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Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disease, with no known genetic cause to date. Oligo-
dendroglial α-synuclein accumulation, neuroinflammation, and early myelin dysfunction are hallmark features of the disease 
and have been modeled in part in various preclinical models of MSA, yet the pathophysiology of MSA remains elusive. 
Here, we review the role and scientific challenges of induced pluripotent stem cells in the detection of novel biomarkers and 
druggable targets in MSA.
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Introduction

Multiple system atrophy (MSA) is a rapidly progressive 
and fatal neurodegenerative disease, the etiology of which 
is currently unknown. Clinically, variable combinations of 
autonomic dysfunction, parkinsonism, and cerebellar or 
pyramidal tract dysfunction are observed, and according to 
the predominance of parkinsonian or cerebellar symptoms 
are classified into subtype MSA-P or MSA-C, respectively 
[1]. These syndromes, previously described as the distinct 
neurological entities Shy-Drager syndrome, olivopontocer-
ebellar atrophy (OPCA), and striatonigral degeneration 
(SND), have been known under the collective term MSA 
since 1969 [2], but it was only in 1989 that neuropathologi-
cal analyses confirmed the presence of so-called Papp–Lan-
tos bodies, glial cytoplasmic inclusions (GCI), in MSA cases 
[3]. These proteinaceous, primarily oligodendroglial inclu-
sions were shown to be α-synuclein (α-syn)-immunoreactive 
approximately 20 years ago [4, 5], distinguishing MSA from 
Parkinson’s disease (PD), dementia with Lewy bodies, and 

pure autonomic failure, which predominantly exhibit neu-
ronal cytoplasmic and dendritic inclusions containing α-syn 
as the main component as well [6, 7].

From an epidemiological standpoint, MSA represents an 
orphan disease with an estimated mean incidence of 0.6–0.7 
cases per 100,000 person-years [8]. In the Western Hemi-
sphere, 70–80% of MSA patients are diagnosed with MSA-P 
[9, 10], whereas in Asian populations MSA-C is found in 
67–84%, with a mixed phenotype observed more frequently 
than in western countries [11, 12]. In patients presenting 
with parkinsonism or cerebellar ataxia, autonomic failure is 
a criterion for diagnosis of probable MSA [13]. Currently, 
diagnosis of definite MSA is made upon postmortem detec-
tion of widespread α-syn positive GCIs, the histopathologi-
cal hallmark of the disease [3], which reflects the difficulty 
in diagnosing MSA with its variable clinical manifestations 
[1]. Prior to motor symptom onset, 20–75% of patients expe-
rience a prodromal phase, which lasts from several months 
to years and is characterized by autonomic failure affect-
ing cardiovascular, respiratory, urogenital, gastrointestinal, 
and sudomotor functions [14]. In addition, rapid eye move-
ment (REM) sleep behavior disorder (RBD) is frequently 
observed in the premotor stage of α-synucleinopathies, with 
more than half of patients reporting RBD prior to motor 
onset, and is present in up to 88% of patients diagnosed with 
probable MSA [15]. Intriguingly, dermal phospho-α-syn 
deposits have been detected in isolated RBD cases, whereas 
no deposits were found in healthy controls [16]. This is sup-
ported by a short report by Gaig et al. of one pathologically 
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confirmed MSA case with a long-standing history of stridor, 
RBD, and autonomic symptoms without parkinsonism or 
cerebellar signs [17]. Mean age at motor symptom onset is 
56.2 ± 8.4 years, with no difference in sex distribution, and 
median survival is 6–10 (9.8) years [18–20].

The etiology of MSA is still elusive. A complex interac-
tion incorporating genetic predisposition and environmental 
factors is suggested to drive disease initiation and progres-
sion, as familial aggregation following an autosomal domi-
nant or recessive inheritance pattern has been reported in 
several European and Japanese families [21, 22]. However, 
MSA is generally considered a sporadic disease with no con-
firmed risk factors to date [1]. Loss of function mutation in 
the coenzyme Q2 (COQ2) gene encoding the COQ10-syn-
thesizing enzyme in Japanese familial and sporadic cases and 
discordant loss of copy numbers of (src homology 2 domain 
containing)-transforming protein 2 (SHC2) in monozygotic 
twins and Japanese patients with sporadic MSA have been 
reported predominantly for MSA-C; however, this was not 
confirmed in other populations [23–25]. No mutation of the 
gene coding for α-syn, SNCA, has been found in sporadic 
MSA; intriguingly, however, oligodendroglial inclusions are 
detected in cases of familial PD harboring the SNCA muta-
tions [26]. Moreover, clinical features similar to MSA have 
been observed in some cases [27], indicating a link between 
oligodendroglial inclusion pathology and MSA phenotype.

MSA: human postmortem findings

At postmortem examination, neurodegeneration of anatomi-
cal areas corresponding to clinical symptoms is observed 
and therefore varies; however, in cases of predominant par-
kinsonism, striatonigral degeneration, manifesting macro-
scopically as atrophy and dark discoloration of the putamen, 
is found [28, 29]. The cerebellar subtype, on the other hand, 
presents pathologically with olivopontocerebellar atrophy 
including the cerebellum, middle cerebellar peduncle, and 
pontine base [28, 29].

On a cellular basis, MSA is characterized by widespread 
α-syn immunoreactive inclusion pathology found primarily 
in oligodendrocytes and to a lesser extent in neurons and 
other glia. In addition, myelin dysfunction, neuronal loss, 
and axonal degeneration and microglial activation are pre-
sent in the brain [28].

The mechanism underlying GCI formation is still uncer-
tain, as mature oligodendrocytes express only low basal lev-
els of α-syn. Hypotheses revolve around (1) increased oligo-
dendroglial α-syn expression in the disease [30], although 
several studies have failed to show aberrant expression of 
SNCA mRNA in oligodendrocytes [31–33]; or (2) cell-to-
cell transmission of neuronal α-syn to dysfunctional oligo-
dendrocytes not capable of degrading α-syn that has been 

taken up [34, 35]. In addition, α-syn in MSA also forms 
glial nuclear inclusions, neuronal cytoplasmic, and nuclear 
and dendritic inclusions, as well as astroglial cytoplasmic 
inclusions [36]. In the early stages of neurodegeneration, 
oligodendroglial dysfunction is observed, which precedes 
α-syn pathology. Prominent findings at this stage are myelin 
degeneration reflected by myelin basic protein (MBP) deg-
radation and aberrant composition of myelin lipids, relo-
cation of microtubule polymerization-promoting protein 
p25α/TPPP to the swollen oligodendroglial soma, and con-
sequently reduced neurotrophic support [28, 37, 38]. GCI 
density is positively correlated with neuronal loss, and an 
increase is observed with disease duration [39]. The most 
severely affected areas include the putamen, caudate nuclei, 
substantia nigra, pontine and medullary tegmental nuclei, 
and inferior olive and cerebellar white matter, as well as 
motor cortex and globus pallidus, and to a lesser extent cin-
gulate cortex, hypothalamus, nucleus basalis of Meynert, 
thalamus, subthalamus, and pontine tegmentum [40]. More 
recently, stereological studies reported the occurrence of 
neocortical atrophy affecting frontal and temporal lobes fol-
lowing degeneration of the basal ganglia [41–43]. Cognitive 
decline and impaired executive function have been reported 
in MSA, and it is suggested that focal fronto-striatal degen-
eration rather that widespread cortical atrophy accounts for 
the symptoms [44].

Synuclein pathology is suggested to trigger astro- and 
microglial changes toward an activated and reactive state, 
which in turn favors neurodegeneration [45]. In MSA brains, 
more astrocytes and microglia are found in the frontal and 
parietal cortex, whereas the total number of oligodendro-
cytes in the neocortex is unaffected [43], reflecting patholog-
ical changes consistent with neuroinflammation, one of the 
drivers of MSA pathogenesis. In contrast to PD, astrogliosis 
is positively correlated with synuclein pathology in MSA 
and severity of neurodegeneration [46, 47]. Monoamine oxi-
dase B (MAO-B), a biomarker of astrogliosis, is significantly 
increased in the putamen (+83%) and correlates positively 
with α-syn accumulation, whereas a less dramatic increase 
in MAO-B (+10%) in the substantia nigra correlates with 
membrane-bound α-syn [48]. MAO-A, on the other hand, is 
decreased only in the atrophic putamen in the case of MSA 
(−27%), while in the substantia nigra in PD, no change is 
observed, thus highlighting aberrant astrocyte behavior in 
MSA compared to PD. The role of microglia has been stud-
ied extensively in neurodegenerative disorders, and yet its 
full impact on disease pathogenesis is not completely clear, 
as both pro- and anti-inflammatory properties have been 
attributed to the ‘macrophages of the brain’, surveying the 
central nervous system in their resting state. In MSA, micro-
glia become activated in response to an increasing load of 
misfolded α-syn, which in turn contributes heavily to disease 
pathogenesis via secretion of pro-inflammatory factors [49]. 
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Microglial activation accompanies GCI pathology in white 
matter [50], but interestingly, loss of p25α/TPPP immuno-
reactivity and loss of MBP density correlate strongly with 
microgliosis as a marker of tract degeneration [51]. Acti-
vation of TLR4 and myeloperoxidase has been reported in 
microglia in MSA [49, 52, 53]. Microglia can be divided into 
two distinct phenotypes, the pro-inflammatory M1 and the 
anti-inflammatory M2 phenotype [54]. M1-type microglia 
is detected more abundantly at the end stage of disease and 
may represent a consequence of GCIs in MSA [28].

In vitro and in vivo models of MSA: relevance 
and limitations

Studies on the pathogenic mechanisms of MSA downstream 
of α-syn aggregation have been carried out in different 
in vivo and in vitro models, as shown in Fig. 1 [55, 56], in 
addition to neurotoxin-induced lesions of the striatonigral 
system [57, 58]. Transgenic oligodendroglial overexpression 
of α-syn under the proteolipid protein (PLP) promoter results 
in region-selective neuronal loss associated with early auto-
nomic dysfunction and motor impairment, thereby provid-
ing evidence for a causal role of oligodendroglial inclusion 
formation in the degenerating brain in MSA [59, 60]. The 
causative role of GCI-like pathology in neurodegeneration 
has been further supported by studies in additional trans-
genic models applying alternative oligodendroglial promot-
ers [61–64]. Several in vitro models [65–68] have also been 

used to study MSA, providing some insight into pathological 
mechanisms at the molecular level.

These in vivo and in vitro models have been crucial for 
elucidation of disease mechanisms and continue to repre-
sent an invaluable tool for basic research. However, a major 
limitation in understanding the human disease remains the 
mechanistic recapitulation of MSA pathology in the avail-
able models linked to the lack of knowledge on the initial 
disease trigger(s).

In recent years, however, the study of patient-specific 
brain cells derived from easily accessible peripheral tissue 
via induced pluripotent stem cell (iPSC) technology has 
flourished, providing a promising template for the study 
of neurodegenerative diseases and guided drug discovery 
[69–71].

Induced pluripotent stem cells as a disease 
model

Pluripotent stem cells are characterized by their ability 
to continuously self-renew and to give rise to cells of the 
three primary germ layers. These so-called embryonic 
stem cells (ESCs), which occur naturally only in embryos, 
have been studied since their first derivation from the 
mouse and human blastocyst [72, 73], with relevance for 
the modeling of neurodegenerative diseases and develop-
ment of alternative sources for replacement therapies [74]. 
However, ethical controversies and limited availability 

Fig. 1   In vivo and in  vitro models of MSA. 6-OHDA 6-hydroxy-
dopamine, QA quinolinic acid, 3-NP 3-nitropropionic acid, MPTP 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, i.v. intravenous, i.p. 
intraperitoneal, MBP myelin basic protein, CNP 2′,3′-cyclic nucleo-

tide 3′-phosphodiesterase, PLP proteolipid protein, iPSC induced 
pluripotent stem cell, PBMC peripheral blood mononuclear cell, OPC 
oligodendrocyte progenitor cell, OL oligodendrocyte, DAergic dopa-
minergic
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have impeded progress in this field [75]. In 2006, Shinya 
Yamanaka ushered in a paradigm shift when he showed for 
the first time the potential for somatic cells to be repro-
grammed to a pluripotent state resembling embryonic stem 
cells, via application of four transcription factors—Oct3/4, 
Sox2, Klf-4, and c-Myc—which are thus termed induced 
pluripotent stem cells [76, 77]. Since then, easily acces-
sible peripheral tissue has been used to generate iPSCs 
by (i) delivery of transcription factors via genome-inte-
grating lenti- or retroviruses; (ii) delivery of transcription 
factors via non-integrating adenovirus or sendai virus, or 
(iii) non-viral reprogramming methods including mRNA, 
miRNA infection/transfection, PiggyBac transposons, 
minicircle vectors, and episomal plasmids [78]. Subse-
quent differentiation of patient-derived pluripotent cells 
reprogrammed into neural cell types has been employed in 
modeling specific diseases. The directed differentiation of 
stem cells to specific cell phenotypes is facilitated by the 
precisely timed addition of molecules influencing cell fate 
during various stages of neurodevelopment [79].

Midbrain dopaminergic neurons, for example, have 
been efficiently generated from ESCs [80] and later iPSCs 
[81–83] to enable modeling of the α-synucleinopathy PD. 
Although initial differentiation of PD patient-derived iPSCs 
did not reveal a disease-related phenotype [84], subsequent 
studies on cell lines harboring PD-causing or PD-associated 
mutations detected morphological and subcellular changes 
such as reduced neurite outgrowth, dendrite degeneration 
and diminished microtubule stability [85–87]. In addition, 
increased susceptibility to stress of an oxidative or nitrosa-
tive nature [87–90], increased levels of α-syn [91, 92] but 
also elevated α-syn aggregation and Lewy body deposition 
[90], and mitochondrial dysfunction has been observed 
[90, 91, 93, 94]. Dopaminergic neurons of individuals with 
sporadic PD carrying a mutation in the glucocerebrosidase 
(GBA) gene, show elevated α-syn levels, reduced dopa-
mine storage and uptake, defective autophagic and lysoso-
mal machinery and enhanced vulnerability to endoplasmic 
reticulum stress [95–97]. Intriguingly, in iPSC-derived 
neurons of monozygotic twins harboring the GBA N370S 
mutation and discordant for PD, altered susceptibility toward 
oxidative stress in the affected twin suggests the presence of 
disease-contributing factors other than the GBA mutation, 
which were preserved across the reprogramming and differ-
entiation procedure [96]. Furthermore, researchers reported 
epigenetic alterations in dopaminergic neurons derived from 
patients with sporadic PD compared to healthy controls [98].

Efforts have been made to generate specific glial phe-
notypes. iPSC-derived oligodendrocytes have been gen-
erated to support studies on multiple sclerosis [99] and 
Pelizaeus–Merzbacher disease [100]. Astro- and microglia 
differentiation protocols have also recently been established 
[101, 102]. Whether the resultant patient-derived glial cells 

will reflect features seen in diseased brains remains to be 
tested.

iPSC technology to fill the gaps in modeling 
multiple system atrophy: current 
developments

In MSA, multiple neuronal and glial phenotypes are affected 
by the neurodegenerative process linked to α-syn misfolding 
and accumulation. First efforts have been made to apply the 
iPSC technology in MSA research (Fig. 1). Recent findings 
in primary cell cultures suggested a causal role of glia in the 
pathogenesis of MSA [103]. On the other hand, the origin of 
α-syn found in MSA oligodendrocytes is still elusive [30, 32, 
104]. Djelloul et al. addressed this question by investigating 
α-syn and SNCA expression in rodent and human models 
[105]. A primary mixed culture including astrocytes, neu-
rons, oligodendrocytes, and microglia was generated from 
the postnatal mouse forebrain, and oligodendrocyte progeni-
tors positive for O4 were subsequently isolated. Quantifica-
tion of α-syn and SNCA transcripts revealed a more than 
tenfold increase in the oligodendrocyte lineage compared 
to the whole primary culture. Upon maturation, however, 
α-syn and SNCA levels decreased substantially as oligo-
dendrocytes started to express maturation markers such as 
2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase), 
galactosylceramide (Gal-C), and MBP. To confirm that 
this effect was not the result of neuronal–oligodendroglial 
transfer within the culture, oligodendrocyte precursor cells 
(OPCs) were generated from mouse ESCs, exhibiting a 
similar outcome. In a next step, Djelloul et al. applied a 
modified protocol from Stacpoole et al. [106] to differentiate 
fibroblast-derived iPSCs from one patient each with MSA-P 
and MSA-C, one patient suffering from familial PD, and 
a healthy control into OPCs. After 60 days, oligodendro-
cyte progenitors—characterized by immunocytochemical 
confirmation of OPC markers and immature bipolar mor-
phology—revealed α-syn expression in both healthy and dis-
eased lines, with no significant difference between groups. 
Finally, human oligodendrocyte lineage nuclei were isolated 
from the pons of three healthy and three MSA postmortem 
brains to determine the presence of SNCA transcripts, which 
resulted in the detection of SNCA in one healthy and one 
diseased sample. This study provides compelling evidence 
for α-syn expression during oligodendrogliogenesis and 
subsequent downregulation following maturation in human 
tissue, complementing previous findings on a physiologi-
cal occurrence of α-syn in oligodendroglial precursors in 
animal models [107]. As this downregulation was observed 
in MSA patient-derived cell lines as well, it is still unclear 
whether α-syn of oligodendroglial origin does play a role in 
disease and whether disease-specific features of MSA are 
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partially erased during the whole process of reprogramming 
and targeted differentiation. Nevertheless, it may be interest-
ing to investigate protein handling of MSA oligodendrocytes 
and the effects of exogenous addition of α-syn to oligoden-
drocytes. Kaji et al., for instance, found that the level of 
endogenous α-syn in primary OPCs from neonatal rats was 
increased upon the addition of synthetic preformed α-syn 
fibrils, due to autophagic impairment [108]. Furthermore, 
the exogenous addition of α-syn led to compromised expres-
sion of proteins involved in neuromodulation and myelina-
tion, an aspect which, if reproducible in human tissue, may 
shed great light on MSA pathogenesis.

The contribution of mitochondrial dysfunction to MSA 
pathogenesis is another aspect currently under discussion. 
A reduction in respiratory chain complex I activity has 
been shown in the skeletal muscle of MSA patients [109], 
whereas platelets and substantia nigra revealed no changes 
[110]. Mitochondrial dysfunction has also been investigated 
in MSA mouse models. Studies showed that striatal injection 
of succinate dehydrogenase inhibitor 3-nitropropionic acid 
in rats [56] or mitochondrial complex I inhibitor 1-methyl-
4-phenylpyridinium ion (MPP+) in mice [111] induced 
extensive neuronal loss in the substantia nigra and striatum, 
as well as astrogliosis, accompanied by motor deficits resem-
bling parkinsonism. The strongest evidence to date, however, 
is from the occurrence of COQ2 mutations in rare Japanese 
families and sporadic cases presenting predominantly as the 
cerebellar subtype of MSA [23]. To investigate the effects 
of functionally impaired variants of COQ2 on mitochondrial 
function, Nakamoto et al. examined iPSC-derived neurons 
from a patient with a compound heterozygous COQ2 muta-
tion, an idiopathic MSA patient, and three control lines of 
diverse descent (Caucasian, African, and Japanese origin) 
[112]. In addition, an isogenic control was generated by 
site-specific gene correction of the cell line harboring the 
COQ2 mutation. In their work, they reprogrammed periph-
eral blood mononuclear cells into iPSCs, and following a 
battery of tests to confirm pluripotency and normal karyo-
type, selected cell clones were differentiated using three 
different methods to induce neural cells: (i) high-efficiency 
induction of neurons, (ii) induction of mid-hindbrain neu-
rons [113], and (iii) induction of the three basic lineages of 
neural cells [114]. Mid- and hindbrain neurons were success-
fully generated with the latter two methods, representing an 
area severely affected in MSA-C. Neuronal subpopulations 
present in the culture included glutamatergic (VGLUT1 and 
VGLUT2), GABAergic, dopaminergic (tyrosine hydroxy-
lase), and glycinergic (VGAT) neurons.

Mitochondrial integrity, which is expected to be impaired 
in subjects carrying a mutated COQ2 gene, was assessed 
by measuring the mean area of the inner mitochondrial 
membrane, which revealed a significant reduction in the 
COQ2-mutated MSA patient (MSA_mut) compared with the 

sporadic MSA patient (MSA_sp) and controls. In addition, 
COQ10 and vitamin E were quantified and showed reduced 
levels not only in MSA_mut, but also in the patient cell line 
carrying the corrected gene (MSA_corr). Changes in mito-
chondrial respiratory chain activity determined by oxygen 
consumption rate and extracellular acidification rate showed 
a significant decrease in MSA_mut and partially in MSA_sp 
compared to MSA_corr and controls.

Neurodegeneration is observed in the brainstem and 
striatum of MSA patients postmortem. Analysis of neurite 
length, however, a sign of neurodegeneration also shown in 
various iPSC-based models of neurodegeneration, did not 
reveal any differences between MSA and healthy control 
lines. Nakamoto and colleagues  then went on to investi-
gate the cellular vulnerability of MSA-derived neurons 
compared to healthy control neurons using a glucose-free 
medium and galactose instead, which represents a stress 
condition. This forces a metabolic switch in cells toward 
oxidative phosphorylation-dependent ATP production, 
while glycolysis is inhibited. Staining for cleaved caspase 3 
(a marker of apoptosis)-positive neurons in the stress con-
dition was higher in MSA_mut neurons than in controls. 
MSA_sp showed a tendency for higher levels of apoptosis, 
and MSA_corr revealed a lower ratio of apoptotic cells com-
pared with MSA_mut, but still significantly higher than in 
controls. COQ10 supplementation decreased the fraction of 
apoptotic neurons in MSA_mut, suggesting that low endog-
enous COQ10 levels are at least partially responsible for 
the cellular vulnerability observed. In conclusion, this study 
reveals that the correction of the COQ2 mutation amelio-
rated mitochondrial function and signs of neurodegenera-
tion but was not able to rescue the cells completely when 
compared to healthy control lines, indicating that additional 
factors may come into play here. In addition, the experimen-
tal results in cells derived from an idiopathic MSA patient 
differed significantly from the patient harboring the muta-
tion, therefore additional studies will be needed to identify 
if this difference is disease-specific or underlies the pheno-
typic variability between individuals with different genetic 
background.

Mitochondrial and autophagic dysfunction was also 
examined in iPSC-derived dopaminergic neurons from 
MSA patients and healthy controls by Monzio Compagnoni 
et al. [115]. Cell lines from two MSA-P, two MSA-C, and 
five healthy controls, among them the healthy monozygotic 
twin of one of the MSA-C patients (MSA_C1), were gen-
erated. In MSA_C2, a homozygous variant in the COQ2 
gene (p.A43G) was found, which, according to a previous 
study using this patient’s cells [116], did not affect respira-
tory chain activity in muscle or COQ10 levels in muscle and 
fibroblasts. No other mutations associated with parkinson-
ism or ataxia were found in any cell line. Upon reprogram-
ming of fibroblasts into iPSCs, dopaminergic neurons were 
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generated according to a protocol by Zhang et al. [117]. To 
evaluate the maturation and identity of neurons, immuno-
cytochemistry and real time-polymerase chain reaction for 
markers of dopaminergic neurons was performed, along 
with electrophysiology to assess post-synaptic activity, and 
sphingolipid composition was evaluated in three cell lines, 
confirming neuronal maturation. In order to assess cellular 
defects present in the MSA lines, western blot analysis of 
synaptic markers and tau, a neurite protein, was performed 
and showed decreased levels of synapsin I and tau in MSA 
patients. Intriguingly, the decrease in tau was not caused by 
a change in the microtubule-associated protein tau (MAPT) 
gene levels, and an assessment of α-syn levels did not reveal 
any differences between MSA and control cell lines. The 
extent of autophagic impairment was investigated by treat-
ing cell cultures with bafilomycin A (a V-ATPase inhibi-
tor which inhibits the fusion of the autophagosome and the 
lysosome). An increased ratio of LC3-II after treatment to 
LC3-II basal levels was observed in controls, indicating 
more efficient autophagic flux, whereas LC3-II basal levels 
were elevated in MSA lines. Between the twins discord-
ant for the disease, a similar but nonsignificant trend was 
observed. In addition, the activity of five lysosomal enzymes 
(GBA1, β-galactosidase, α-mannosidase, β-mannosidase 
and β-hexosaminidase) was measured, and only α- and 
β-mannosidase levels were reduced in MSA patients.

Also, mitochondrial dysfunction was investigated by 
evaluating the activity of respiratory chain complexes I, II, 
I + III, II + III, and IV by spectrophotometric analysis. The 
activity of complexes II, III, and II + III was strongly down-
regulated in MSA patients, but interestingly, the amount 
of the complexes was not found to be decreased, and was 
even increased in the case of complexes II and III, conceiv-
ably representing a compensatory mechanism. Levels of 
COQ10 important for mitochondrial activity were normal, 
yet COQ10-synthesizing enzymes PDSS1 (prenyl (deca-
prenyl) diphosphate synthase subunit 1), PDSS2, COQ4, 
and ADCK3 (coenzyme Q8 homolog) were increased. In 
MSA brain tissue representing the end stage of the disease, 
however, a decrease in PDSS1 and COQ5 was found [118, 
119]. Thus, the authors hypothesize that mitochondrial 
dysfunction captured in vitro occurs early in disease, and 
upregulation of COQ10-synthesizing enzymes may repre-
sent a compensatory mechanism which fails at later disease 
stages. In addition, upregulation in MSA fibroblasts from 
the same group revealed higher levels of COQ5 and COQ7, 
supporting their findings in dopaminergic neurons [120]. 
Mitochondrial mass as determined by TOMM20, a mito-
chondrial structural protein, and mitochondrial DNA content 
was elevated, leading the authors to hypothesize that those 
changes in the autophagic system and mitochondria may be 
linked. They posited that mitochondrial dysfunction could 
be triggered by insufficient autophagy; thus mitophagy is 

impaired and senescent, and dysfunctional mitochondria 
accumulate to promote cellular dysfunction and autophagic 
dysregulation in a vicious cycle. In a next step, the authors 
aim to explore α-syn pathological behavior—although α-syn 
levels were normal in this study—lysosomal dysfunction, 
and mitophagy.

Scientific challenges

The first steps indicate the ability of the iPSC technology 
to reflect disease features and early events in the pathogen-
esis of MSA. However, first studies point toward significant 
challenges.

The iPSC-technology is clearly useful for studying the 
effects of disease-specific mutations in genetic neurode-
generative disorders by correcting the genetic defect with 
molecular tools [121]. However, sporadic diseases such as 
MSA lack specific genetic targets, and line-to-line variabil-
ity due to differences in the genetic background of samples 
can be expected to hamper scientific interpretation. For 
years, researchers have tried to pinpoint differences between 
human ESCs and human iPSCs, but it appears that vari-
ability between one iPSC and one ESC line may be smaller 
than between two iPSC lines [122]. In addition, variability 
in the epigenetic landscape may result from differences in 
derivation method and culture history, and differences in cell 
type of origin may have a substantial impact in subsequent 
examinations of reprogrammed cells [123]. To overcome 
these hurdles, sibling lines with similar genetic background 
may be key for sporadic diseases, as they have been proven 
to display changes in genetic background despite environ-
mental sources of variability including cell type of origin 
and derivation method [124]. Quantifiable phenotypic dif-
ferences between patient and control in vitro in sporadic 
diseases are expected to be small [121]; therefore, the use of 
monozygous twin lines discordant for the disease, as in the 
experiment by Monzio Compagnoni et al., may shed light 
on disease-specific events. MSA represents a rare disease; 
therefore, iPSC lines, and especially sibling lines, are very 
sparse. A combined effort in the form of an international 
iPSC bio-bank would be instrumental in accelerating MSA 
research efforts.

As multiple systems and cell types are affected in MSA, 
co-culture of different cell types may facilitate the study of 
extracellular disease mechanisms such as α-syn transmis-
sion dynamics to answer the question of the origin of GCI-
forming α-syn, and may also aid in determining the effects 
of cellular dysfunction on other cell types at disease onset. 
The use of more complex models such as 3D brain organoids 
to study cellular interactions may also be beneficial [125]. 
Importantly, Madhavan et al. recently demonstrated the 
generation of cortical oligospheres, an intriguing model for 
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demyelinating diseases and oligodendrogliopathies [126], 
which may aid in dissecting the complex underlying patho-
genesis in MSA. Moreover, both cortical- and midbrain-like 
organoids have been generated [127, 128] and may prove 
suitable for the study of MSA in a dish.

Conclusion

MSA has been studied in various disease models, and despite 
the elucidation of pathological mechanisms contributing to 
disease initiation and progression via glial overexpression of 
α-syn, the underlying pathogenesis of this sporadic disease 
largely remains an enigma. The emerging iPSC technology 
offers the unique opportunity to study the disease in the con-
text of patient-specific genetic background. The first studies 
in MSA patient-specific neural cells revealed mitochondrial, 
lysosomal, and autophagic dysfunction in iPSC-derived neu-
rons and dysregulation of oligodendroglia consistent with 
previous findings.

Challenges such as line-to-line variability owing to indi-
vidual genetic composition might make it difficult to deter-
mine whether phenotypic differences between patient and 
control lines are truly disease-specific, but these may be 
overcome by increased sample size, technological advance-
ments enabling more sophisticated analysis, and the utili-
zation of sibling lines which exhibit comparable genetic 
make-up.

In addition, advances in stem cell technology now facili-
tate the creation of 3D brain structures or organoids and 
co-culture of multiple cell types to partially reconstruct the 
complex network of the human brain, which may ultimately 
aid in identifying druggable targets and their implications 
in a more sophisticated context, even though it may not be 
able to replace, but rather complement, functional readouts 
in in vivo models of neurodegeneration. Nevertheless, iPSC 
technology represents a promising approach toward two 
major goals: the detection of novel biomarkers to facilitate 
earlier diagnosis, and the elucidation of disease-modifying 
druggable targets.
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