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Abstract Based on the Nyström approximation and the primal-dual formulation of the
least squares support vector machines, it becomes possible to apply a nonlinear model to a
large scale regression problem. This is done by using a sparse approximation of the nonlinear
mapping induced by the kernel matrix, with an active selection of support vectors based on
quadratic Renyi entropy criteria. The methodology is applied to the case of load forecasting
as an example of a real-life large scale problem in industry. The forecasting performance,
over ten different load series, shows satisfactory results when the sparse representation is
built with less than 3% of the available sample.

Keywords Least squares support vector machines · Nyström approximation · Fixed-size
LS-SVM · Kernel based methods · Sparseness · Primal space regression · Load forecasting ·
Time series

1. Introduction

Large databases available for data analysis are common in industry and business nowadays,
e.g. banking, finance, process industry, etc. Building and estimating a model from a large
dataset requires the algorithms to handle large datasets directly. In this paper we illustrate
the performance of a large-scale kernel-based nonlinear regression technique, the Fixed-Size
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least squares support vector machines (LS-SVM) (Suykens et al. 2002b), on a real-life large-
scale modelling problem.

Kernel based estimation techniques, such as support vector machines (SVMs) and LS-
SVMs have shown to be powerful nonlinear classification and regression methods (Poggio
and Girosi 1990; Vapnik 1998; Williams 1998). Both techniques build a linear model in
the so-called feature space where the inputs have been transformed by means of a (possibly
infinite dimensional) nonlinear mapping ϕ. This is converted to the dual space by means of
the Mercer’s theorem and the use of a positive definite kernel, without computing explicitly
the mapping ϕ. The SVM model solves a quadratic programming problem in dual space,
obtaining a sparse solution (Cristianini and Shawe-Taylor 2000). The LS-SVM formulation,
on the other hand, solves a linear system under a least squares cost function (Suykens and
Vandewalle 1999), where the sparseness property can be obtained by sequentially pruning
the support value spectrum (Suykens et al. 2002a). The LS-SVM training procedure involves
a selection of the kernel parameter and the regularization parameter of the cost function, that
usually can be done by cross-validation or by using Bayesian techniques (MacKay 1995). In
this way, the solutions of the LS-SVM can be computed using an eventually infinite-dimen-
sional ϕ based on a non-parametric estimation in the dual space.

Solving the LS-SVM in dual formulation requires the resolution of a linear system of
dimension N (the number of datapoints). This is practical when working with large dimen-
sional input spaces, or when the dimension of the input space is larger than the sample size.
However, there is an obvious drawback when N is too large, and in such case the direct
application of this method becomes prohibitive. In this case, the primal-dual structure of the
LS-SVM can be exploited further. It is possible to compute an approximation of the nonlinear
mapping ϕ in order to perform the estimations directly in primal space; furthermore, it is
possible to compute a sparse approximation by using only a subsample of selected support
vectors from the dataset. In this case, one can estimate a large scale nonlinear regression
problem in primal space.

As an application to an interesting real-life problem, we study the case of the short-term
load forecasting problem, which is an important area of quantitative research (Ramanathan
et al. 1997; Lotufo and Minussi 1999; Fay et al. 2003; Bunn 2000; Espinoza et al. 2005).
Within this context, the goal of the modelling task is to generate a model that can capture all
the dynamics and interaction between possible explanatory variables to explain the behav-
ior of the load in an hourly scale. Usually a load series shows important seasonal patterns
(yearly, weekly, intra-daily patterns) that need to be taken into account in the modelling
strategy (Hylleberg 1992). In our case, the data series comes from 10 local low voltage sub-
stations in Belgium, with each load series containing approximately 36,000 hourly values.
This paper is structured as follows. The description of the LS-SVM is presented in section 2.
In section 3, the methodology for working in primal space is described, with the particular
application to a large scale problem. Section 4 presents the problem and describes the setting
for the estimation, and the results are reported in section 5.

2. Function estimation using LS-SVM

The standard framework for LS-SVM estimation is based on a primal-dual formulation.
Given the dataset {xi , yi }N

i=1 the goal is to estimate a model of the form

yi = wTϕ(xi ) + b + ei , (1)
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where x ∈ R
n , y ∈ R, and ϕ(·) : R

n → R
nh is the mapping to a high dimensional (and

possibly infinite dimensional) feature space, and the error terms ei are assumed to be i.i.d.
with zero mean and constant (and finite) variance.

The following optimization problem with a regularized cost function is formulated:

min
w,b,e

1

2
wTw + γ

1

2

N∑

i=1

e2
i , (2)

s.t. yi = wTϕ(xi ) + b + ei , i = 1, . . . , N ,

where γ is a regularization constant. The solution is formalized in the following lemma.

Lemma 1. Given a positive definite kernel function K : R
n × R

n → R, the solution to (2)
is given by the dual problem
[

0 1T

1 � + γ −1I

] [
b
α

]
=

[
0
y

]
, (3)

with y = [y1, . . . , yN ]T,α = [α1, . . . , αN ]T, and � is the kernel matrix with �i, j =
K (xi , x j ) ∀i, j = 1, . . . , N .

Proof. Consider the Lagrangian of problem (2)

L(w, b, e;α) = 1

2
wTw + γ

1

2

N∑

i=1

e2
i −

N∑

i=1

αi (w
Tϕ(xi ) + b + ei − yi ), (4)

where αi ∈ R are the Lagrange multipliers. The conditions for optimality are given by





∂L
∂w

= 0 → w =
N∑

j=1
α jϕ(x j )

∂L
∂b = 0 →

N∑
i=1

αi = 0

∂L
∂e j

= 0 → α j = γ e j , i = 1, . . . , N

∂L
∂α j

= 0 → y j = wTϕ(x j ) + b + e j ,

(5)

with the application of Mercer’s theorem (Vapnik 1998) ϕ(xi )
Tϕ(x j ) = K (xi , x j ) with a

positive definite kernel K , we can eliminate w and ei , obtaining y j = ∑N
i=1 αi K (xi , x j ) +

b + α j
γ

. Building the kernel matrix �i, j = K (xi , x j ) and writing the equations in matrix
notation gives the final system (3) ��
The final model is expressed in dual form

y(x) =
N∑

i=1

αi K (xi , x) + b. (6)

With the application of the Mercer’s theorem it is not required to compute explicitly the
nonlinear mapping ϕ(·) as this is done implicitly through the use of positive definite kernel
functions K . For K (xi , x j ) there are usually the following choices: K (xi , x j ) = xT

i x j

(linear kernel); K (xi , x j ) = (xT
i x j/c+1)d (polynomial of degree d , with c a tuning param-

eter); K (xi , x j ) = exp(−||xi − x j ||22/σ 2) radial basis function (RBF), where σ is a tuning
parameter. Usually the training of the LS-SVM model involves an optimal selection of the
tuning parameters σ (kernel parameter) and γ , which can be done using e.g. cross-validation
techniques or Bayesian inference (MacKay 1995).
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3. Estimation in primal space

In this section, the estimation in primal space is described in terms of the explicit approxima-
tion of the nonlinear mapping ϕ, and the further implementation for a large scale problem.

3.1. Nyström approximation in primal space

Explicit expressions for ϕ can be obtained by means of an eigenvalue decomposition of the
kernel matrix � with entries K (x, x j ). Given the integral equation
∫

K (x, x j )φi (x)p(x)dx = λiφi (x j ), (7)

with solutions λi and φi for a variable x with probability density p(x), we can write

ϕ =
[√

λ1φ1,
√

λ2φ2, . . . ,
√

λnh φnh

]
. (8)

Given the dataset {xi , yi }N
i=1, it is possible to approximate the integral by a sample average

(Williams and Seeger 2000a,b). This will lead to the eigenvalue problem (Nyström approxi-
mation)

1

N

N∑

k=1

K (xk, x j )ui (xk) = λ
(s)
i ui (x j ), (9)

where the eigenvalues λi and eigenfunctions φi from the continuous problem can be approx-
imated by the sample eigenvalues λ

(s)
i and eigenvectors ui as

λ̂i = 1

N
λ

(s)
i , φ̂i = √

Nui . (10)

Based on this approximation, it is possible to compute the eigendecomposition of the kernel
matrix � and use its eigenvalues and eigenvectors to compute the i th required component of
any point ϕ̂(x) by means of

ϕ̂i (x) = N√
λ

(s)
i

N∑

k=1

uki K
(

xk, x(v)
)

. (11)

This finite dimensional approximation ϕ̂(x) can be used in the primal problem (2) to estimate
w and b directly.

3.2. Sparse approximations and large scale problems

It is important to emphasize that the use of the entire training sample of size N to compute
the approximation of ϕ will produce a vector ϕ̂(x) having N components, each one of which
can be computed by (11) for all x ∈ {xi }N

i=1. However, for a large scale problem, it has been
motivated in (Suykens et al. 2002b) to use of a subsample of M � N datapoints to compute
ϕ̂. In this case, up to M components will be computed. The selection of the subsample of
size M , the initial support vectors, is done prior to the estimation of the model, and the final
performance of the model can depend on the quality of the initial selection. It is possible
to take a random selection of M datapoints and use them to build the approximation of the
nonlinear mapping ϕ, or it is possible to use a more optimal selection. External criteria such
as entropy maximization can be applied for an optimal selection of the subsample. In this
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case, given a fixed-size M , the aim is to select the support vectors that maximize the quadratic
Renyi entropy (Suykens et al. 2002b; Girolami 2003)

HR = − log
∫

p(x)2dx, (12)

that can be approximated by
∫

p̂(x)2dx = 1

N 2 1T�1. (13)

The use of this active selection procedure can be quite important for large scale problems, as
it is related to the underlying density distribution of the sample. In this sense, the optimality
of this selection is related to the final accuracy that can be obtained in the modelling exercise.
It is important to stress out that the difference between the performance of a model having an
initial random selection and a model having an initial entropy-based selection will depend
on the characteristics of the dataset itself. A rather simple dataset may be well approximated
by both methods; whereas in a more complex dataset, the models can have different perfor-
mances. Intuitively, the initial selection should contain some important regions of the dataset,
as it was shown in Espinoza et al. (2003) for the case of the Santa Fe Laser example (Weigend
and Gershenfeld 1994).

It is interesting to note that the equation (9) is related to applying kernel PCA in feature
space (Shawe-Taylor and Williams 2003). However, in our case the conceptual aim is to
obtain a finite approximation of the mapping ϕ on feature space as good as possible. If we
use the entire sample of size N , then only equations (11) are to be computed and therefore the
components of ϕ̂ are directly the eigenvectors of the kernel matrix �. In the application of
this paper, it is required to define the number M prior to the modelling exercise. Each fixed-
size sample will lead to an approximation of the nonlinear mapping for the entire sample of
size N .

3.3. Fixed-size LS-SVM

Based on the explicit approximation ϕ̂ that can be computed from an initial sample of M data-
points from the given the dataset {xi , yi }N

i=1, the fixed-size LS-SVM (FS-LSSVM) nonlinear
regression can be formulated as follows:

min
w,b,e

1

2
wTw + γ

1

2

N∑

i=1

e2
i (14)

s.t. yi = wTϕ̂(xi ) + b + ei , i = 1, . . . , N .

where γ is a regularization constant. It is important to stress out that this model is nonlinear
in the inputs, but linear in the parameters. Therefore, it can be solved by traditional linear
regression techniques.

3.4. Hyperparameters selection

When working in dual space, i.e. without computing explicitly an approximation to the
nonlinear mapping, then the solution is given by (3) for a given kernel and regularization
constant. Usually the training of the LS-SVM model in dual space involves an optimal selec-
tion of the kernel parameter(s) and the regularization term, which can be done using e.g.
cross-validation techniques or Bayesian inference (MacKay 1995). However, working with
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the explicit expression of ϕ̂ makes the problem (14) a linear least-squares problem, in which
the solution is given by the estimates of w and b for a given kernel. Solving the regression
problem (14) can be done with traditional statistical techniques. Using γ > 0 is equivalent
to ridge-regression; using γ = ∞ is equivalent to ordinary least squares (OLS). Within the
linear ridge-regression context, it is known that the use of regularization is motivated by
the existence of collinearity between some regressors (Hoerl and Kennard 1970), in which
case the small bias produced by the inclusion of a regularization term is compensated with
a decrease in the variance of the parameters. However, in the case of fixed-size LS-SVM,
the regressors to be included in the linear regression (14) do not show collinearity problems
as they are derived from the orthogonal eigenvectors of the small kernel matrix �M . This is
the reason why in this paper the model (14) is estimated with OLS, which is equivalent to
γ = ∞, as motivated in Espinoza et al. (2003). For a discussion about the use of a regular-
ization term and its properties in linear regression, the reader is referred to Björkstrom and
Sundberg (1999), Frank and Friedman (1993), Hoerl and Kennard (1970), Stone and Brooks
(1990), and Sundberg (1993).

3.5. Implementation of the FS-LSSVM

The algorithm for the final implementation can be described through the following steps:

1. Consider the dataset {xi , yi }N
i=1

2. Select a subsample of size M of the training points {xi }N
i=1 using maximization of the

quadratic Renyi entropy (13)
3. Use the selected subsample of size M to build a small kernel matrix �M

4. Compute the eigenvectors ui and eigenvalues λ
(s)
i of �M

5. Compute the approximation of the nonlinear mapping ϕ̂(xi ) using (11) for all points
i = 1, . . . , N

6. Solve the linear least-squares regression problem (14)

4. Practical example: short-term load forecasting

In this section, the practical application is described, in term of the problem context, meth-
odological issues and results.

4.1. Description and objective

Our objective is to perform the application of the fixed-size LS-SVM technique to the real-
life problem of short-term load forecasting. The modelling and forecasting of the load is
currently an important area of quantitative research. In order to deal with the everyday pro-
cess of planning, scheduling and unit-commitment, the need for accurate short-term forecasts
has led to the development of a wide range of models based on different techniques. Some
interesting examples are related to periodic time series (Espinoza et al. 2005), traditional
time series analysis (Ramanathan et al. 1997), neural networks applications (Steinherz et al.
2001), and Support Vector Machines (Chen et al. 2002). The main goal is to generate a model
that can capture all the dynamics and interactions between possible explanatory variables for
the load. Short-term is usually referred to one hour ahead, up to one day ahead, and it is a
task that is used on a daily basis on every major dispatch center or by grid managers (Mariani
and Murthy 1997). For this task, there is a broad consensus about possible explanatory vari-
ables: past values of the load, weather information, calendar information, and possibly some
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Fig. 1 Example of a load series within a week. Daily cycles are visible, as well as the weekend effects. Also
visible are the intra-day phenomena, such as the peaks (morning, noon, evening) and the night hours

past-errors correction mechanisms. Forecasting the load is not straightforward, particularly
due to the presence of multiple seasonal patterns in the load series (monthly, weekly, intra-
daily). Figure 1 shows an example of a load series in a week, at hourly values starting at
00:00 hours on Monday, until 24:00 hours on Sunday. In the literature, it is often found that
some local models of the load are used to produce short-term forecasts; the local models are
selected in order to isolate a seasonal pattern (working only with winter, summer, evenings,
working-days, etc).

4.2. Data and methodology

The dataset consists of ten time series, each containing hourly load values from a HV-LV
substation within the Belgian grid, for a period of approximately 5 years (from January 1998
until September 2002). The ten load series differ in their behavior as they represent different
types of underlying customers (residential, business, industrial, etc.). We use a sample of
1500 days (36,000 h) for training the models. A first linear regression containing only a lin-
ear trend is estimated for each substation, to remove any growth trend present in the sample.
Finally, the series were normalized using the maximum observed value in order to scale all
the series to a range between 0 and 1.

The nonlinear model formulation to be used is a nonlinear ARX specification, with the
following structure:

– An autoregressive part of 48 lagged load values (i.e. the last 2 days) (Espinoza et al.
2005).

– Temperature-related variables measuring the effect of temperature on cooling and heating
requirements (Engle et al. 1986).

– Calendar information in the form of dummy variables for month of the year, day of the
week and hour of the day (Espinoza et al. 2005).

This leads to a set of 97 explanatory variables. To illustrate the technique outlined in the
algorithm described in the previous section, we use different sizes for the initial subsample.
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Each time, the RBF kernel function is used. As indicated previously, the linear least-squares
problem (14) is solved by OLS, thus considering γ = ∞. Tuning of the hyperparameter σ

is performed by tenfold cross validation in the training sample. We keep the value of σ that
minimizes the out-of-sample mean squared error (MSE).

To illustrate the effect of increasing sizes of M , the above methodology is tested for sizes
of M=200, 400, 600, 800 and M=1,000 support vectors, selected with the quadratic entropy
criterion. It is important to stress out that we are using between 0.5 and 3% of the dataset
to build the nonlinear mapping for the entire sample. In this sense, we see that it is possi-
ble to build a nonlinear forecasting model using the fixed-size LS-SVM using a relatively
few datapoints as support vectors, which in turn depends on the data generating process
(DGP) underlying the current sample. Values of M larger than 1,000 are possible, which will
finally depend on the computer capacity to store a M × M matrix in memory and perform
its eigendecomposition. In practice, there is a trade-off between accuracy of the model and
computational time (and storage resources), and for our purposes M = 1,000 is the largest
number of support vectors being tested.

The fixed-size LS-SVM is compared with a linear model Verbeek (2000) and Ljung (1999)
estimated with the same initial set of variables. In addition, a traditional LS-SVM is estimated
using only the last 1,000 datapoints on the sample. In this way, it is possible to compare the
difference in performance between two nonlinear models in the following two cases: when
the full sample is taken into account (fixed-size LS-SVM) or only when the most recent
1,000 h (last 42 days) are considered.

The forecasting performance is assessed as follows. The simplest scheme is to forecast
the first out-of-sample load value using all information available, then wait 1-h until the true
value of this forecast has been observed, and then forecast the next value again using all
available information (1-h-ahead prediction). However, planning engineers require forecasts
with a longer time horizon, at least a full day in advance. In this case, it is required to predict
the first out-of-sample value using all the working sample, then predict the second value
out-of-sample using this first prediction, and so on (iterative simulation). In practice, it is
reasonable to stop this iterative process after 24-h and update the information with actual
observations. The methods are compared on a test data set (not using during training/esti-
mation) that consists of 15 d after the last sample point. The performance is assessed via the
MSE for the one-step-ahead prediction and the 24-h-ahead-simulation with updates at 00:00
hours of each day.

5. Results

In this section, the results of the fixed-size LS-SVM methodology applied to the load mod-
elling problem are reported, for the training procedure, the selection of support vectors and
the out of sample performance.

5.1. Training performance

The above procedure is applied for M=200,400,600,800 and M=1,000. Training using tenfold
crossvalidation is performed for each case, looking for an optimal value of the hyperparameter
σ in the RBF kernel. Figure 2 shows the evolution of the MSE in the tenfold crossvalidation
training procedure for the cases of M = 200 and M = 400 in one of the load series, where
it can be seen that the optimal value is σ = 2.01. For the cases M = 600, M = 800, and
M=1,000 we perform the crossvalidation process using only the selected σ . The results for
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Fig. 2 Performance evolution in the training procedure. The lines show the evolution of the MSE in a tenfold
crossvalidation for the cases M = 200 (full line) and M = 400 (dashed line). The optimal value for the σ

hyperparameter is 2.01

Table 1 Performance of the
fixed-size LS-SVM models

The nonlinear mapping
approximation has been built
with M support vectors, on a
crossvalidation basis using the
optimal σ

Estimation Mean squared error (CV)

Linear 0.043
M=200 0.032
M=400 0.022
M=600 0.017
M=800 0.016
M=1000 0.015

the computed MSE in a crossvalidation basis, and the equivalent result for the linear model,
are shown in Table 1 using the selected σ .

Table 1 shows that there is a marginal improvement on accuracy when increasing the num-
ber of support vectors from M = 800 to M=1,000. This suggests that the current problem can
be modelled based on a subsample of M=1,000 support vectors, which may not be the case
for other regression problems. In principle, the number of required support vectors is related
to the DGP underlying the current sample, and they are not necessarily related to the size of
the sample. Intuitively, the data generated by a more complex phenomena will require more
support vectors than a more simple one, regardless of the available sample size. An example
of fixed-size LS-SVM on another large scale problem, in the context of nonlinear system
identification, is detailed in Espinoza et al. (2004) in which a model trained with M = 500
was the best entry on the benchmark study of nonlinear identification techniques based on a
dataset of 130,000 points (thus, using only 0.4% of the available sample). However, a defi-
nition of the optimal number M based on theoretical considerations (not only practical one)
is still under research.
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Fig. 3 The evolution of the quadratic Renyi entropy within the iterative search for support vectors for the
case M = 400

5.2. Support vector selection

The initial set of M support vectors has been selected by maximizing the quadratic Renyi
entropy. Starting from a random sample of size M , it is possible to replace elements of the
selected sample by elements of the remaining sample if the entropy is maximized, and iterate
this procedure until convergence. In this way, it is possible to obtain a selection of those
M points that converge to a maximum value of the quadratic entropy. Figure 3 shows the
evolution of the entropy value within this iterative process (for a selected load series), for the
M = 400 case. Figure 4 shows the position (time index) of the first element of the selected
support vectors for the M = 400 case. It is interesting to see how the selected support vec-
tors are those for which the output series is located in the regions of high load values (winter
times), some in the lower values (summer times) and almost none of them in spring seasons.
It is also clear that the output at the selected support vectors position is going through some
“critical” regions.

5.3. Effect of selection method

It is possible to compare the performance between a model estimated with a random selection
of support vectors versus the same model estimated with a quadratic Renyi entropy selection
starting from the same random selection. In other words, one can generate a random selection
of support vectors and either perform a quadratic entropy selection using the random selec-
tion as initial position for the iterations (and later approximate the nonlinear model with the
entropy-selected support vectors), or one can just use the random selection for the nonlinear
mapping approximation immediately. Both models can be compared in terms of performance
on the same test set. Table 2 and Figure 5 show the comparison for the results after 20 random
initial selections, in which the model is either estimated after quadratic entropy selection tak-
ing the random selection as the initial starting point (Case I), or it is estimated directly (Case
II). In all tests it has been used M = 200.
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Fig. 4 The normalized load from series 1 used as training sample (Top), shown here only as daily averages
rather than hourly values. The position of the selected support vectors corresponding to the load sample output
is represented by dark bars at the bottom, showing the time index position of the first element of the support
vector

Table 2 Comparison of the mean and standard deviation of the MSE for a test set performance using M = 200
over 20 randomizations

Support vector selection Average MSE Standard deviation MSE

Entropy-based selection (Case I) 0.0311 0.0016
Random-based selection (Case II) 0.0317 0.0025

Case I refers to the random selection of support vectors and immediate estimation of the model. Case II starts
from the same random selection, performs quadratic-based selection using the random sample as starting
point, and then the model is estimated
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Fig. 5 Box-plot of the MSE in a test set for models estimated with entropy-based (1) and random (2) selection
of support vectors. Results for 20 repetitions
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Table 3 Model performance on the test set for different forecasting modes, for series 1–5

Series Mode Performance LS-SVM (%) FS-LSSVM (%) Linear (%)

1 1-step-ahead MSE 2.2 0.6 1.4
MAPE 2.8 1.5 2.5

24-steps-ahead MSE 5.0 2.7 9.5
MAPE 4.3 3.1 5.9

2 1-step-ahead MSE 3.4 2.3 3.0
MAPE 4.3 3.4 3.9

24-steps-ahead MSE 20.2 11.5 11.9
MAPE 10.6 7.4 7.9

3 1-step-ahead MSE 9.7 6.7 10.2
MAPE 29.4 17.7 24.9

24-steps-ahead MSE 15.1 9.4 15.0
MAPE 30.1 23.1 29.7

4 1-step-ahead MSE 4.9 4.0 7.4
MAPE 12.6 10.5 16.2

24-steps-ahead MSE 10.1 6.0 14.7
MAPE 20.7 14.5 22.3

5 1-step-ahead MSE 2.2 0.9 1.7
MAPE 2.6 1.7 2.2

24-steps-ahead MSE 9.0 3.8 6.7
MAPE 5.5 3.4 4.4

Table 4 Model performance on the test set for different forecasting modes, for series 6–10

Series Mode Performance LS-SVM (%) FS-LSSVM (%) Linear (%)

6 1-step-ahead MSE 0.8 0.3 1.1
MAPE 2.3 1.4 2.2

24-steps-ahead MSE 3.9 2.6 7.5
MAPE 5.1 4.4 7.1

7 1-step-ahead MSE 2.6 1.6 3.0
MAPE 2.9 2.2 3.1

24-steps-ahead MSE 5.7 3.8 6.8
MAPE 4.5 3.5 4.7

8 1-step-ahead MSE 2.4 1.5 2.2
MAPE 3.0 2.4 2.8

24-steps-ahead MSE 9.8 5.3 7.7
MAPE 7.3 4.4 5.3

9 1-step-ahead MSE 0.9 0.5 1.3
MAPE 1.8 1.3 2.0

24-steps-ahead MSE 3.2 2.1 6.9
MAPE 3.4 2.8 5.3

10 1-step-ahead MSE 2.8 2.3 3.5
MAPE 5.7 4.9 6.0

24-steps-ahead MSE 9.9 8.2 12.7
MAPE 11.0 10.9 13.4

The existence of the standard deviation in Case I accounts for the fact that the conver-
gence of the entropy selection is not unique, specially for a selection of 200 points out of
36,000 possible samples. However, starting from different random selections, the entropy-
based selection yields lower dispersion in the errors. For this dataset, and after 20 repetitions,
the average MSE are quite similar, but there is no guarantee that the random-selection will
perform like this for a more complex dataset.
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Fig. 6 Forecasts comparison. FS-LSSVM and Linear 1-h-ahead predictions (Top-left and Top-right, respec-
tively). FS-LSSVM and Linear 24-h-ahead predictions (Bottom-left and Bottom-right, respectively), for a full
week (series 3)

5.4. Out of sample performance

The models are compared on a test data set that consists of 15 days after the last sample
point. The performance is assessed over 2 forecasting modes: one-hour-ahead prediction,
and 24-h-ahead-simulation with updates at 00:00 hrs. of each day. The performance is mea-
sured by the MSE and the mean absolute percentage error (MAPE). As indicated above, three
models are estimated for each load series: the fixed-size LS-SVM (FS-LSSVM) estimated
using the entire sample, the standard LS-SVM in dual version estimated with the last 1,000
datapoints of the training sample, and a linear model estimated with the same variables as
the FS-LSSVM.

The fixed-size LS-SVM models are computed using M=1,000 initial support vectors. The
different performance levels across series is due to the different behavior of each particular
load series. Tables 3 and 4 show the comparison between the models for the different forecast-
ing modes over the ten load series. It is clear that the FS-LSSVM improves over the traditional
LS-SVM by using the entire datasample available, rather than just using the last 1,000 da-
tapoints. In the context of load-forecasting, the existence of important seasonal variations
makes it important to consider as much datapoints as possible into the model. On the other
hand, the linear model shows good performance in some series, but it is always outperformed
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Fig. 7 Forecasts comparison. FS-LSSVM and Linear 1-h-ahead predictions (Top-left and Top-right, respec-
tively). FS-LSSVM and Linear 24-h-ahead predictions (Bottom-left and Bottom-right, respectively), for a full
week (series 4)

by the fixed-size LS-SVM. Linear models for load forecasting have to be designed in more
detail to improve its performance, through the explicit incorporation of seasonal variations
across weeks and days into the model [e.g. periodic linear autoregressions (Espinoza et al.
2005)]. The nonlinear model requires less effort from the user in the definition of the model,
and the whole procedure can be automatized.

The comparison between the forecasts obtained with the fixed-size LS-SVM and the linear
model are shown on Figures 6, 7 and 8 for series 3, 4, and 9, respectively. On each figure,
the top panels show the performance using one-hour-ahead forecasts. The bottom panels
show the comparison using 24-h-ahead simulation. Each plot shows the first 7 days of the
test set, starting with 00:00 h on Monday. It is clearly visible that the fixed-size LS-SVM
model provides better forecasts, particularly for the case of 24-h-ahead prediction. It is also
interesting to note the different behavior of each load series.

6. Conclusion

This paper illustrates the application of a large-scale nonlinear regression technique to a
real-life modelling problem. We have shown that it is possible to build a large scale nonlinear
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Fig. 8 Forecasts comparison. FS-LSSVM and Linear 1-h-ahead predictions (Top-left and Top-right, respec-
tively). FS-LSSVM and Linear 24-h-ahead predictions (Bottom-left and Bottom-right, respectively), for a full
week (series 9)

regression model, using the fixed-size LS-SVM, from a dataset consisting of N=36,000 data-
points. This is done by selecting an initial subsample of size M � N , that provides a sparse
representation of the nonlinear mapping. The results show that the nonlinear regressions in
primal space improve their accuracy with larger values of M . The maximum value of M to be
used depends on the computational resources at hand, and it also depends on the underlying
distributional properties of the dataset. In this context, it was shown that quadratic entropy
active selection of support vectors leads to performances which are less disperse as those
obtained by random selection of support vectors.

The forecasting performance, assessed for ten different load series, is very satisfactory.
The MSE levels are below 3% in most cases. Not only the model estimated with fixed-size
LS-SVM produces better results than a linear model estimated with the same variables, but
also it produces better results than a standard LS-SVM in dual space estimated using only
the last 1,000 datapoints. Furthermore, the good performance of the fixed-size LS-SVM is
obtained based on a subsample of M=1,000 initial support vectors, which represent less than
3% of the available sample. Further research on a more dedicated definition of the initial
input variables (e.g. incorporation of external variables to reflect industrial activity, use of
explicit seasonal information, etc.) should lead to further improvements.
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