
DOI: 10.1007/s10287-004-0014-9

CMS 1: 231–244 (2004)

Decision trees for monotone price models

Marina Velikova1, Hennie Daniels2,3

1 Center for Economic Research, Tilburg University, P.O. Box 90153, 5000 LE, Tilburg,
The Netherlands (e-mail: M.Velikova@uvt.nl)

2 Center for Economic Research, Tilburg University, The Netherlands
3 ERIM Institute of Advanced Management Studies, Erasmus University Rotterdam, The Netherlands

Abstract. In economic decision problems such as credit loan approval or risk
analysis, models are required to be monotone with respect to the decision vari-
ables involved. Also in hedonic price models it is natural to impose monotonicity
constraints on the price rule or function. If a model is obtained by a “unbiased”
search through the data, it mostly does not have this property even if the underlying
database is monotone. In this paper, we present methods to enforce monotonicity of
decision trees for price prediction. Measures for the degree of monotonicity of data
are defined and an algorithm is constructed to make non-monotone data sets mono-
tone. It is shown that monotone data truncated with noise can be restored almost
to the original data by applying this algorithm. Furthermore, we demonstrate in a
case study on house prices that monotone decision trees derived from cleaned data
have significantly smaller prediction errors than trees generated using raw data.

Keywords: Data mining, monotone decision trees, price models

MSC code: 90-08 (Computational methods)

1 Introduction

Although, in data mining literature, the main emphasis is put on the analysis and
interpretation phase, there are more aspects such as data selection and data pre-
processing, which determine the successful implementation of any data mining
system. The right description of the domain as well as data cleaning, data integra-
tion and data transformation can significantly improve the efficiency of the data
mining process. Apart from limitations regarding data quality, there can also be
problems in the application of the model if the mining process is conducted by
blind search (Breeze, Goldman and Wellman, 1994). Frequently, the models de-
rived are incompatible with business regulations. These shortcomings can often be

CMS Computational Management Science

© Springer-Verlag 2004

232 M. Velikova, H. Daniels

resolved by integrating expert knowledge in the data mining process. Another prob-
lem that may occur is the lack of interpretability of the model. In general, human
decision makers require models that are easy to understand and do not accept black
box models, for example neural networks or very complex decision trees.

Therefore, there is a need for integration of the knowledge discovered by stan-
dard data mining algorithms with the knowledge based on intuition and experience
of the domain experts (Garofalakis, Rastogi and Shim, 2002; Rajagopalan and
Isken, 2001). In this paper, we explicitly describe the implementation of a special
form of a prior knowledge that is typical in economic decision problems, namely
the monotonicity of classification or prediction rules.

In recent years, several researchers became interested in the incorporation of
monotonicity constraints in different data mining methods. In Daniels and Kamp
(1999) and Wang (1994) classes of monotone neural networks are introduced. Also,
in the application of decision trees, several methods have been developed to solve
classification problems with monotonicity constraints. In Ben-David (1995), a new
splitting measure for constructing a decision tree was proposed including a non-
monotonicity index and standard impurity measure such as entropy. In this way,
monotonicity properties of the tree and the classification error can be balanced.
Potharst (1999) provides a study for building monotone decision trees from mono-
tone data sets. This constraint limits the applicability of the methods because real
databases are often non-monotone due to noise. Frequent occurring causes are er-
rors at data entry, inconsistencies after merging data sets, discrepancies due to the
change of data over time, etc.

In this paper, we consider cases where the response variable is continuous
as opposed to the discrete case which is treated in Daniels and Velikova (2003).
The remainder of this paper is organised as follows. Firstly, in Sect. 2 we formulate
monotonicity constraints for regression and classification problems. Then, in Sect. 3
we construct measures to check if data are monotone by defining indicators for the
degree of monotonicity. By comparing the value of the indicators with benchmark
data sets, one can verify the monotonicity of the data under study.

The main contribution of this paper is the algorithm presented in Sect. 4. This
algorithm transforms non-monotone data into monotone data by a relabeling pro-
cess. This leads to improvements in transparency, smaller error rates and lower
variance of the decision models. It is shown that noise added to artificially gen-
erated monotone data sets can be removed to a large extent by the algorithm. In
a case study (Sect. 5) on house pricing, we show that monotone trees outperform
ordinary decision trees and monotone trees generated from cleaned (monotone)
data outperform trees generated from the original data, in the sense that the former
are more stable upon repeated sampling than the latter and the out-of sample error
(on the original data) is smaller.

Decision trees for monotone price models 233

2 Monotonicity and measures for monotonicity

In many economic classification and regression problems, it is known that the de-
pendent variable has a distribution that is monotone with respect to the independent
variables. Economic theory would state that people tend to buy less of a product if its
price increases (ceteris paribus), so there would be a negative relationship between
price and demand. The strength of this relationship and the precise functional form
are, however, not always dictated by economic theory. Another well-known exam-
ple is the dependence of labour wages as a function of age and education (Mukarjee
and Stern, 1994). In loan acceptance, the decision rule should be monotone with
respect to income for example, i.e., it would not be acceptable that a high-income
applicant is rejected, whereas a low-income applicant with otherwise equal char-
acteristics is accepted. Monotonicity is also imposed in so-called hedonic price
models where the price of a consumer good depends on a bundle of characteristics
for which a valuation exists (Harrison and Rubinfeld, 1978).

The mathematical formulation of monotonicity is straightforward. We assume
that y is the dependent variable and takes values in Y , the vector of independent
variables is x and takes values in X. In the applications discussed here, Y is a
one-dimensional space of prices or classes and X is a k-dimensional space of
characteristics of products or customers. Furthermore, a data set D = (yn, xn) of n

points in Y∗X is defined, which can be considered as a random sample of the joint
distribution of (y, x). In a regression problem, the goal is to estimate the average
dependence of y given x, E(y|x). E(y|x) depends monotonically on x, if

x1 ≥ x2 ⇒ E
(
y|x1

)
≥ E

(
y|x2

)
,

where x1 ≥ x2 is a partial ordering on X defined by x1
i ≥ x2

i for i = 1, 2, . . . , k.
In this paper, y states for the price of a house and it is estimated by using a

monotone decision tree on the basis of the vector of characteristics of the house, x.
It can be shown in many cases that monotone models perform better than non-

monotone models if monotonicity is present in the problem. This is mainly due to the
fact that monotone models suppress overfitting. Some data mining algorithms can
be applied to cases where the data set is partially monotone (Bioch and Popova,
2002; Daniels and Kamp, 1999; Potharst and Feelders, 2002) whereas other are
restricted to the cases where the data set is totally monotone (see Definition 2)
(Makino, Suda, Ono and Ibaraki, 1999; Potharst and Feelders, 2002).

There are quite a number of contributions in the literature that discuss mono-
tonicity and measures for monotonicity of models derived from data. In Daniels
and Kamp (1999), a monotonicity index to measure the degree of monotonicity of
a neural network with respect to each input variable is defined. The value of this
index is between zero, indicating a non-monotone relationship, and 1, indicating a
monotone relationship. To test whether a given decision tree is monotone or not,
Potharst (1999) describes a procedure using the maximal and minimal elements

234 M. Velikova, H. Daniels

of the leaf nodes of the decision trees. The degree of the non-monotonicity of the
tree is computed as percentage of non-monotone leaf nodes respective to the total
number of leaves. In Ben-David (1995), another measure for the degree of non-
monotonicity of a decision tree is proposed, which gives equal weight to each pair
of non-monotone leaf nodes. A modification of this measure is given in Potharst
and Feelders (2002).

All these measures express the degree of monotonicity after a model has been
derived from data. However, in practice, one would like to check whether or not a
given data set is monotone beforehand in order to verify the assumptions of theory.
One obvious question, therefore, is how to measure the degree of monotonicity of
a data set. A straightforward method is to compute the fraction of monotone pairs
with respect to the total number of pairs in a data set.Another measure is the number
of monotone points or the number of label changes required in the algorithm of
Sect. 4. Apart from measures we also need benchmark data sets to compare with.
In the next section, we define a class of benchmark data used further to compare
with the data set under study.

3 Benchmark data sets

Suppose BN
π denotes the ensemble of samples of N points drawn from a probability

distribution π(x, �). Here π is defined in X × L, where X is a subset of the k-
dimensional space �k and L is a totally ordered set of labels. In the discrete case
we have L = {1, 2, . . . , �max} and in the continuous case L ∈ �k or L ∈ �+
(pricing model). A sample D (the data under study) drawn from BN

π is a data set of
N points and we use the notation D = (xn, �(xn))Nn=1 throughout the paper. Given
D ∈ BN

π , we define a class of benchmark data, BN
π0

∈ BN
π , the set of samples of

N points drawn from probability distribution π0(x, �). For this class of benchmark
data sets, we assume that the explanatory variables and the labels are independent
i.e.

π0(x, �) = π1(x) . π2(�).

Furthermore, we assume that π1 has a probability distribution with density ρ1,
defined on a subset of X and π2 is a discrete probability measure if L is discrete or
has a density ρ2 if L is continuous.

The benchmark data sets, denoted by Benchmark-1, are defined as the collection
of all data sets D◦ generated with the same structure of independent variables as D

and labels drawn randomly from the labels in D. So, D◦ = (xn, m(xn))Nn=1, where
{m(xn)}Nn=1 is a randomly generated permutation of {�(xn)}Nn=1.

For this class of benchmark data we consider two measures for the degree of
monotonicity, namely the expectation value of the fraction of monotone pairs and
the expected number of monotone points (see Definition 1). By comparing these
measures with the respective indicators obtained from a real data set, one can verify
the degree of monotonicity of the data under study.

Decision trees for monotone price models 235

Definition 1. We call z a monotone point if for all y ∈ D:

y ≥ z ⇒ �(y) ≥ �(z) and y ≤ z ⇒ �(y) ≤ �(z) �	
Definition 2. A data set is monotone if all points are monotone. �	

An alternative measure for the degree of monotonicity is the number of label
changes necessary to convert a non-monotone into monotone data set. The num-
ber of label changes is computed in the algorithm for relabeling in Sect. 4. The
algorithm transforms non-monotone into a monotone data set by relabeling some
of the points. There are several reasons for doing this. One reason is to remove
noise, another is to adjust incomplete data in order to capture and describe better
the latent relationship between the dependent variable and missing information.
For instance, in the case study described in Sect. 5, factors not listed in Table 1
such as availability of shopping centre, sport facilities, etc., may play important
role in determining the house price, which is not explicitly shown in the recorded
data. This can lead to obtaining unreliable models with high variance on unseen
data. Therefore, an appropriate modification of the data set such as transformation
of a non-monotone into monotone data set can capture better implicit dependences
between completely missing information and the decision variable as well as to
reduce the model variance.

4 Algorithm for relabeling

The objective of the algorithm is to transform a given data set into monotone one
by changing the value of the dependent variable. The idea is to reduce the number
of non-monotone pairs by relabeling one data point in each step. In order to do
this, a data point is chosen for which the increase in correctly labelled points is
maximal (this is not necessarily the point which is involved in the maximal number
of non-monotone pairs). The process is continued until the data set is monotone
(see Definition 2).

Let D = (xn, �(xn))Nn=1 denote the initial data set and Q(D) denotes the set of
all non-monotone points in D.

For each data point x ∈ Q(D), we define:

Down(x) = {y ∈ X|y < x},
Up(x) = {y ∈ X|y > x}.

Hence, all points y ∈ Down(x) ∪ Up(x) are incomparable to x.
Furthermore, we define Aα(x) ⊂ Down(x) and Bβ(x) ⊂ Up(x) by:

Aα(x) = {y < x| label (y) = α} for α ∈ L,

Bβ(x) = {y > x| label (y) = β} for β ∈ L.

236 M. Velikova, H. Daniels

Let aα and bβ denote the number of points in Aα(x) and Bβ(x), respectively
and cx denotes the number of the points in Down(x)∪Up(x), i.e. this is the number
of all points comparable to x.

Furthermore, we define

�min, �max – the minimum and maximum of the labels in D,

�maxDn – the maximum of the labels inDown(x),

�minUp – the minimum of the labels in Up(x) and

N�x – the total number of points correctly labelled with respect to x

for the current label of x,�x , i.e.,

N�x = a�min + . . . + a�x + b�x + . . . + b�max .

We assume that all data points in the data set D are unique, i.e., no points
are represented twice. For each data point x ∈ Q(D) we compute the maximal
increase, Imax , in the number of correctly labelled points with respect to x, if the
label of x is changed into �′, where �′ ∈ L. If there is more than one label with the
same maximal increase in correctly labelled points, we choose the closest label to
the current label of x. Finally, we select a point x ∈ Q(D) for which Imax is the
largest and change its label. This process is repeated until the data set is monotone.
The algorithm outline is given in the Appendix.

In general, the points correctly labelled with respect to x are all points incom-
parable to x as well as the points in A�min ∪ . . . ∪ A�x and B�x ∪ . . . ∪ B�max . Since
the number of the points incomparable to x is constant and they do not contribute
to Imax , we may completely ignore them.

The correctness of the algorithm follows from Lemma 1 and Lemma 2. Lemma 1
states that it is always possible to reduce the number of non-monotone pairs by
changing the label of only one point, as long as the data set is non-monotone. In
Lemma 2, it is shown that there is a canonical choice for the new label for which a
maximal reduction can be obtained. There may be more than one label for which
this can be achieved but these are all smaller or all larger than the current label of
the point, so the closest one is chosen, which is unique.

Lemma 1. Let Dk denote the data set D after k-iterations. If Q(Dk) = ∅ there
is at least one point x ∈ Q(Dk) that can be relabelled such that the number of
non-monotone pairs is reduced.

Lemma 2. Suppose that the maximal increase Imax in correctly labelled points
with respect to x can be obtained by at least two labels r and s, r < s. Then
r < s < �x or �x < r < s, where �x is the label of x.

The proofs of the lemmas are given in Daniels and Velikova (2003).
Here, we would like to make two remarks with regard to the efficiency of the

algorithm.

Decision trees for monotone price models 237

l2 •
l2 •

l2 •

l2 •

l3 •

x, l1
•

l4 •
l4 •

l4 •
Down(x)

Up(x)

Fig. 1. Distribution of all points in D with respect to x

Remark 1 (Efficiency improvements). It is possible to reduce the number of label
checks in the relabeling process for each point x ∈ Q(D). Depending on the values
of �maxDn, �minUp and �x we consider three cases for the range of labels, �′, that
have to be checked as candidates.

1. IF �maxDn < �minUp AND �x < �maxDn

THEN �′ = �maxDn.
2. IF �maxDn < �minUp AND �x > �minUp

THEN �′ = �minUp.
3. IF �maxDn > �minUp

THEN �′ ∈ [�minUp, �maxDn].

In all these cases, it can be shown that the maximal increase in the number of
correctly labelled points with respect to x can be obtained only for the values given
above.

The algorithm can be further improved by reducing the number of candidate
points considered for relabeling. To see this, compute the number of points com-
parable to each point x ∈ Q(D), cx , and sort Q(D) in descending order by cx .
Then, the maximal increase in correctly labelled points with respect to x, Imax(x),
is computed. Now, all points y ∈ Q(D) with cy < Imax(x) can be skipped in the
next step because Imax(y) < Imax(x).

Remark 2 (Example). In general, there is no a straightforward way to find directly
the point with a maximal increase in the number of correctly labelled points. All
labels in the range defined in Remark-1 have to be considered for relabeling because
the dependence of the increase in correctly labelled points on the label can be
arbitrary. This is illustrated in the following example.

Let D = (xn, �(xn))9
n=1 denote a data set of 9 points (Fig. 1). We focus on the

point x with label �1.
We now compute the increase/decrease in the number of correctly labelled

points if we relabel x with �′ = �1. The results are shown in Fig. 2.

238 M. Velikova, H. Daniels

0

1

2

3

4

5

l1 l2 l3 l4

Fig. 2. The increase/decrease in the number of correctly labelled points with respect to x for �′ ∈ [�1, �4]

It is obvious that the maximal increase is obtained for �4 and Imax = 4. Fur-
thermore, it is easily seen that for all other points in D, Imax ≤ 3. Consequently, x

is the point with the maximal increase.
In order to examine the performance of the algorithm, an experimental study

was conducted using artificially generated data. We firstly generated a data set, D1,
with random points uniformly distributed between 0 and 1 and computed the label
of each point by applying a monotone function to the independent variables. Then,
the monotone data set was converted into a non-monotone one, D2, by adding
random noise to the labels and the algorithm for relabeling was applied to the
modified data to obtain D3. In the next step, mean-squared error (MSE) is used as
a performance measure to check to what extent the algorithm restores the original
data. We compute

MSEmon = 1

N

N∑
i=1

(
�
D3
i − �

D1
i

)2
and MSEnonmon = 1

N

N∑
i=1

(
�
D2
i − �

D1
i

)2
,

where N is the number of points in the data set, �Dj is the label set in the data set
Dj . This experiment was repeated 10 times with different numbers of points, inde-
pendent variables and percentages of noise ranging from 7% to 15%. Depending on
the number of the explanatory variables, several monotone functions were used to
construct the initial label such as x1 ∗sinπ

2 x2 based on two variables x1 and x2. The
results, summarized in Table 1, show that the cleaned data are much closer to the
original one than the noisy data. The algorithm for relabeling was implemented in
MATLAB, a powerful language providing an interactive environment for algorithm
development, data analysis, simulation and technical computing.

5 Case study on house pricing

In this section, we apply the methods described above on house price prediction.
In the first part, we briefly present the data set used here. Monotonicity of the data
is inspected using the measures and benchmark data introduced in Sect. 3. Then

Decision trees for monotone price models 239

Table 1. Results after implementation of the algorithm on artificially generated data sets

points in # independent # label Noise MSEmon MSEnonmon
a data set variables changes

100 2 10 10% 0.0008 0.0211
100 2 15 15% 0.0015 0.0240
100 3 5 12% 0.0014 0.0055
100 3 12 15% 0.0029 0.0133
100 5 6 14% 0.0079 0.0292
200 2 12 7% 0.0009 0.0224
200 2 29 15% 0.0006 0.0518
200 3 14 10% 0.0044 0.0250
200 5 6 12% 0.0152 0.0222
200 5 15 15% 0.0244 0.0885

Table 2. Definition of the model variables

Symbol Definition

TOTSPACE Total flat area
LIVSPACE Living room area
KITSPACE Kitchen
DISTKM Distance in km from the center
ROOMS Number of rooms
BRICK Brick flat or not

Table 3. The correlation coefficients between the explanatory variables and the flat price

Variable TOTSPACE LIVSPACE KITSPACE DISTKM ROOMS BRICK
Corr. coef. 0.88 0.85 0.65 −0.37 0.74 0.42

the algorithm for relabeling is applied to obtain monotone data. Decision trees are
constructed based on the modified and original data. Finally, the performance of
the trees derived from the monotone and non-monotone data are compared.

The basic principle of a hedonic price model is that the consumption good is
regarded as a bundle of characteristics for which a valuation exists (Harrison and
Rubinfeld, 1978). The price of the good is determined by a combination of these
valuations:

P = P(x1, x2, . . . , xn).

In the case study presented below we want to predict the flat price given a number
of characteristics of the house. The data set consists of 150 observations of flats in
the city of Moscow. In the original data set, there are 10 explanatory variables and
for each of them, the correlation coefficient with the flat price is calculated. For
the purposes of the current case study, six variables with the highest correlation are
chosen (Table 2).

The correlation matrix (Table 3) suggests, for example, that the total flat area
(TOTSPACE) and the number of rooms (ROOMS) are one of the most important
determinants of the housing value. The direction of influence corresponds to com-
mon sense: more area and rooms will, in general, result in a higher flat value. In

240 M. Velikova, H. Daniels

Table 4. Degree of monotonicity of the Moscow data compared with a benchmark

Indicators Moscow data Benchmark-1

Number of points 150 150
Percentage of monotone pairs 97.17% 92.39%
Monotone points 25 6

addition, for computational and analytical convenience, the variable DISTKM is
transformed in order to synchronize the direction of influence of all explanatory
variables on the flat price.

Of all 11175 distinct pairs of observations, 1699 are comparable, and 316 are
non-monotone. To verify the monotonicity of this data set, we compare the degree of
monotonicity with the benchmark data defined in Sect. 3. The figures are presented
in Table 4.

The results show the existence of a monotone relationship between the depen-
dent and independent variables in the data set under study. Note, that the expected
percentage of monotone pairs for a random generated data set with the same num-
ber of explanatory variables (6) and the same label set where both distributions are
uniform is 98.45%. However, the number of comparable pairs (∼ 316) in a random
data set with large number of labels and uniform distribution of the points and labels
is significantly less than that of the Moscow data, which explains the larger degree
of monotonicity in a random data set.

The algorithm for relabeling applied to the Moscow data set leads to 54 label
changes. We now generate decision trees from the original and cleaned data. This
is done by using a modification of the tree-based algorithm presented in Potharst
and Feelders (2002). The algorithm was developed in S-PLUS, where the original
program was implemented and in many respects it is similar to the CART program
described in Breiman, Friedman, Olshen and Stone (1984). The program only makes
binary splits using mean-squared error (MSE) as the splitting criterion. The split
of each node is determined by one selected attribute, x, say. If x is continuous
the split is of the form x < c or x ≥ c, for some constant c. If x is categorical,
the split is of the form x ∈ S or x /∈ S, where S is a non-empty subset of x’s
possible categories. As described in Breiman, Friedman, Olshen and Stone (1984),
the partitioning process is applied recursively to each leaf continuing until all leaves
are pure, i.e., contain cases with a unique label. The final tree is denoted by Tmax .
Since this tree almost certainly overfits the data, cost-complexity pruning is applied
to generate a nested sequence of minimizing subtrees (Tmax > . . . > {t}, where
{t} is the root node of the tree). The basic idea is to assign a complexity penalty,
determined by a parameter α, to the size of the tree and then to find the sequence of
smallest minimizing subtrees at different values of α. From this sequence, the best
monotone subtree is selected on the basis of validation set performance (explained
below), which is the main difference from the algorithms presented in Breiman,
Friedman, Olshen and Stone (1984) and Potharst and Feelders (2002), where the
choice of the best subtree is based only on the test set performance irrespective of the

Decision trees for monotone price models 241

type of the tree (monotone/non-monotone). The monotonicity of a tree is checked
by comparing the minimum and maximum element of the leaf nodes (Potharst and
Feelders, 2002). Finally, the generalisation (prediction) error of the chosen model
is computed using separate test set.

To obtain a statistically sound assessment of the two methods, the following
experiment was carried out 15 times. The original data set is randomly partitioned
into a construction set of 113 observations (75%) and test set of 37 observations
(25%). The construction set was further randomly separated into a training set of
75 observations (50%) and validation set of 38 observations (25%). The training
set was used to generate a tree of maximal size as explained above and to construct
a sequence of subtrees using cost-complexity pruning. From this sequence, the best
monotone tree was selected on the basis of the error rate computed as the mean-
squared error on the validation set (in case of a tie, the smallest tree was chosen).
The monotonicity of a tree is checked as explained above. The random partition
into training and validation sets was repeated 5 times resulting in a sequence of 5
trees, from which the one with the lowest error was chosen as a final tree. In order
to evaluate the performance of the final tree, the generalisation error was computed
on the test set. The algorithm outline is given in the Appendix.

The same experiment was carried out with the cleaned data. The only difference
is in the way the error is computed. Instead of using a test set of 37 observations
from the cleaned data, we computed the generalisation error on the basis of the
same 37 observations from the original data, which were used as the test set in the
previous experiment. Thus, the model is constructed from the cleaned data, whereas
the performance is measured on the original data.

In our experiments it turned out that the non-monotone trees generated by
the tree construction algorithm have comparable performance but are much larger
than monotone trees (as shown in Fig. 3 in the Appendix). This has been also
found in a previous study (Potharst and Feelders, 2002). Furthermore, for problems
where monotonicity properties are present in the domain such as house pricing,
monotone models are easier to understand than their non-monotone counterparts
as they are in accordance with the decision makers’ expertise. In other words, non-
monotone models are much harder to interpret as they present inconsistent and less
intuitive dependencies. Therefore, only monotone trees are selected in the tree-
based algorithm applied to the present case study. A summary of the results from
the experiments is given in Table 5.

Table 5. Results from the experiments with the monotone and non-monotone Moscow data

Mean Variance

Indicators Monotone Non-monotone Monotone Non-monotone
data data data data

Error rate on test set 0.49 1.06 0.43 0.89
Number of monotone trees 4.9 2.4 0.89 0.83
generated after pruning a large tree
Number of leaf nodes 4.9 2.2 1.84 2.89

242 M. Velikova, H. Daniels

Table 6. The p-values yielded from the statistical t-tests for each of the indicators

Indicators P-value

Error rate on rest set 0.3%
Number of monotone trees generated after pruning a large tree 0.0%
Number of leaf nodes 0.0%

To check the significance of the results we performed three t-tests. Since the
test set in both experiments is the same, there is a natural pairing of the error rates
estimated from monotone and non-monotone data. To test the mean difference of
the error rates, we use a paired t-test of the null hypothesis that the trees derived from
both data sets have the same classification error against the one-sided alternative.
For the other two indicators (number of monotone trees generated after pruning a
large tree and number of leaf nodes) we use standard t-tests of the null hypotheses
that the means are equal against the one-sided alternatives. The p-values obtained
from the three tests are reported in Table 6.

Table 6 shows that the first null hypothesis (error of trees) can be rejected at
5% significance level. Furthermore, the results show that the average number of
monotone trees derived from the monotone data is significantly larger than that
for non-monotone data. In 50% of cases, the only monotone tree generated by the
non-monotone data is the root, which explains the smaller number of leaf nodes
for the monotone trees generated by the raw data. Finally, the significantly lower
or comparable variances of the indicators in Table 5 show that the monotone trees
constructed from the cleaned data are more stable than that generated from the raw
data.

6 Conclusion

In the present paper, we have developed methods for the derivation of monotone
decision models from non-monotone data. Measures are defined to express the
degree of monotonicity of data sets and to compare data with simulated benchmark
data. An algorithm to transform non-monotone into monotone data is constructed.
In a simulation study, using artificially generated monotone data with noise, it is
shown that the algorithm is capable of reducing the noise level considerably. The
performance of the methods developed is tested on a real data set on house pricing.
Decision trees are constructed on the base of the cleaned (monotone) and original
data. The results show that the error of the trees generated from the monotone data
is significantly smaller than the classification error of the trees generated from the
non-monotone data. Furthermore, the cleaned data yield more monotone trees and
trees are more stable compared to the trees generated from the raw data.

Decision trees for monotone price models 243

LIVSPACE

68

< 12 ≥ 12

KITSPACE

25336

< 5.1 ≥ 5.1

TOTSPACE

33462

< 34 ≥ 34

39306

LIVSPACE

68

< 12 ≥ 12

KITSPACE

< 5.1 ≥ 5.1

TOTSPACE

< 34 ≥ 34

39306

LIVSPACE

< 22 ≥ 22

23981 31571 DISTKM

< 19 ≥ 19

< 6.5 ≥ 6.5

30242 34073

KITSPACE

< 29.3 ≥ 29.3

32370

TOTSPACE

< 32.2 ≥ 32.2

38949

TOTSPACE

34833

Fig. 3. An example of non-monotone (left) and monotone tree obtained from the original Moscow data.
The patterns represent the non-monotone leaf-pairs in the non-monotone tree. The estimated error rate
of the non-monotone tree is 1.01 and the estimated error rate of the monotone tree is 1.02

Appendix
Algorithm-1: Algorithm for relabelling

Step 1 – Initialisation:
Compute Q(D) on the basis of D

Step 2 – Main program
Step 2.1 As long as Q(D) = ∅

For each data point x ∈ Q(D) compute
Imax = max{N�′ − N�x |�′ ∈ L}.
�−set of indices �′ for which N�′ − N�x is maximal.
Form a triple (x, Imax , λ) where λ ∈ � is the closest label to �x

(in Lemma 2 it is shown that λ is unique).
Step 2.2 From all triples, choose the one where Imax is maximal and change the label into �′.
Step 2.3 Update Q(D) on the basis of the modified data set D.

Algorithm-2: The modified tree-based algorithm used in the house pricing case study

Data := data set of N observations
For i := 1:15 do

Construction_set := Random sample of 3
4 N observations from Data

Test_set := Complement set of Construction_set
For j := 1:5 do

Train_set := Random sample of 1
2 N observations from Construction_set

Validation_set := Complement set of Train_set
Construct Tmax based on Train_set
Construct Trseq := a nested sequence of minimizing subtrees (Tmax > . . . > {t}) by
applying cost-complexity pruning to Tmax

Bmtr := the best monotone tree from trseq selected on the basis of Validation_set
performance

Classify Test_set data using Bmtr and determine the performance of the model

244 M. Velikova, H. Daniels

References

Ben-David A (1995) Monotonicity maintenance in information-theoretic machine learning algorithms.
Machine Learning 19, 29–43

Bioch JC, Popova V (2002) Monotone decision trees and noisy data. ERIM Internal Report, Erasmus
University Rotterdam, No 206

Breeze J, Goldman R, Wellman M (1994) Introduction to the special section on knowledge-based
construction of probabilistic and decision models. IEEE Transactions on Systems, Man and Cyber-
netics, vol 24, pp 1577–1579

Breiman L, Friedman JH, Olshen RA, Stone CT (1984) Classification and regression trees. Wadsworth
Daniels HAM, Kamp B (1999) Application of MLP networks to bond rating and house pricing. Neural

Computation and Applications 8: 226–234
Daniels HAM, Velikova M (2003) Derivation of monotone decision models from non-monotone data.

Center Internal Report, Tilburg University No 2003-30
Garofalakis M, Rastogi R, Shim K (2002) Mining sequential patterns with regular expression constraints.

IEEE Transactions on Knowledge and Data Engineering 14: 530–552
Harrison O, Rubinfeld D (1978) Hedonic prices and the demand for clean air. Journal of Environmental

Economics and Management 53: 81–102
Makino K, Suda T, Ono H, Ibaraki T (1999) Data analysis by positive decision trees. IEICE Transactions

on Information and Systems, Volume E82-D, No 1, pp 76–88
Mukarjee H, Stern S (1994) Feasible nonparametric estimation of multiargument monotone functions.

Journal of the American Statistical Association 89(425): 77–80
Potharst R (1999) Classification using decision trees and neural nets. Erasmus University Rotterdam,

SIKS Dissertation Series No. 99-2
Potharst R, Feelders A (2002) Classification trees for problems with monotonicity constraints. SIGKDD

Explorations Newsletter, vol 4, Issue 1
Rajagopalan B, Isken M (2001) Exploiting data preparation to enhance mining and knowledge discovery.

IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, vol 31,
pp 460–467

Wang S (1994) A neural network method of density estimation for univariate unimodal data. Neural
Computation & Applications 2: 160–167

