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Abstract
Purpose  The etiology of constipation in Parkinson’s disease is largely unknown. The aim of this study was to explore 
changes in regional neural activity and functional connections associated with constipation in a large cohort of individuals 
with Parkinson’s disease.
Methods  We prospectively recruited 106 patients with Parkinson’s disease with constipation and 73 patients with Parkinson’s 
disease without constipation. We used resting-state functional magnetic resonance imaging for the first time to measure dif-
ferences in regional neural activity and functional connections between the two patient groups.
Results  Patients with constipation showed significantly higher amplitude of low-frequency fluctuation than patients without 
constipation in the right dorsal pons extending into the cerebellum and in the right insula. The two types of patients also 
showed substantial differences in functional connections linking the superior temporal gyrus, particularly the right superior 
temporal gyrus, with multiple brain regions.
Conclusion  Regional neural activity and functional connectivity in the brain differ substantially between patients with 
Parkinson’s disease with or without constipation. These findings provide a foundation for understanding the involvement of 
constipation in this disease and for identifying therapeutic targets.
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Introduction

Constipation is a common non-motor symptom of Parkin-
son’s disease (PD) and can precede the extrapyramidal clini-
cal symptoms by many years [1]. Constipation causes dis-
comfort, challenging the daily life of patients, and it can lead 
to serious and potentially life-threatening complications, 
such as intestinal pseudo-obstruction, volvulus, megacolon, 
and bowel perforation [2].

The etiology of constipation in PD remains largely 
unknown. It may be caused by intestinal or brain dysfunc-
tion due to the accumulation of pathological alpha-synu-
clein in either or both organs [3–5]. Resting-state functional 
magnetic resonance imaging (fMRI) has been widely used 
to non-invasively assess motor and non-motor symptoms, 
including autonomic symptoms, in patients with PD [6–10]. 
These studies have detected impairment of a complex central 
network that modulates resting-state parasympathetic out-
flow in the early stages of PD [11], as well as disruptions in 
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the executive control network, dorsal attention network [9], 
and thalamo-striato-hypothalamic functional connectivity 
[10] in PD patients with autonomic dysfunction. However, 
we are unaware that fMRI has ever been applied to analyses 
of constipation in PD.

In this study, we used resting-state fMRI in a large 
cohort of PD patients to compare regional neural activity 
and functional connections between those with or without 
constipation. Specifically, we measured the amplitude of 
low-frequency fluctuation (ALFF) of the blood oxygen level-
dependent signal as an index of neural activity [12], while 
we performed functional connectivity analysis to explore the 
brain’s intrinsic functional networks [13].

Methods

Patients

Patients with idiopathic PD were prospectively recruited at 
Henan Provincial People’s Hospital between February 2019 
and January 2020. The inclusion criteria for patients were as 
follows: (1) clinically established PD according to the Move-
ment Disorder Society Clinical Diagnostic Criteria for PD 
[14], (2) no family history of PD in first-degree relatives, (3) 
no MRI evidence of structural lesions related to other neu-
rological disorders, (4) no serious cognitive impairment that 
may affect the patient’s evaluation, and (5) no head move-
ment artifacts during the MRI session.

Patients were excluded if they were diagnosed with 
multiple system atrophy, progressive supranuclear palsy, 
or secondary Parkinsonism. Patients were also excluded if 
their constipation symptoms disappeared after taking anti-
constipation drugs. Such patients would otherwise have been 
assigned to the non-constipation group, where they might 
have confounded our analysis. Patients whose constipation 
symptoms did not completely disappear after taking anti-
constipation drugs, regardless of whether the symptoms 
were alleviated, were assigned to the constipation group.

This study was approved by the Ethics Committee of 
Henan Provincial People’s Hospital, and written informed 
consent was obtained from all participants.

Clinical assessment

Clinicodemographic data were collected on age, sex, disease 
duration, and use of medications including drugs against 
constipation, drugs that can cause constipation, and dopa-
minergic drugs. Constipation was defined according to item 
5 of the Non-motor Symptoms Questionnaire (NMSQ) [15] 
as fewer than three bowel movements a week or having 
to strain to pass stool. Medications currently taken by the 
patients were calculated in terms of the levodopa equivalent 

daily dose (LEDD) according to an established formula [16]. 
PD severity was assessed using Part III of the Movement 
Disorder Society Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS-III) [17].

Resting‑state fMRI

Images were acquired using a Siemens MAGNETOM 
Prisma 3-T scanner with a 64-channel head coil. Patients 
were asked to lie still, relax, and keep their eyes open 
throughout the scanning. Functional images were obtained 
using axial echo-planar imaging with the following 
parameters: TR = 2000 ms, TE = 35 ms, flip angle = 80°, 
FOV = 240 × 240 mm, matrix size = 94 × 94, voxel dimen-
sions 2.20 × 2.20 × 2.20 mm, slice thickness = 2.2 mm, num-
ber of slices = 75, and number of time points = 180.

Statistical Parametric Mapping version 12b (SPM12b; 
www.​fil.​ion.​ucl.​ac.​uk/​spm) and the CONN functional con-
nectivity toolbox version 18_b [18] (http://​www.​nitrc.​org/​
proje​cts/​conn) were used to preprocess images and analyze 
resting-state fMRI data. Preprocessing of data from all 
functional sequences involved the following steps: (1) func-
tional slice-timing correction, (2) functional realignment and 
unwarping (subject motion estimation and correction), (3) 
functional outlier detection using an artifact detection tool 
(www.​nitrc.​org/​proje​cts/​artif​act_​detect/) and scrubbing, (4) 
structural centering to (0,0,0) (translation), (5) functional 
direct normalization based on the Montreal Neurological 
Institute space, and (6) functional smoothing (spatial con-
volution with Gaussian kernel). Functional images were res-
liced at a resolution of 2 × 2 × 2 mm3 and smoothed using a 
Gaussian kernel (full width at half maximum, 8 mm). Sub-
jects were excluded if their head motion exceeded 2 mm in 
displacement or 2° in rotation in a single image. White mat-
ter, cerebrospinal fluid, and head motion were regressed in 
the denoising step. Low-frequency drift and high-frequency 
physiological noise were removed using bandpass filtering 
(0.01 < frequency < 0.08 Hz), while systematic shifts were 
removed using detrending.

First-level analysis of the CONN pipeline was con-
ducted to generate individual ALFF maps in order to evalu-
ate regional neural activity. Data were standardized across 
subjects by dividing the ALFF of each voxel by the global 
mean ALFF for all patients using DPABI toolbox (version 
4.0) [19].

To evaluate functional connectivity in the brain, we 
analyzed neurological activity among 132 regions, com-
prising 91 cortical and 15 subcortical regions of interest 
(ROIs) from the FSL Harvard–Oxford Atlas, as well as 
26 cerebellar ROIs from the Anatomical Automatic Labe-
ling Atlas in the CONN functional connectivity toolbox 
(version 18_b). Potential correlations were identified by 
applying a general linear model and performing bivariate 
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correlation analysis, which was weighted according to 
the hemodynamic response function based on first-level 
analysis of the CONN pipeline.

Statistical analysis

Differences in demographic and clinical characteristics 
between the two groups were assessed for significance 
using Student’s t test and the χ2 test. Statistical analy-
ses were performed using the Statistical Package for the 
Social Sciences (SPSS) for Windows (version 22.0; IBM 
Corp., Armonk, NY, USA). Differences were considered 
significant if they were associated with P < 0.05.

To evaluate differences in regional neural activity 
between the two groups, we analyzed ALFF from the 
individual standardized ALFF maps using the SPM12b 
software package. Age, sex, disease duration, and MDS-
UPDRS-III score were entered as covariates to exclude 
their potential influence on ALFF. The significance 
threshold was defined as an uncorrected P = 0.001 at the 
initial voxel level, and as a false discovery rate-adjusted 
P = 0.05 at the cluster level in order to correct for multiple 
comparisons.

To evaluate changes in ROI-to-ROI functional connec-
tivity between the two groups, differences from the sec-
ond-level analysis of the CONN pipeline were assessed 
using two-sample t tests. The significance threshold was 
defined as a false discovery rate-adjusted P = 0.05 at the 
seed level in order to correct for multiple comparisons.

Results

Demographic and clinical features 
of the participants

Of the 236 patients initially considered for enrollment, 57 
were excluded according to the inclusion criteria and exclu-
sion criteria. Among those excluded were four patients 
whose constipation symptoms completely disappeared 
after taking medicine; we did not want them to confound 
our analysis of other patients in the non-constipation group. 
In the end, the final analysis included 179 PD patients, who 
were divided into those with constipation (106), 37 of whom 
took anti-constipation drugs, and those without constipation 
(73) (Table 1). Only 13 patients in our constipation group 
reported that their symptoms had improved after medica-
tion. Those with constipation were less likely to be male and 
were older and had higher MDS-UPDRS-III scores. The two 
groups did not differ significantly in disease duration, fre-
quency of any dopaminergic drug use, or total LEDD. Simi-
lar proportions of patients with or without constipation were 
taking trihexyphenidyl (34.9% vs. 41.1%), and no patients 
were taking any other drugs known to cause constipation.

ALFF analysis

When we included age, sex, disease duration, and MDS-
UPDRS-III score as covariates, the two-sample t test showed 
that patients with constipation had a significantly higher 
ALFF value in the right dorsal pons extending into the cer-
ebellum and in the right insula (Table 2 and Fig. 1).

Table 1   Clinicodemographic 
information about PD patients 
with or without constipation

Values are n, n (%), or mean ± SD, unless otherwise noted
COMT catechol-O-methyltransferase, LEDD levodopa equivalent daily dose, MAO-B monoamine oxidase 
B, MDS-UPDRS-III Part III of Movement Disorder Society Unified Parkinson’s Disease Rating Scale, PD 
Parkinson’s disease

Characteristic PD with constipation PD without constipation P value

n 106 73 –
Male 55 (51.9) 53 (72.6) 0.005
Age at MRI scan, years 63.2 ± 6.2 60.7 ± 7.4 0.016
PD duration, years 7.0 ± 4.2 5.9 ± 4.2 0.072
MDS-UPDRS-III score 42.5 ± 18.7 36.4 ± 17.7 0.029
Trihexyphenidyl 37 (34.9) 30 (41.1) 0.400
Amantadine 15 (14.2) 15 (20.5) 0.260
Levodopa 93 (87.7) 59 (80.8) 0.204
Dopamine receptor agonist 44 (41.5) 35 (47.9) 0.394
MAO-B inhibitor 2 (1.9) 5 (6.8) 0.092
COMT inhibitor 5 (4.7) 3 (4.1) 1.000
LEDD 462.3 ± 297.1 433.7 ± 343.7 0.554
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Functional connectivity analysis

Compared to patients without constipation, those with 
constipation showed significantly weaker resting-state 
functional connections between the superior temporal 
gyrus (STG) and the following three brain regions (Table 3 
and Fig. 2): frontal lobe (frontal medial cortex, inferior 
frontal gyrus, middle frontal gyrus), temporal lobe (mid-
dle temporal gyrus, inferior temporal gyrus), and limbic 
lobe (hippocampus, parahippocampal gyrus). Patients with 
constipation also showed significantly weaker resting-state 
functional connections between the lateral occipital cortex 

(LOC) and the lingual gyrus, as well as between the mid-
dle temporal gyrus and the inferior temporal gyrus.

Conversely, patients with constipation showed signifi-
cantly stronger resting-state functional connections between 
the STG and cerebellum (cerebellum_3, cerebellum_4_5, 
Vermis_4_5, Vermis_6), as well as between the LOC and 
both the planum polare and thalamus.

Discussion

In this study, we explored changes in neural activity associ-
ated with constipation in a large cohort of individuals with 
PD. Our study appears to be the first to apply resting-state 
fMRI to measure regional neural activity and functional con-
nections in PD patients with or without constipation. We 
found significantly higher ALFF values in the right dorsal 
pons extending into the cerebellum and in the right insula in 
patients with constipation compared to those without con-
stipation. Additionally, we found that the STG, especially 
the right STG, showed altered functional connectivity with 
multiple brain regions in PD patients with constipation.

Both the insula and the locus coeruleus and parabrachial 
nucleus in the dorsal pons are involved in autonomic control 
[20, 21]. The locus coeruleus contains the pontine center for 
micturition and defecation [21]: norepinephrine in the locus 
coeruleus facilitates colonic motility in rats [22], vascular 

Table 2   Brain regions showing higher ALFF in PD patients with con-
stipation than in those without constipation

ALFF amplitude of low-frequency fluctuation, PD Parkinson’s dis-
ease
*Corrected for a cluster-level false discovery rate (single voxel 
P < 0.001, cluster size ≥ 135 voxels)

Region Cluster size Montreal Neuro-
logical Institute 
coordinates (x, 
y, z)

T score*

Right dorsal pons 
extending into the 
cerebellum

247 18 −36 −24 4.92

Right insula 135 32 −18 14 4.95

Fig. 1   Analysis of the amplitude of low-frequency fluctuations in 
patients with Parkinson’s disease. Standard brain showing higher 
amplitude of low-frequency fluctuations in patients with constipation 

than in patients without constipation. The right dorsal pons extending 
into the cerebellum (a) and the right insula (b) are highlighted in red. 
More detailed information can be found in Table 2
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lesions at this site cause constipation in humans [23], and 
Lewy bodies at this site have been associated with infrequent 
bowel movements [24]. The parabrachial nucleus receives 
input from the nucleus of the solitary tract and relays this 
information to certain cortical sites including the insular cor-
tex and amygdala [25, 26]. Electrical and chemical stimula-
tion of the parabrachial nucleus alters respiration and arterial 
pressure [27]. In fact, fMRI has shown that various visceral 

tasks, such as isometric hand-gripping, maximal inspiration, 
and the Valsalva maneuver, can activate the parabrachial 
nucleus [28]. Similarly, maximal inspiration and breath-
holding activate the insular cortex in a pattern that corre-
lates with the activity of sympathetic muscle nerves [29]. 
Electrical stimulation of the neck area overlying the vagus 
nerve can activate classic vagal afferent projections, includ-
ing the nucleus of the solitary tract, the parabrachial area, 
the primary sensory areas, and the insula [30]. These obser-
vations strongly link the parabrachial nucleus and the insula 
to autonomic control, and the present study implicates these 
brain regions in PD-associated constipation, which has also 
been attributed to autonomic dysfunction [31].

The STG is an important locus in PD and plays a role 
in the disease’s manifestations of theory of mind, apathy, 
dementia, depressive symptoms, freezing of gait and fre-
quent falling [7, 32–36]. Nevertheless, we did not detect 
significant differences in spontaneous STG activity between 
patients with or without constipation, although we did find 
that the STG, especially the right STG, differed in its func-
tional connections with multiple brain regions between the 
two types of patients. Patients with constipation showed 
stronger functional connections between the STG and cer-
ebellum, but weaker connections between the STG and other 
cerebral lobes. Interestingly, fMRI has linked the cerebel-
lum to regulation of autonomic function [29, 37, 38]. Our 
functional connectivity analysis suggests that the STG may 
be part of an important brain network contributing to con-
stipation in PD.

Our results may not be specific to PD, since our study 
did not include healthy controls or individuals with consti-
pation from the general population. In fact, at least some 
of our findings may be relevant to constipation in the gen-
eral population. For example, spontaneous activity in the 
insula appears to be higher among individuals in the general 
population with functional constipation than among healthy 
controls [39]. Further study with appropriate comparison 
groups should examine whether the associations between 
constipation and altered functional connectivity in PD also 
occur in the general population.

In the general population, functional constipation is gen-
erally more prevalent among women than men [40]. A simi-
lar sex bias for constipation has been observed among PD 
patients [41, 42], which we observed in the present study 
as well. Risk of constipation among PD patients may also 
depend on PD severity, with risk increasing as the disease 
progresses [43, 44]. We also observed that PD patients with 
constipation had a higher motor symptom score than PD 
patients without constipation.

It is important to acknowledge the limitations of our 
study. Since no definitive criteria exist for the diagnosis of 
constipation in PD [1], we applied commonly used diag-
nostic criteria [15]. In addition, we excluded patients whose 

Table 3   Functional connection differences in PD patients with or 
without constipation

aITG anterior division of the inferior temporal gyrus, aMTG ante-
rior division of the middle temporal gyrus, aPaHC anterior division 
of parahippocampal gyrus, aSTG anterior division of the superior 
temporal gyrus, Cereb3 cerebellum_3, Cereb45 cerebellum_4_5, 
FDR false discovery rate, IFG_tri pars triangularis of inferior fron-
tal gyrus, iLOC inferior division of lateral occipital cortex, l left, 
LG lingual gyrus, MedFC frontal medial cortex, MidFG middle 
frontal gyrus, PD Parkinson’s disease, pITG posterior division of 
inferior temporal gyrus, pMTG posterior division of the middle tem-
poral gyrus, PP planum polare, pPaHC posterior division of para-
hippocampal gyrus, pSTG posterior division of the superior tempo-
ral gyrus, r right, sLOC superior division of lateral occipital cortex, 
toMTG temporo-occipital part of middle temporal gyrus, Ver45 Ver-
mis_4_5, Ver6 Vermis_6

Connection T value FDR-corrected P

aSTG_l—MedFC −4.16 0.003
aSTG_l—pMTG_r −3.64 0.040
aSTG_r—MedFC −3.55 0.022
pSTG_l—MedFC −4.78 0.001
pSTG_l—Hippocampus_l −4.14 0.004
pSTG_l—aMTG_r −3.89 0.004
pSTG_l—pMTG_l −3.86 0.004
pSTG_l—pMTG_r −3.64 0.007
pSTG_l—pPaHC_l −3.61 0.008
pSTG_l—aMTG_l −3.38 0.010
pSTG_l—pITG_l −3.27 0.013
pSTG_l—pITG_r −3.04 0.024
pSTG_l—IFG_tri_l −3.04 0.024
pSTG_l—MidFG_l −2.89 0.035
pSTG_l—aITG_l −2.78 0.044
pSTG_l—aPaHC_l −2.78 0.044
pSTG_r—pMTG_r −3.37 0.040
pSTG_l—Cereb3_r 3.98 0.004
pSTG_l—Cereb3_l 3.56 0.008
pSTG_l—Cereb45_r 3.49 0.009
pSTG_l—Ver6 3.43 0.010
pSTG_l—Ver45 3.40 0.010
iLOC_r—PP_r 4.23 0.004
iLOC_r—Thalamus_r 3.87 0.010
iLOC_l—Thalamus_r 4.19 0.006
iLOC_l—PP_r 3.87 0.010
sLOC_l—LG_r −3.80 0.026
toMTG_l—pITG_r −3.83 0.024
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constipation symptoms disappeared after taking anti-con-
stipation drugs. Both these factors may limit the generaliz-
ability of our results to other patient populations. We did not 
assess severity of constipation, so it remains unclear whether 
the observed alterations in brain activity and connectivity 
correlate with constipation severity. Lastly, we did not col-
lect data on other autonomic symptoms such as orthostatic 
hypotension, excess salivation, urinary symptoms, sexual 
symptoms, or thermoregulatory symptoms. As autonomic 
symptoms often cluster together, this may confound our 
results [45]. Nevertheless, we did treat PD duration and dis-
ease severity as covariates in our analysis, and both these 
variables are associated with autonomic symptoms [45]. 
Thus, our analysis may have reduced the impact of such 
confounding.

Future work should address these limitations and seek 
to verify and extend our findings, which suggest substan-
tial differences in brain activity and functional connectivity 

between PD patients with or without constipation. Our study 
may advance the understanding of how constipation occurs 
in PD and what treatments may be effective against it.
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names of regions of interest are 
defined in Table 3
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