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Abstract
Although the immune and nervous systems have long been considered independent biological systems, they turn out to 
mingle and interact extensively. The present review summarizes recent insights into the neural pathways activated by and 
involved in infection-induced inflammation and discusses potential clinical applications. The simplest activation concerns 
a reflex action within C-fibers leading to neurogenic inflammation. Low concentrations of pro-inflammatory cytokines or 
bacterial fragments may also act on these afferent nerve fibers to signal the central nervous system and bring about early 
fever, hyperalgesia and sickness behavior. In the brain, the preoptic area and the paraventricular hypothalamus are part of 
a neuronal network mediating sympathetic activation underlying fever while brainstem circuits play a role in the reduction 
of food intake after systemic exposure to bacterial fragments. A vagally-mediated anti-inflammatory reflex mechanism has 
been proposed and, in turn, questioned because the major immune organs driving inflammation, such as the spleen, are not 
innervated by vagal efferent fibers. On the contrary, sympathetic nerves do innervate these organs and modulate immune 
cell responses, production of inflammatory mediators and bacterial dissemination. Noradrenaline, which is both released by 
these fibers and often administered during sepsis, along with adrenaline, may exert pro-inflammatory actions through the 
stimulation of β1 adrenergic receptors, as antagonists of this receptor have been shown to exert anti-inflammatory effects 
in experimental sepsis.
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Introduction

Although the immune and nervous systems have long been 
considered independent, these systems actually mingle and 
interact extensively. It has long been implicit that inflam-
mation implies activation of neural pathways, because heat 
and pain, as symptoms of local inflammation, correspond 
to sensory modalities. Research during the twentieth cen-
tury has shown that swelling and redness, as the two other 
symptoms of local inflammation, depend on the peripheral 

release of neuropeptides by sensory neurons. Inflammation 
as a response to infection can become systemic, and is called 
sepsis when fever, tachycardia and hyperventilation accom-
pany altered white blood cell counts. Furthermore, altered 
mental status is (again) part of the diagnostic criteria of sep-
sis [1] and likely related to “sickness behavior”, character-
ized by reduced sleepiness, reduced activity, food intake and 
social interactions, and considered to be adaptive to fighting 
bacterial infection [2]. As mental status, body temperature 
and heart and respiratory rates depend on or are controlled 
by different parts of the nervous system, this implies that 
inflammatory signals can modulate neural pathways. Finally, 
recent evidence indicates that autonomic nerve fibers may 
dampen systemic inflammation. The present review proposes 
to summarize recent insights into the neural pathways acti-
vated by and involved in infection-induced inflammation and 
to discuss potential clinical applications.
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Peripheral C‑fibers signal inflammation 
to the brain mediate inflammatory reflexes

According to Cajal’s neuronal doctrine, the prototypi-
cal flow of electric current in sensory neurons is from 
dendrites in the peripheral tissues to axons establishing 
contacts in the spinal cord, and in motor neurons from 
dendrites in the spinal cord to axons ending on peripheral 
muscles groups or endocrine glands. Although we do not 
intend to take position in the scientific debate on whether 
or not some sensory fibers should be called autonomic 
nervous system afferents [3, 4], we would like to point out 
that the activation of poorly or unmyelinated C-fibers with 
cell bodies in the dorsal root (spinal afferents) or nodose 
(vagal afferents) ganglia often elicits autonomic nervous 
system responses as part of reflex arcs.

Visceral C-fiber afferents, like cutaneous C-fiber affer-
ents, contain the peptides substance P and calcitonin gene-
related peptide (CGRP) that, in case of activation, can be 
released in the dorsal horn of the spinal cord. Interest-
ingly, these fibers, often considered nociceptors because of 
their capacity to detect and transmit potentially damaging 
stimuli, can also release these same peptides from their 
peripheral endings in a reflex-like manner and contrib-
ute to inflammation by promoting local plasma leakage 
[5], but in a way that is contrary to the neuronal doctrine. 
Hence, and although often overlooked, neurogenic inflam-
mation concerns a reflex within a single neuron and not a 
reflex arc consisting of several neurons establishing serial 
contacts.

Although neurogenic inflammation as a reflex, and 
therefore autonomic action, has been most widely stud-
ied in the skin, it probably occurs in all tissues that are 
innervated by unmyelinated C-fibers. Since the gut epi-
thelium is also exposed to the external world and contains 
numerous bacteria, it may be highly prone to injury-related 
infection-induced inflammation. Indeed, in the gastroin-
testinal tract, spinal afferents determine to a large extent 
gut inflammatory processes [6]. Moreover, recent evidence 
indicates that visceral sensory neurons can detect specific 
bacterial metabolites and molecules and may play a role in 
host defense against Salmonella typhimurium, Citrobacter 
rodentium and enterotoxigenic Escherichia coli [7, 8].

One of the local defense mechanisms against digestive 
pathogens is diarrhea through fluid secretion by intestinal 
epithelial cells. Interestingly, intestinal fluid secretion in 
response to the presence of bacterial toxins involves affer-
ent C-fibers, as it can be inhibited by capsaicin administra-
tion [9, 10]. Since transection of the vagus nerve, which 
contains both sensory and motor fibers, also attenuates 
this response [9], it likely involves vagal rather than spi-
nal sensory C-fibers. In addition to the neurogenic reflex 

mechanisms of vagal C-fibers, the sensory and motor 
fibers in the vagus nerves can be serially activated with 
a relay in the caudal brainstem and mediate vago-vagal 
reflexes involved in gastrointestinal motility [11]. Since 
the delayed gastric emptying in response to intraperitoneal 
administration of Gram-negative bacterial lipopolysaccha-
ride (LPS) or endotoxin can be prevented by local applica-
tion of the C-fiber toxin capsaicin on the vagus nerve or 
blockade of CGRP, but not by adrenergic receptors [12], 
gastroparesis in response to infection may involve either 
intrafiber neurogenic inflammation or vagovagal reflex 
mechanisms.

Since two of the classical symptoms of local inflamma-
tion, heat and pain, correspond to sensory modalities, spinal 
C-fibers also seem to transmit signals to the central nervous 
system during inflammation. Indeed, intraperitoneal injec-
tion of E. Coli cell wall LPS increases the levels of substance 
P and CGRP in the spinal cord [13]. Furthermore, selec-
tive chemical lesions of C-fiber afferents with capsaicin can 
attenuate the first phase of the fever response in response to 
systemic administration of LPS in adult rodents [14].

Local inflammation is also characterized by hyperalgesia, 
an increased sensibility to nociceptive or potentially damag-
ing stimuli. Application of the pro-inflammatory cytokine 
interleukin-1beta (IL-1β), which is produced in response to 
LPS, under the skin of a rat paw increases the sensitivity to 
mechanical and heat stimuli and augments electric activ-
ity of sensory nerve fibers involved in nociception [15, 16]. 
Interestingly, ganglia of spinal sensory nerves express not 
only IL-1 receptors [17] but also toll-like receptors recogniz-
ing bacterial fragments [18, 19]. Taken together, these find-
ings suggest that low doses of IL-1β or bacterial fragments 
may act on sensory nerve fibers to signal the central nervous 
system and give rise to early fever and hyperalgesia.

The role of the vagus nerve 
in inflammation‑to‑brain signaling 
and anti‑inflammatory reflexes

In accordance with the hypothesis that sensory nerves are 
involved in signaling inflammation to the brain to bring 
about non-specific disease symptoms, subdiaphragmatic 
vagotomy has been shown to attenuate the reduction in 
social exploration and food-motivated behavior, conditioned 
taste aversion, increased sleep and hyperalgesia 2 h after 
intraperitoneal administration of IL-1β or bacterial LPS 
[20–25]. Reversible inactivation of the brainstem dorsal 
vagal complex, containing the central terminals of vagal 
sensory fibers, by local anesthesia or blockade of brainstem 
glutamateric metabotropic neurotransmission, also restores 
social exploration and food intake after LPS administration 
[26, 27]. However, even though febrile responses to systemic 
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administration of low doses of IL-1β or LPS were attenu-
ated by subdiaphragmatic vagotomy, fevers after higher 
doses were not [28–35]. Soon after the first vagotomy stud-
ies, intravenous IL-1β administration was found to increase 
afferent discharge activity of branches of the vagus nerve 
[36, 37]. Subsequently, vagal paraganglia and the nodose 
ganglion were observed to bind IL-1ra and to express the 
signaling IL-1 receptor [38]. Interestingly, ganglia of the 
vagal nerves also express TLRs [39]. Taken together, these 
findings suggest that low doses of IL-1β or bacterial frag-
ments may act on sensory nerve fibers to signal the central 
nervous system to give rise to early fever, hyperalgesia and 
sickness behavior.

Interestingly, intraportal administration of IL-1β not only 
results in an increase in hepatic vagal afferent activity, but 
also induces reflex activation of vagal efferent fibers thought 
to innervate the thymus (but see below), an effect that can 
be blocked by hepatic vagatomy [40]. Some 5 years after 
the initial studies reported that subdiaphragmatic vagotomy 
attenuates the behavioral and, to a lesser extent, the febrile 
responses to peripheral administration of bacterial LPS or 
pro-inflammatory cytokines, it was shown that electrical 
stimulation of the peripheral vagus nerve inhibits hepatic 
synthesis and circulating concentrations of tumor necrosis 
factor alpha (TNFα) and prevents the development of shock 
in response to high doses of LPS in rats [41]. These effects 
of electrical stimulation of the vagus nerve were mediated 
by acetylcholine action on nicotinic receptors [42]. As elec-
trical stimulation of the vagus nerve has long been known 
to enhance the release of acetylcholine in the spleen [43, 
44], and the effect of vagal stimulation on LPS-induced and 
polymicrobial sepsis-associated TNFα synthesis was even 
more important in the spleen, and splenectomy sufficient to 
abolish it [45], subsequent studies focused on elucidating the 
acetylcholine-dependent mechanisms downstream of vagal 
stimulation. Although the results of such studies were inter-
preted within the framework of an anti-inflammatory reflex 
involving the vagus nerve, these interpretations included 
contacts between vagal fibers and sympathetic fibers inner-
vating the spleen and acetylcholine production by spleen 
lymphocytes [46–49].

However, this hypothesis of a vagally-mediated anti-
inflammatory reflex has been questioned because the evi-
dence (1) in favor of direct transmission of inflammatory 
signals from vagal afferent to efferent neurons in the cau-
dal brainstem, which, in turn, downregulates peripheral 
inflammation is lacking, (2) major immune organs driving 
inflammation, such as the spleen, are neither directly nor 
indirectly innervated by vagal fibers, and (3) acetylcholine 
also seems to be a signaling molecule between immune 
cells [50]. Martelli and colleagues have also emphasized 
that acetylcholine-synthesizing T-lymphocytes consti-
tute a non-neural link and that the localization of alpha-7 

subunit-containing nicotinic receptors involved in the anti-
inflammatory effects of vagal stimulation is still uncertain 
[50]. Finally, they make the point that the afferent arm of 
a postulated vagal anti-inflammatory reflex has not been 
elucidated and that efferent pathways are not necessar-
ily activated during systemic inflammation provoked by 
administration of high dose of bacterial LPS [50]. Instead, 
Martelli et al. have shown that transection of the greater 
splanchnic sympathetic nerves increases TNFα synthesis 
in response to lower doses of intravenously administered 
LPS, whereas vagotomy had no effect [51]. Nevertheless, 
vagotomy has been shown to increase pro-inflammatory 
cytokine production and mortality in a mouse model of 
polymicrobial sepsis [52, 53]. Moreover, some recent pilot 
work indicates that vagal stimulation reduces symptoms 
and inflammation in patients suffering from rheumatoid 
arthritis and Crohn’s disease [54, 55].

In addition, it is important to point out that the evidence 
for direct innervation of immune organs and/or cells by the 
vagal terminal is scarce. Indeed, the immunohistochemi-
cal detection of the vesicular acetylcholine transporter, as 
a marker of cholinergic fibers, only results in very little, 
and foremost perivascular, labeling in lymphoid organs 
[56]. This approach thus confirmed earlier work reporting 
a lack of cholinergic innervation of the spleen parenchyma, 
but seemed to confirm previous studies showing numerous 
cholinergic fibers in the thymus using acetylcholinesterase 
staining [57, 58]. However, as the latter labeling in the thy-
mus is not affected by vagotomy, it does not seem to be of 
vagal origin [59].

Interestingly, earlier work had shown the presence of 
acetylcholinesterase in spleen lymphoid and reticular cells 
[58]. The use of genetically-modified constructs in which 
fluorescent reporter genes are expressed behind the promotor 
of choline-acetyltransferase has recently allowed the con-
firmation of both sparse perivascular cholinergic innerva-
tion and the presence of choline-acetyltransferase T- and 
B-lymphocytes in the spleen [60]. However, in the intes-
tinal lamina propria of the gastrointestinal tract, numerous 
choline-acetyltransferase-positive fibers, almost exclusively 
from enteric neurons, often approached macrophages and 
lymphocytes of the lamina propria, but also lymphocytes of 
Peyer’s patches [60]. Moreover, vagal efferent fibers, identi-
fied after injection of an anterograde tracer into the dorsal 
motor nucleus of the vagus nerve, have been found to end 
around enteric neurons, which, in turn, were situated in the 
proximity of intestinal macrophages [61]. Hence, the avail-
able anatomical evidence indicates that vagal efferent termi-
nals can indirectly influence immune cells in the intestine 
but not in the spleen or thymus.

So, although the role of afferent vagal fibers in the signal-
ing of peripheral bacterial infection-induced inflammation 
to the brain to bring about early fever and sickness behavior 
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is now clearly established, that of efferent vagal fibers in 
downregulating inflammation remains to be further clarified.

The sympathetic nervous system 
and bacterial infection‑induced 
inflammation

It is of note to point out that IL-1β not only augments dis-
charge rate of the vagus nerves but also increases activity of 
the splenic nerve, which is part of the sympathetic nervous 
system [62]. Moreover, intravenous injection of LPS also 
increases splenic nerve electrical activity [51, 63]. Finally, 
the intraportal administration of IL-1β beta that results in 
an increase in hepatic vagal afferent activity also induces 
reflex-like activation of the splenic nerve, and this effect that 
can be blocked by hepatic vagatomy [36].

Contrary to the sparse proof for the direct vagal inner-
vation of immune organs and cells, there is longstanding 
evidence in favor of sympathetic nervous system innerva-
tion of primary and secondary immune organs, including the 
spleen, bone marrow and lymph nodes (reviewed by Mad-
den et al. [64] and Nance and Sanders [59]). Noradrenaline 
release by these fibers may modulate immune response as 
lymphocytes and macrophages, as well as other cells of the 
immune system, express functional adrenoreceptors [64]. 
Interestingly, peritoneal Pseudomonas aeruginosa infection 
increases noradrenaline turnover rate in bone marrow [65], 
where its action can modulate hematopoiesis of bone mar-
row cells through α1-adrenergic receptors [66].

The thymus is the primary organ where T-lymphocytes 
differentiate and mature, but also contains an important pop-
ulation of macrophages, in proximity to which many noradr-
energic fibers can be found [57]. The available literature sug-
gests that β2-adrenergic receptors are present on cells mainly 
in the subcapsular/subtrabecular cortex and the corticome-
dullary junction, but extremely rarely in the medulla [67, 
68]. Beta-adrenergic receptor expression is very limited on 
immature thymocytes, but increases as thymocytes mature 
[69, 70], while macrophages in the subcapsular cortex and 
cortico-medullary junction express β2-adrenergic receptors 
[67]. Numerous experimental and clinical studies support 
the idea that catecholamines play a role in thymus activ-
ity and lymphocyte output [71–75]. Sustained β-adrenergic 
receptor blockade with propranolol was found to increase 
both thymocyte proliferation and apoptosis, and to disturb 
thymocyte differentiation, without altering the relative pro-
portion of circulating CD4+ and CD8+ lymphocytes [75, 
76].

Although the exact role of the spleen does still not 
seem to be fully understood, it can be thought of both 
as storage for blood (red pulp) and as a large lymph 
node (white pulp). The spleen white pulp receives a rich 

catecholaminergic innervation with fibers contacting lym-
phocytes and macrophages [60, 65, 77–79]. Although the 
cytoarchitecture of the spleen is not altered by chemical 
sympathectomy, the expansion of follicles and the forma-
tion of the germinal centers after antigen exposure are sup-
pressed [79], indicating that specific immune responses 
may be modulated by sympathetic nervous fibers.

Lymph nodes are also innervated by the sympathetic 
nervous system with noradrenergic fibers entering medul-
lary, paracortical and cortical regions, where they supply 
T cell-, but not B cell-, rich regions and establish contacts 
with reticular plasma cells as well as lymphocytes [80–83]. 
Sympathectomy reduces in vitro proliferation of lymph 
node cells to concanavalin A but increases that of lymph 
node B cells after LPS [83]. Interestingly, catecholamine 
treatment of lymphocytes in vitro promotes subsequent 
homing to the spleen and lymph nodes [84], whereas cells 
from animals that underwent chemical sympathectomy 
display decreased migration to lymph nodes [83].

If the thymus, spleen and, more generally, lymph nodes 
are considered immune organs “par excellence”, it is 
important to keep in mind that the epithelia of the respira-
tory, urogenital and gastrointestinal tracts first encounter 
antigens and pathogens present in the environment and 
food. These tissues contain so-called mucosal-associated 
lymphoid tissues, which, in the case of the gut, are well 
known to receive noradrenergic innervation. Indeed, in the 
appendix and Peyer’s patches, noradrenergic fibers ramify 
among lymphocytes, while in the small intestine they can 
be found in close proximity to intraepithelial lymphocytes, 
lamina propria macrophages and a diffuse population of 
mucosal B cells [78, 85–87].

Although macrophages are obviously present in the 
thymus, spleen, lymph nodes and the mucosal-associated 
lymphoid tissues, they can be found in virtually all tissues. 
Normal macrophages express α2- and β2-adrenergic recep-
tors, but the latter do not seem to be involved in phago-
cytic activity [88–94]. Noradrenaline-synthesizing fibers 
end close to macrophages in immune organs (see above), 
but macrophages of other tissues may also be subject to the 
effects of adrenaline. Indeed, adrenaline released by the 
adrenal occurs through activation of the sympathetic nerv-
ous systems and can thus be considered a mediator of the 
activation of neural pathways. Interestingly, endogenous 
plasma noradrenaline is positively correlated with circulat-
ing adrenaline, biomarkers of endothelial activation and 
damage, and mortality in septic patients [95, 96]. Circu-
lating noradrenaline has also been shown to increase, and 
to be, in large part, gut-derived in sepsis induced by cecal 
ligature and puncture (CLP) [97], a model that induces 
polymicrobial sepsis and mimics the different hemody-
namic phases of clinical sepsis better than LPS adminis-
tration [98].
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When blood cells from healthy human volunteers are 
stimulated in vitro with bacterial LPS after having previ-
ously been exposed to adrenaline, their production of pro-
inflammatory cytokines is much lower than without pre-
exposure [99, 100]. Importantly, this anti-inflammatory 
effect of adrenaline is attenuated in LPS-stimulated blood 
withdrawn from patients with prolonged severe shock or sep-
tic shock, except for IL-1β [100]. It is interesting to note that 
the decreased in vitro production of the pro-inflammatory 
cytokine TNFα by splenic macrophages, which were isolated 
3 days after induction of bacterial sepsis by CLP in animals 
as compared to sham surgery in rodents, is exacerbated by 
the application of adrenaline to cultures [101]. This effect of 
adrenaline can be reversed by prior in vivo administration of 
a β2, but not a β1, antagonist, indicating that it is mediated 
by β2 receptors [101].

Interestingly, electrical stimulation of splenic sympa-
thetic nerve fibers in a perfused rat spleen system inhibits 
LPS-induced TNFα secretion via beta-adrenoceptors [102]. 
However, this in vitro anti-inflammatory has been ques-
tioned based on the findings that intraportal noradrenaline 
concentrations during sepsis are around 20 nM and that 
such concentrations selectively activate α2 adrenoreceptors 
and increase TNFα and IL-1β production by Kuppfer cells 
[103]. However, many studies have used supraphysiological 
noradrenaline concentrations (around  10−4 M) or systemic 
injections of noradrenaline activating β2-adreneoreceptors 
to study immunomodulation. Indeed, β2-adrenergic receptor 
agonists have been shown to reduce circulating pro-inflam-
matory cytokine concentrations and liver dysfunction after 
intravenous LPS administration [51, 104]. So, in vivo, dur-
ing sepsis, endogenous noradrenaline seems to have a pro-
inflammatory effect.

Transection of the greater splanchnic sympathetic nerves 
enhances TNFα responses to LPS [51]. However, even 
though chemical sympathectomy increases splenocyte and 
peritoneal TNFα, peritoneal phagocytosis and influx of 
monocytes, as well as reduces bacterial dissemination of 
Gram-negative Pseudomonas aeruginosa or E. coli, it atten-
uates splenocyte and peritoneal macrophage secretion of the 
anti-inflammatory cytokine IL-4 and lymphocyte infiltration 
and augments the dissemination of Gram-positive Staphylo-
coccus aureus [105]. It is thus possible that adrenergic drugs 
that are used to counteract hypotension in severe sepsis and 
septic shock may have beneficial or detrimental effects on 
the clearance of infectious micro-organisms depending on 
the bacteria concerned and the timing of the treatment.

Targeting α2 and β2 receptors may provide opportunities 
to lower bacterial burden and inflammatory responses in sep-
sis even if, to date, no beneficial anti-inflammatory effects of 
α2- and β2-specific drugs have been found in clinical prac-
tice [106, 107]. In addition to the factors that influence the 
outcome of adrenergic intervention strategies on bacterial 

dissemination and inflammation in animals, inflammatory 
responses in patients are known to be highly variable. It may 
therefore be necessary to test β2 agonists in selected patients 
during the early pro-inflammatory phase of sepsis, as has 
been suggested for other anti-inflammatory treatments [108].

In experimental studies, β1 receptor antagonists have 
been shown to exert anti-inflammatory effects [109]. These 
findings are of interest since the selective β1 receptor 
blocker, esmolol, has beneficial effects on microcirculation 
and oxygen myocardial consumption during clinical severe 
sepsis and septic shock [110, 111]. Interestingly, after CLP-
induced sepsis in rat, esmolol not only has similar benefi-
cial effects on cardiac and vascular function [112] but also 
reduces pro-inflammatory and increases anti-inflammatory 
cytokine production, lowers bacterial burden, and improves 
gut barrier function and survival [113, 114].

So, even though it is clear that the sympathetic nervous 
system can influence infection-induced immune responses, 
adrenergic drugs may have beneficial or detrimental effects 
depending on the active molecules, the bacteria concerned 
and the timing of treatment. For example, β2 and β1 antago-
nists seem to have opposite effects on inflammation. And in 
spite of the promising anti-inflammatory effects of the β1 
antagonist esmolol in an animal sepsis model, they need to 
be confirmed in septic patients.

Central nervous system pathways activated 
during systemic inflammation

Considering that the sepsis symptoms, fever, tachycardia, 
and hypotension, as well as the anti-inflammatory path-
ways, involve the autonomic nervous system, it is impor-
tant to identify the nervous circuits that regulate autonomic 
activity in thermogenic brown fat, heart, bone marrow, and 
spleen. Injection of an attenuated neurotropic herpes virus 
in an organ can reveal the neuronal network relevant to its 
function, as it first infects neurons of nervous ganglia, then 
invades preganglionic neurons innervating the first-order 
neurons, and finally infects neurons in the brain that send 
projections to the preganglionic neurons. It can thus be used 
as a retrograde neuronal tracer that migrates opposite to the 
direction of action potentials in neurons. Indeed, an attenu-
ated form of the neurotropic pseudorabies herpes virus, 
injected into the thermogenic brown adipose tissue or heart 
of rodents, infects the thoracic sympathetic ganglia, pregan-
glionic sympathetic neurons of the spinal cord, ventrolat-
eral, ventromedial and caudal dorsomedian medulla, raphe 
nucleus and locus coeruleus. After longer infection times, 
the paraventricular, dorsomedial and lateral hypothalamus, 
ventral bed nucleus of the stria terminalis, central amyg-
dala and preoptic area in the forebrain contain viral particles 
[115–117]. Interestingly, the organization of central nervous 
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structures providing input to the spleen and bone marrow 
through the sympathetic nervous system overlaps in large 
part with the pattern of central nervous innervation of brown 
adipose and cardiac tissues [118, 119]. These fore- and hind-
brain structures thus have the potential to influence body 
temperature, heart rate and immune cell activation and traffic 
via the sympathetic nervous system.

To elucidate whether and how these central nervous 
networks play a role in sepsis symptoms and inflammatory 
responses, one can study the activation of or intervene with 
the action of their components. Induction of the immedi-
ate–early gene c-Fos has been widely used as a cellular 
activation marker and can be combined with the detection 
of non-viral tracer molecules. Injection of a non-viral ret-
rograde neuronal tracer into the thoracic spinal sympathetic 
intermediolateral cell column followed by peripheral bacte-
rial LPS injection leads to neurons containing c-Fos and the 
tracer in the paraventricular hypothalamus and the rostral 
ventrolateral medulla [120]. In turn, injection of a similar 
tracer into the paraventricular hypothalamus and subsequent 
peripheral administration of bacterial LPS results in c-Fos-
expressing and tracer-containing neurons in the preoptic 
area, the bed nucleus of the stria terminalis and the medul-
lar nucleus of the solitary tract [121]. Among these fore-
brain structures, lesion and inactivation studies have shown 
that the preoptic area and paraventricular hypothalamus 
are necessary for bacterial LPS-induced fever [122–124]. 
Overall, these findings indicate that the preoptic area and 
the paraventricular hypothalamus are part of a neuronal 
network mediating sympathetic activation underlying fever 
during sepsis. Central nervous circuits involving preoptic 
nuclei probably also play a role in sepsis-associated hypoten-
sion, as inactivation of the anterior preoptic hypothalamic 
area attenuates early LPS-induced hypotension [125]. More 
recently, it has been shown that systemic LPS-induced early 
hypotension also depends on the activation of the ventrolat-
eral periaquaductal gray matter [126].

As (1) vago-vagal reflexes play an important role in gas-
tric motility, (2) activated vagal afferents release glutamate 
in the nucleus of the solitary tract of the brainstem, and (3) 
glutamatergic projections from the nucleus of the solitary 
tract to the parabrachial nuclei reduce food intake [127], it 
was of interest to determine whether brainstem glutamate 
receptors play a role in the reduction in food intake during 
LPS-induced inflammation, and, if so, whether receptors are 
present on the neuronal network innervating the stomach. 
Indeed, brainstem metabotropic glutamate receptor antag-
onism was found to attenuate hypophagia and to increase 
food intake during the first 6 h after peripheral LPS to a 
greater extent than in a vehicle-treated animal [27]. In paral-
lel, intra-fourth ventricle administration of this metabotropic 
glutamate receptor antagonist also reduced c-Fos expression 
in the nucleus of the solitary tract and lateral parabrachial 

nuclei [27]. However, metabotropic receptors were not 
abundantly expressed by brainstem circuits innervating the 
stomach [27]. These findings suggest that brainstem glu-
tamatergic circuits are part of the neuronal substrates that 
rapidly reduce food intake under inflammatory conditions, 
but not via autonomic nervous system output to the stomach.

Given that central nervous system circuits are part of the 
neuronal networks innervating the spleen and bone marrow 
(see above), it is of interest to determine whether they are 
involved in the anti-inflammatory effects of the autonomic 
nervous system. Intracerebroventricular administration of 
the anti-inflammatory drug CNI-1493 inhibits peripheral 
LPS-induced TNFα production in a vagus-dependent man-
ner through central, but not peripheral, muscarinic type 1 
receptors [48]. Interestingly, the lateral preoptic area and 
lateral hypothalamus contain acetylcholinergic neurons and 
are part of the central nervous circuits innervating the spleen 
[118]. Acetylcholinergic neurons in the lateral preoptic area 
and lateral hypothalamus may therefore play a role in inhib-
iting splenic pro-inflammatory cytokine production during 
sepsis via the vagus and splenic nerves.

Taken together, these findings indicate that the cen-
tral nervous networks innervating the brown adipose tis-
sue, heart and immune organs are now well established in 
rodents, and that the nervous pathways mediating sepsis 
symptoms, such as fever, tachycardia and hypotension, are 
progressively being elucidated.

Does heart‑rate variability reflect 
autonomic nervous system activity 
during infection‑induced inflammation?

It is clear that the autonomic nervous system can modu-
late inflammatory responses to infection. At the same time, 
intervention studies consisting of transection of autonomic 
nerves or administration of drugs that affect catecholamin-
ergic or cholinergic signaling have shown that the effects 
of such interventions depend on bacteria and receptor sub-
types as well as timing. One of the factors that may explain 
why timing is an important factor in the effects of interven-
tion studies is the endogenous activation and tone of the 
autonomic nervous system. For this and other reasons, it is 
worthwhile trying to establish a measure that could inform 
scientists and clinicians on the tone of the autonomic nerv-
ous system in a minimally invasive way.

In the heart, the input of sympathetic and parasympa-
thetic nerves almost continuously change the period of heart 
beats (HP), which is defined as the interval between two 
consecutive R peaks on the ECG. The global measures of 
this heart rate variability (HRV), such as the contribution of 
HP fluctuations to total heart rate variability, can be studied 
with power spectral analysis. Such measures have proven 
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extremely useful to assess cardiac physiology and pathol-
ogy, even though the exact contribution of the sympathetic 
nervous tone to HRV parameters remains a topic of debate 
[51, 128–131]. More recently, HRV measures have also been 
proposed to be relevant for the study of autonomic nerv-
ous system modulation of inflammatory responses [48]. 
However, it is becoming more and more clear that the sym-
pathetic and parasympathetic branches of the autonomic 
nervous system do not show homogenous activity across 
peripheral organs, and that many organ-specific responses 
exist [132–134]. Hence, the very premise that HRV would 
provide useful information on the autonomic tone of organs 
relevant to infection-induced inflammatory responses seems 
questionable. Furthermore, contrary to the heart, many 
immune organs are actually not innervated by sympathetic 
and parasympathetic nerve fibers, but solely by the former 
(see above).

Conclusion

Various neural pathways are activated during, and involved 
in, different host responses to bacterial infection, and knowl-
edge in this area continues to increase. One of the first and 
local responses to bacterial infection is the release of vaso-
active peptides by spinal afferent C-fibers and the ensuing 
neurogenic inflammation. In case an infection becomes 
systemic, for example by escaping from mesenteric lymph 
nodes or liver Kupffer cells, vagal afferent C-fibers may 
be activated, either by the detection of bacterial fragments 
in the portal vein or locally produced pro-inflammatory 
cytokines, and signal the central nervous system via the cau-
dal brainstem to give rise to sickness behavior (reduction in 
activity, social and non-social exploration and food intake) 
and early fever. Although it is clear that vagal afferent 
C-fibers can exert neurogenic inflammatory reflex actions, 
like those underlying some forms of diarrhea, the exact role 
of efferent parasympathethetic vagal fibers in the proposed 
vagal anti-inflammatory reflex remains to be elucidated, 
as these fibers do not seem to directly innervate the major 
immune organs. Notwithstanding these observations, recent 
work indicates that vagal stimulation reduces symptoms and 
inflammation in patients suffering from rheumatoid arthritis 
and Crohn’s disease.

On the contrary, sympathetic nerves innervate the thy-
mus, spleen, bone marrow, and lymph nodes and modulate 
immune responses. Interestingly, sympathectomy has differ-
ent effects on bacterial dissemination, innate immune cell 
responses and inflammatory mediators depending on the 
kind of bacteria that infect the host. During septic systemic 
inflammation, noradrenaline turnover increases in immune 
organs where it can act on α and β receptors present on mac-
rophages. In addition, adrenaline release by the adrenalin 

into the blood also increases during sepsis, implying that 
almost any tissue macrophage could be exposed to adrena-
line, which has been shown to modulate pro-inflammatory 
cytokine secretion by cultured blood cells. Noradrenaline, 
which is both released and often administered during sep-
sis, may, along with adrenaline, exert pro-inflammatory 
actions through stimulation of β1 adrenergic receptors, as 
antagonists of this receptor have been shown to exert anti-
inflammatory effects in experimental sepsis. Nevertheless, 
the promising anti-inflammatory effects of the β1 antago-
nist esmolol need to be confirmed in clinical trials on septic 
patients.
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