained for the data of different frequencies are significantly different. It means that
there is more than one relevant frequency in the volatility generation. This is manifestation
of the presence of many independent volatility components in the data, i.e., the signature of
market heterogeneity.

As discussed earlier there is asymmetry in the interaction between volatilities measured
at different frequencies (see Figure 1d). A coarsely defined volatility predicts a fine volatility
better than the other way around. This effect is not present in a simple GARCH model. More
complex types of ARCH models have to be developed to account for the heterogeneity that is
especially pronounced in high-frequency data. One of such approaches is the Heterogeneous
Autoregressive Conditional Heteroskedasticity (HARCH) model (Dacorogna et al. 2001).

The HARCH process has a variance equation based on multiscale returns, i.e., returns
computed over time intervals of different sizes

σ 2
t = c0 +

n∑

j=1

c j




j∑

i=1

rt−i




2

, (9)

where return process is still given by (5) and c j are parameters of the model. The terms of
(9) reflect the component structure of the market in a natural way. HARCH model is rather
different from the typical ARCH model. For example HARCH(2) model can be rewritten in
two forms:

σ 2
t = c0 + c1r2

t−1 + c2(rt−1 + rt−2)
2, (10)

or

σ 2
t = c0 + (c1 + c2)r

2
t−1 + c2r2

t−2 + 2c2rt−1rt−2. (11)

The last form (11) can be identified as ARCH(2) model plus an important mixed term rt−1rt−2,
i.e., signs of returns matter.

HARCH can reproduce empirical behavior of lagged correlations as well as the long mem-
ory of volatility. This is a qualitative difference between GARCH model and its variations.
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For example, fractionally integrated GARCH (FIGARCH) process (Baillie et al. 1996) has
been designed to model the long memory but cannot reproduce the lead–lag correlations
since it is still based on returns measured over one time scale.

Although HARCH model is able to capture multiscale nature of volatility, application
of the HARCH model in its original form can be computationally prohibitive especially for
high-frequency volatility. This is due to many free parameters (corresponding to different
market components) that need to be estimated from the market data. For example modeling of
the intraday volatility can easily result in hundreds of free parameters since small-scale vola-
tility depends on many larger scale volatilities. To make HARCH model practical, additional
restriction on the number of independent market components has to be applied. This is done
by clustering adjacent components and assuming the coefficients c j to be equal across the
same cluster. No more than seven clusters (components) are usually considered (Dacorogna
et al. 2001).

In the next section we review our SVM-based volatility model (Gavrishchaka and Ganguli
2003) that can relax a number of restrictive assumptions of the GARCH/HARCH models
including limitation on the number of independent market components.

4. SVM-based volatility model

Recently we have proposed SVM-based volatility model and applied it to foreign exchange
market data (Gavrishchaka and Ganguli 2003). Here the same model is used for stock market
volatility forecasting. We start with a short description of our original model.

SVMs developed by Vapnik Vapnik (1995, 1998) have recently been receiving signifi-
cant interest due to excellent results in various applications (Cristianini and Shawe-Taylor
2000). SVM is a combination of a kernel-based approach and a structural risk minimization
(SRM) principle (Vapnik 1995, 1998). First step is a nonlinear mapping from the input to a
higher-dimensional feature space. Kernel-based approach allows to represent the discriminant
function in high-dimensional feature space without explicit dependence on the feature space
dimensionality. Kernel-based machine decouples the number of free parameters (related to
the machine capacity) from the size of the input space which can be very large or even infinite.
SRM provides solid theoretical grounds for optimization of the SVM generalization ability
that is often superior to other approaches used in machine learning algorithms.

In general, training of the SVM for classification and support vector regression (SVR)
reduces to the minimization problem with constraints that is a typical quadratic program-
ming problem (Chang et al. 2000). Application of the SVR also involves finding adequate
loss function. Loss function should not only be able to correctly approximate noise distribu-
tion of the modeled data but also have a suitable form for optimization algorithm used in a
particular SVR implementation. The most common choice is the original ε-insensitive loss
function (ε-ILF) (Cristianini and Shawe-Taylor 2000; Vapnik 1995, 1998) which is similar to
loss functions used in the field of robust statistics. It has been shown (Pontil et al. 1998) that
the use of ε-ILF is justified under assumption that the noise is a superposition of Gaussian
processes. This noise model is quite suitable for heteroskedastic market data we are interested
in, and ε-ILF will be used in our volatility model.



154 CMS (2006) 3:147–160

The optimization problem for the ε-SVR is given by

min
α,α∗

[
1

2
(α − α∗)T Q(α − α∗) + ε

l∑

i=1

(αi + α∗
i ) +

l∑

i=1

yi (αi − α∗
i )

]
,

l∑

i=1

yi (αi − α∗
i ) = 0, 0 ≤ αi , α

∗
i ≤ C, i = 1, . . . , l (12)

Here C > 0 is a regularization parameter (soft margins), (yi , xi) is a training set, l is a number
of training samples, Qi j ≡ K (xi , x j ) is a positive semidefinite matrix, and K is a kernel
function representing inner product of the feature vectors. ε-ILF is given by Lε(x, y, f ) =
|y − f (x)|ε = max(0, |y − f (x)| − ε), where f = ∑l

i=1(−αi + α∗
i )K (xi , x) + b, x ∈ Rn ,

y ∈ R1, and b ∈ R1 is a constant. Approximation function f is equivalent to the hyperplane
in the feature space implicitly defined by the kernel K that solves the optimization problem
(12).

Although SVM training is a typical quadratic programming problem, due to the specifics
of SVM applications such as large data sets and high density of the Q-matrix, standard algo-
rithms can become impractical. Recent developments mainly include algorithms that employ
various decomposition techniques (Cristianini and Shawe-Taylor 2000), where at any time a
fixed size subset of αi is updated, while others are kept constant. Various heuristics are used
for choosing a working set at each step. Here we use an algorithm described by Chang et al.
(2000) and implemented as LIBSVM library (www.csie.ntu.edu.tw/ cjlin/libsvm).

Applicability of the SVM (SVR) model to our problem is based on the assumption that a
measure of stock or index volatility σ can be described as a nonlinear function F of a time
series of returns r :

σ 2
i = F[ri−1, ri−2, ..., ri−p], (13)

where index i− j correspond to time (ti − j dt), dt is a time lag interval and T = p dt is a total
length of the memory for previous inputs. In the following, SVM(p) notation will be used
for the above model. Since F could be any nonlinear function this framework automatically
covers multiscale dependencies in a more general form than HARCH model.

Practical usage of the described SVM models requires specification of the volatility σ in
(13). In this paper, we adopt the most common choice as σ 2

i = r2
i . However, in general, other

practical volatility measures can be used in the described framework. For example, SVM can
be trained on σi time series that is calculated using intraday return data from day i (Andersen
et al. 2000).

We need also to ensure that trained SVM model will always output nonnegative numbers
for σ 2. This is achieved by choosing mapping function as

σ 2
i = exp(F[ri−1, ri−2, ..., ri−p]). (14)

In operation terms it means that SVM is trained on ln(r2) instead of r2, and exp mapping is
applied to the SVM output.

Since the main advantage of the SVM is its ability to handle high-dimensional data,
SVM-based volatility model can cover long memory and multiscale effects without restric-
tive assumptions required by other models. For example, unlike HARCH model (Dacorogna
et al. 2001), SVM will not require strict limitations on the number of independent market
components. Our volatility model (13) also includes an important leverage effect (Bouchaud
et al. 2001) in the most general form. As discussed later, SVM model has an advantage over
other frameworks to study effects of trading volume and other factors on the accuracy of the
volatility forecasting.
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5. Results

In this section we will illustrate the ability of the SVM-based volatility model to efficiently
extract information from high-dimensional market data and compare its performance to the
common benchmark models. As benchmark we use the main-stream GARCH-type models
(4)–(8) as well as “naive” model that uses current volatility value as a next step prediction.
Since only (1,1) input configuration of GARCH-type models is widely used in practice (due
to stability and technical simplicity), we also restrict our benchmark GARCH models to this
input dimensionality.

In this example we use SP500 data shown in Figure 1. Steps of our analysis include the
choice of a 750 day time window and shifting this window with a step of 10 business days
to illustrate model sensitivity to the training and test data. SP500 data from 11/10/1999 to
12/10/2003 have been used. First 500 days of data in each window are used for training and
validation. Remaining 250 days of data are used as test sets.

Cross-validation procedure is used to optimize SVM parameters such as regularization
parameter C , ε-parameter of the loss function, coefficients of the kernel function, and the
type of the kernel function itself. Optimization is performed with respect to a linear corre-
lation coefficient between model outputs and corresponding real data. Final conclusions of
the model performance are based on the results obtained on the test set.

As mentioned in the previous section, SVM model in the form (13) incorporates both long
memory and multiscale effects. To demonstrate that SVM can efficiently extract information
from lagged return vectors of high-dimension we trained SVMs with small and large number
of lagged returns as inputs. We found that model with ∼ 10 inputs demonstrates stable per-
formance in most regimes. Therefore in the following only SVM(10) model will be used. We
also found that among common kernel types radial basis function is an optimal choice for our
application. Kernel based on radial basis function is given by: K (xi , x j ) = exp(−γ |xi −x j |2),
where γ is a constant.

Our main purpose was to demonstrate stable performance of the SVM that is comparable
or superior to the benchmark models. The search of the optimal parameters (C , ε, and γ ) that
warranty stable generalization ability of the SVM is often difficult and application-depen-
dent task (Chapelle and Vapnik 2001). In our problem, variance of the SVM out-of-sample
performance with optimal parameter values obtained from n-fold (3 ≤ n ≤ 10) cross-val-
idation procedure, was above that of the GARCH-type benchmark models. We found that
reduction of the parameter range available for optimization leads to significant stabilization
of the SVM performance. This procedure makes SVM model more conservative. However,
even the most conservative model (with constant set of parameters for all regimes) demon-
strates performance that is consistently superior to the naive and GARCH(1,1) models and
comparable to the best model from the pool of GARCH-type models.

In Figure 2, we compare performance of SVM(10) with a fixed set of parameters (C = 20,
ε = 0.15, and γ = 0.015) to that of the naive and GARCH(1,1) models (solid, dashed, and
dash-dotted lines, respectively). Correlation of the model prediction (σ ) with a real data (|r |)
for different SP500 data windows shifted from a base window by a variable number of busi-
ness days: (a) chronological order, (b) sorted distribution. SP500 data are used as described
above. It should be mentioned that GARCH outputs latent (unobservable) variable. Therefore
measuring GARCH model performance with respect to realized r2 (or |r |) time series is an
approximation frequently used in practice (Tsay 2002).

It is clear from Figure 2, that SVM(10) significantly outperforms naive model at all times
and consistently outperforms GARCH(1,1) model as well. It is also clear that performance
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Fig. 2 Linear correlation of real and model volatilities for different SP500 data windows shifted from a
base window by a variable number of business days. a Chronological order. b Sorted distribution. Results for
SVM(10), naive, GARCH(1,1), and the best GARCH-type models are shown by solid, dashed, dot-dashed,
and dotted lines, respectively. SVM(10) with constant parameters (C = 20, ε = 0.15, and γ = 0.015) is
used. Each window consists of 500 training and 250 testing data points. Windows are shifted with a step of
10 business days. Starting window (shift=0) ends at 12 October 2003

of both SVM and GARCH model are quite sensitive to the data set used. Superiority of the
SVM model remains largely unchanged for other periods of the SP500 time series.

Out-of-sample performance of the best model from the pool of GARCH(1,1), EGARCH(1,1),
TGARCH(1,1), and PGARCH(1,1) models is shown in Figure 2 by dotted line. The choice
of the best model is based on its performance on training set as would be the case in practical
applications. The best model changes as data window shifts. In most cases, the best model is
either EGARCH or TGARCH. It is clear that performance of the SVM(10) model remains
comparable to the best GARCH model across different regimes.
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Table 1

Model 25% 50% 75%

SVM(10) 13.2 16.4 22.5
GARCH(1,1) 12.9 14.1 14.9
EGARCH(1,1) 11.7 13.6 16.7
TGARCH(1,1) 9.02 12.0 14.5
PGARCH(1,1) 10.5 12.6 14.4

Ljung–Box Statistics for r2
i /σ 2

i time series

Table 2

Model 25% 50% 75%

SVM(10) 0.14 0.22 0.40
GARCH(1,1) 0.13 0.23 0.28
EGARCH(1,1) 0.17 0.21 0.25
TGARCH(1,1) 0.13 0.17 0.22
PGARCH(1,1) 0.14 0.18 0.22

Ljung–Box Statistics for r2
i /σ 2

i normalized to the static for the original r2
i time series

A typical diagnostics used to examine quality of the volatility model is autocorrelation
structure of the time series r2

i /σ 2
i (Tsay 2002). As illustrated in Figure 1c, r2

i exhibits signifi-
cant autocorrelation. According to (5), good volatility model is supposed to produce r2

i /σ 2
i

time series with minimal autocorrelation. A standard test for the time series autocorrela-
tion is m-lag Ljung–Box statistic that decreases for smaller autocorrelation (Tsay 2002). For
completeness, we provide Ljung–Box statistics for the volatility models considered here.
However, this test alone should not be used as a final measure of the model quality since it
is not robust to heavily tailed data and nonlinearity (Chen 2002). Moreover, when practical
measures of volatility other than r2

i are used in SVM model, Ljung–Box statistic may have
even more limited diagnostic power.

We have computed 15-lag Ljung–Box statistic for 250-day out-of-sample period of each
overlapping data window used in Figure 2. Due to adaptive change of the model for each
data window, it is not possible to use longer periods in a single calculation. Therefore, results
for different windows vary significantly. Summary of the obtained Ljung–Box statistics for
r2

i /σ 2
i time series (25, 50, and 75th percentiles) are shown in Table 1. More informative is

statistic for r2
i /σ 2

i normalized to the statistic for the original r2
i time series. This is summa-

rized in Table 2. It is evident from both tables that Ljung–Box statistics for different GARCH
models and SVM are comparable and significantly reduced with respect to the original r2

i
time series.

So far we compared GARCH models to the SVM with a fixed set of parameters. In
Figure 3 performance of the SVMs with different procedures for partial parameter optimiza-
tion is compared to the best GARCH model (dotted line). Results for SVM(10) with partially
adjustable parameters (C = [5, 10], ε = 0.2, and γ < 0.03) based on 5-fold cross-validation
and (C = 15, ε = 0.15, and γ < 0.03) based on 10-fold cross-validation are shown by solid
and dashed lines, respectively. It is clear that both SVM models remain to be comparable to
the best GARCH models and even outperform it in certain regimes.

6. Discussion and Conclusion

In this paper, we addressed the problem of volatility forecasting from high-dimensional
stock market data. SVM-based model was proposed as a possible complimentary approach
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Fig. 3 Linear correlation of real and model volatilities for different SP500 data windows shifted from a
base window by a variable number of business days. a Chronological order. b Sorted distribution. Results
for SVM(10) with partially adjustable parameters (C = [5, 10], ε = 0.2, and γ < 0.03) based on 5-fold
cross-validation and (C = 15, ε = 0.15, and γ < 0.03) based on 10-fold cross-validation are shown by solid
and dashed lines, respectively. Results for the best GARCH model are shown with dotted line. Each window
consists of 500 training and 250 testing data points. Windows are shifted with a step of 10 business days.
Starting window (shift=0) ends at 12 October 2003

to volatility forecasting. SVM combines the learning effectiveness of linear machines with
the classification/regression power of the best nonlinear algorithms. Unlike typical nonlinear
techniques such as NNs, the size of the SVM input space is decoupled from the number of
free parameters and allows one to process high-dimensional data without encountering the
“high-dimensionality curse”. This makes SVM a possible model for processing real-time
multiscale and high-frequency market data. SVM tolerance to incomplete data is another



CMS (2006) 3:147–160 159

advantage of the SVM-based volatility model that can address the problem of the market
data nonstationarity.

We reviewed the most important features of the stock market data and existing volatility
models. Model limitations in describing volatility dynamics and ability to extract information
from high-dimensional historical market data have been identified. Adequate description of
such important volatility features as long term memory and asymmetric lead–lag correla-
tion of volatilities (i.e., asymmetric information flow from large to small scales) leads to
increasing dimensionality of the model and is one of the most challenging problems. Most of
the existing approaches address this problem with rather restrictive assumptions to make the
model computationally practical. These restrictions include limiting memory size, disregard-
ing multiscale and nonlinear volatility effects, and limiting number of independent market
components in some multiscale volatility models.

SVM’s ability to handle high-dimensional and incomplete data allows to significantly
relax those restrictions in the SVM-based volatility model discussed in this paper. Since
this model imposes no significant restrictions on the length of the lagged vector of input
parameters (memory size) and on the number of independent multiscale volatilities (market
components), SVM model allows to study parameter regimes where other existing models
become computationally unrealistic. Besides that SVM models can automatically include
such effects as volatility dependence on the sign of the return (which is required to cover
leverage effect) and general nonlinear effects that are not covered by the models currently
used in practice.

Our results with SP500 index data indicate that SVM model can efficiently extract infor-
mation from the inputs with large number of lagged returns. Our benchmark tests indicate that
even conservative SVM(10) model can perform significantly better or comparable to both
naive and GARCH(1,1) models. Performance of the SVM is also consistently comparable
with the best model from the pool of GARCH, EGARCH, TGARCH, and PGARCH models.

SVMs considered here are quite conservative models with fixed input dimensionality and
only partial optimization of other SVM parameters. More robust methods for a full param-
eter optimization (including input dimensionality) that warranty stable generalization could
significantly improve results reported in this paper.

Since SVM is tolerant to high-dimensional inputs, our framework can be easily expanded
by including other relevant input variables. These include trading volume, implied volatil-
ities from derivative prices, and other external factors with additional information content.
It would be interesting to compare performance of these heterogeneous volatility models
based on SVM with those based on advanced NN algorithms (both feedforward and recur-
rent). Combination of different models using adaptive ensemble learning techniques (e.g.,
boosting) could also lead to more accurate volatility models. Further research in this area is
warranted.
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