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Abstract
Renal afferent and efferent sympathetic nerves are involved in the regulation of blood pressure and have a pathophysiologi-
cal role in hypertension. Additionally, several conditions that frequently coexist with hypertension, such as heart failure, 
obstructive sleep apnea, atrial fibrillation, renal dysfunction, and metabolic syndrome, demonstrate enhanced sympathetic 
activity. Renal denervation (RDN) is an approach to reduce renal and whole body sympathetic activation. Experimental 
models indicate that RDN has the potential to lower blood pressure and prevent cardio-renal remodeling in chronic diseases 
associated with enhanced sympathetic activation. Studies have shown that RDN can reduce blood pressure in drug-naïve 
hypertensive patients and in hypertensive patients under drug treatment. Beyond its effects on blood pressure, sympathetic 
modulation by RDN has been shown to have profound effects on cardiac electrophysiology and cardiac arrhythmogenesis. 
RDN can display anti-arrhythmic effects in a variety of animal models for atrial fibrillation and ventricular arrhythmias. The 
first non-randomized studies demonstrate that RDN may promote the maintenance of sinus rhythm following catheter ablation 
in patients with atrial fibrillation. Registry data point towards a beneficial effect of RDN to prevent ventricular arrhythmias in 
patients with heart failure and electrical storm. Further large randomized placebo-controlled trials are needed to confirm the 
antihypertensive and anti-arrhythmic effects of RDN. Here, we will review the current literature on anti-arrhythmic effects 
of RDN with the focus on atrial fibrillation and ventricular arrhythmias. We will discuss new insights from preclinical and 
clinical mechanistic studies and possible clinical implications of RDN.
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Introduction

Renal sensory afferent and efferent nerves allow bidirec-
tional communication between the central nervous system 
and the kidney. Peripheral and central inputs alter efferent 
renal sympathetic nerve activity, influencing the inner-
vated structural and functional components of the kidney, 
including vessels, glomeruli, and tubuli [1]. The physi-
ological efferent renal sympathetic nerve activity regulates 
renal blood flow, glomerular filtration rate, tubular sodium 
and water handling, and stimulates renin release from the 
juxtaglomerular apparatus which regulates blood pressure 
and renal perfusion [1, 2]. Under pathophysiological con-
ditions, abnormal efferent renal sympathetic nerve activity 
can contribute to the associated abnormalities of renal func-
tion which, in turn, are of importance in the pathogenesis 
of several disease conditions like hypertension, renal dis-
ease and heart failure [2]. This efferent signaling is further 
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regulated by afferent input from sensory renal chemo- and 
mechano-receptors in the kidney. Afferent fibers from the 
kidney travel along with the sympathetic nerves at the level 
of the kidney and then enter the dorsal roots and project to 
regions of the brainstem involved in cardiovascular control 
[2–5]. Therefore, the kidney represents a source of increased 
sympathetic activation under certain pathophysiological 
conditions, such as renal ischaemia, hypoxia, and intrinsic 
renal disease [6–8]. The density of peri-arterial renal sym-
pathetic nerve fibers is lower in distal segments and dorsal 
locations when compared with proximal superior locations. 
There is a clear predominance of efferent nerve fibers, with 
decreasing density of afferent nerves from proximal to distal 
peri-arterial and renal parenchyma [3].

These observations support the rationale to modulate 
autonomic innervation of the renal artery, arterioles and 
tubules in order to reduce norepinephrine spillover from 
the kidney and to influence sympathetically dependent 
pathophysiologies [9–11]. Renal denervation (RDN) sub-
stantially prevents progressive blood pressure rise and 
associated renal injury and cardiac remodeling in animal 
models of hypertension [9, 10] (Fig. 1). Factors such as 
withdrawal of sympathetic nerve activity to the kidney and 
subsequent changes in fluid mobilization and reduction in 

circulating angiotensin II, as well as removal of elevated 
afferent renal nerve activity as a consequence of a patho-
physiological alteration in the kidney, may contribute to 
the antihypertensive effects of RDN. Interestingly, selec-
tive destruction of afferent renal nerves had limited anti-
hypertensive effects in hypertensive Dahl salt-sensitive 
rats [12, 13].

In non-randomized studies [14, 15] and registries [16], 
RDN reduced blood pressure and partially reversed car-
diac hypertensive end-organ damage in patients with drug-
resistant hypertension [17–19]. A recent randomized sham 
controlled trial (SYMPLICITY HTN-3, ClinicalTrials.gov 
number, NCT01418261) could not confirm blood pressure 
reduction by RDN in drug-resistant hypertensive patients 
[20]. However, in another published, randomized, sham 
controlled trial, RDN by a new ablation catheter reduced 
blood pressure in medication naïve hypertensive patients 
[21]. Several factors such as problems with assessment of 
renal denervation efficacy, variable experience of the pro-
ceduralists and the complex issues of patient drug compli-
ance, including improvement of drug adherence in initially 
poorly adherent patients (the Hawthorne effect), placebo 
effect and regression to the mean, makes the interpretation 
of the results difficult.

Fig. 1  Effects of renal denervation (RDN) on blood pressure, renal 
catecholamine levels and renal and cardiac interstitial fibrosis in 
spontaneously hypertensive obese rats (SHR-ob). a Mean arterial 
blood pressure measured by telemetry in control rats (Ctr), SHRs-ob, 
and SHRs-ob+renal sympathetic denervation (SHRs-ob+RDN) dur-

ing 100 days after RDN performed at the age of 34 weeks. b Immu-
nohistochemical renal tyrosine hydroxylase staining and c renal nor-
epinephrine tissue content at the age of 48  weeks. d Interstitial left 
ventricular (LV) and e kidney fibrosis with representative histological 
images. (Adopted from [9])
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Beyond regulation of blood pressure, increased sympa-
thetic activity is suggested to contribute to the progression 
of cardiac arrhythmias [22]. At the cellular level, norepi-
nephrine, the neurotransmitter of the sympathetic nervous 
system, is released from postganglionic neurons in response 
to sympathetic stimuli activating cardiac beta-receptors. 
Subsequently, altered cardiac calcium handling and elec-
trophysiology contribute to arrhythmogenic mechanisms 
including delayed afterdepolarization-related ectopic fir-
ing and re-entry [23, 24]. Sympathetic hyperinnervation is 
reported in the atria of dogs following rapid atrial pacing 
[25], and increased sympathetic and vagal nerve discharges 
can be documented before the onset of atrial fibrillation (AF) 
in dogs with pacing-induced congestive heart failure [26]. 
Additionally, recent data have shown that sympathetic acti-
vation promotes the development of the arrhythmogenic sub-
strate via neurohumoral mechanisms, such as the renin–angi-
otensin–aldosterone system, leading to the upregulation of 
profibrotic pathways in the atria [23, 24]. Therefore, ele-
vated sympathetic activity may contribute to both cardiac 
structural and electrical remodeling, thus predisposing to 
arrhythmia. Activation of the autonomic nervous system 
plays an important role in the initiation and the maintenance 
of AF, but may also be targeted for the maintenance of sinus 
rhythm. Beta-receptor blockade by metoprolol was effective 
in preventing recurrence of AF after successful cardiover-
sion [27], and autonomic modulation by, for example, low-
level baroreceptor stimulation can help to maintain sinus 
rhythm [22, 28].

These observations raise the question of whether modula-
tion of the autonomic nervous system by targeting the renal 
sympathetic nerves might be an effective strategy to improve 
rhythm control in patients with cardiac arrhythmias. Here, 
we will review the current literature on the anti-arrhythmic 
effects of autonomic nervous system modulation through 
RDN, with a particular focus on atrial fibrillation and ven-
tricular arrhythmias. We will discuss new insights from pre-
clinical and clinical mechanistic studies and possible clinical 
implications.

Modulation of renal sympathetic 
innervation by renal denervation

In small animal models, RDN can be performed by com-
bined surgical and chemical approaches, which modulate 
both efferent and afferent renal nerve activity [9, 11]. Both 
kidneys are approached through medial laparotomy, the vis-
ible nerves in the area of the renal hilus are removed and 
approximately 2–4 mm of the adventitia from the renal 
artery is stripped. The area is then moistened with a phenol/
ethanol (10–20%) solution for 10–15 min. Combined surgi-
cal and chemical RDN reduces kidney tissue norepinephrine 

levels by > 90–95% in several animal models. The release of 
norepinephrine into the urine and renal venous blood, which 
is inducible by efferent sympathetic nerve stimulation, can 
be reduced by 80% after RDN in animal studies [5, 29]. Pre-
vious studies on RDN in normotensive rats by a 10% phenol/
ethanol solution suggest renal reinnervation within 9 weeks 
[30]. In obese spontaneously hypertensive rats, RDN by a 
20% phenol/ethanol solution resulted in a more sustained 
reduction in blood pressure, renal sympathetic nerve density 
and renal norepinephrine tissue content (Fig. 1) [9].

Additionally, RDN can prevent cardiac neural remodeling 
and nerve sprouting under pathophysiological conditions, 
suggesting reduction of afferent nerve activity. In sponta-
neously hypertensive rats, RDN by a 20% phenol/ethanol 
solution resulted in a reduced expression of the norepineph-
rine transporter in the kidney and in the heart (Fig. 2). In 
rats with ischemic heart failure, RDN preserves sympathetic 
nerve innervation in the ventricles, thus improving cardiac 
function [31], while in goats and dogs with atrial fibrillation 
induced by atrial tachypacing, RDN achieved a significant 
reduction in atrial sympathetic nerve sprouting [32–34].

Most of the brainstem regions involved in cardiovascular 
control receive input from the renal afferent fibers. Afferent 
signals arising from the renal sympathetic nerves are able to 
influence nerve activity of several ganglia including those 
innervating the heart (Fig. 3). Studies suggest a direct link 
between renal sympathetic nerve activity and left stellate 
ganglion (LSG) activity [35, 36]. Renal sympathetic nerve 
stimulation is associated with LSG neuronal activity and 
upregulates the level of LSG nerve growth factor expres-
sion [36]. Importantly, the stimulation procedure not only 
activates the efferent sympathetic nerves but also the afferent 
fibers going from the kidney to the central nervous system. 
Additionally, the stimulation frequency used in these renal 
nerve activation studies are likely to impact renal hemody-
namic or excretory renal function, which has not been suf-
ficiently characterized and studied.

Besides modulation of circulating catecholamines and 
whole body sympathetic nerve activity, bilateral RDN 
caused significant central and peripheral sympathetic 
nerve remodeling, improved baroreflex sensetivity [37] and 
reduced stellate ganglion nerve activity in ambulatory dogs 
[36]. Catheter-based RDN can also affect cardiac sympa-
thetic activity. Selective RDN significantly reduces car-
diac sympathetic overdrive assessed by 123I-MIBG scin-
tigraphy [39, 40].

A catheter-based approach for RDN has been developed 
for human use. RDN can result in an up to 50% reduction of 
renal norepinephrine spillover measured with a radiochemi-
cal tracer methodology using 3H-norepinephrine in humans 
[12, 13]. Additionally, firing of single sympathetic vasocon-
strictor fibers (measured by single muscle sympathetic nerve 
activity), was reduced by 37% [38]. These findings indicate 
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that sympathetic activation can be reduced by RDN beyond 
just the kidneys, suggesting a combined modulation of effer-
ent and afferent signaling (Fig. 3).

The first-generation devices used radiofrequency pulses 
emitted from a monopolar electrode positioned under fluoro-
scopic guidance in each of the renal arteries. The latest gen-
eration devices are multi-electrode catheters allowing a more 
standardized and more intense ablation procedure [41]. Dur-
ing the development of RDN catheters, the ablation strategy 
changed from ablation limited to the main vessels to more 
extended ablation in the main and subsequent branch vessels 
[41]. This revised approach was associated with higher effi-
cacy and lower variability in treatment effects in preclinical 
studies. Alternatively, ultrasound or chemical ablation have 
been investigated in clinical studies [41].

Despite great advantages of catheter techniques, there is 
no universally accepted measure by which the complete-
ness of RDN can be properly assessed intraprocedurally. 
Although periprocedural changes in circulating norepi-
nephrine or neuropeptide Y [42], nerve stimulation-induced 
blood pressure changes [43, 44] and anatomy-guided lesion 
placement [45] have been introduced to improve ablation 
outcome, a standardized protocol to directly measure renal 
sympathetic nerve activity in humans is still lacking. In 

sedated and unrestrained conscious rodent models, assess-
ment and quantification of renal nerve activity is feasi-
ble [46, 47]. The development of endovascular recording 
of renal nerve action potentials may provide a useful acces-
sory tool to assess successful RDN. Innovation in this area 
will be crucial to predict and monitor the therapeutic value 
of RDN [48].

Effects of RDN on cardiac arrhythmias

Beyond hypertension and hypertensive end-organ damage, 
cardiac rhythm disorders, namely atrial fibrillation and ven-
tricular arrhythmias, have been identified as a promising and 
emerging target of RDN [49].

Atrial electrophysiological effects of renal 
denervation

In experimental data, RDN resulted in a reduction in heart 
rate and AV-conduction velocity in pigs [50]. In chloralose/
urethane anasthetized pigs, neither atrial effective refractory 
period nor P-wave duration was influenced by acute RDN, 

Fig. 2  a Representative image during a chemical renal denervation 
(RDN) procedure in a spontaneously hypertensive rat. Both kidneys 
were surgically denervated by cutting all visible nerves in the area of 
the renal hilus and by strippingapproximately 2–4 mm of the adventi-
tia from the renal artery. The area was then moistened with a phenol/

ethanol solution for 10–15 min using a brush. b Representative west-
ern blot to quantify protein expression of norepinephrine transporter 
in kidney and heart tissue of sham-denervated spontaneously hyper-
tensive rat and of RDN spontaneously hypertensive rats
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thus excluding a direct impact of RDN on atrial refractori-
ness or atrial conduction during sinus rhythm [50]. Addition-
ally, the sensitivity of ganglionated plexi was not modulated 
by RDN. In an AF pig model with rapid atrial pacing, RDN 
reduced the duration of pacing-induced AF [51]. However, 
AF-induced electrical remodeling was not attenuated [50]. 
Reduced AV-conduction velocity was associated with lower 
ventricular heart rate during AF [50].

In a goat model of persistent AF induced by atrial tachy-
pacing [32], RDN reduced renal norepinephrine concen-
trations, blunted atrial neural remodeling and reduced AF 
complexity along with structural remodeling (Fig. 4). More-
over, increased AF-inducibility, shortening and dispersion 
of atrial refractoriness as well as elevated plasma norepi-
nephrine levels were almost completely prevented by RDN 
in animals subjected to stimulation of left stellate ganglion 
and rapid atrial pacing for three hours [52, 53].

In a pig model of obstructive sleep apnea (OSA), short-
ened atrial refractoriness [54, 55] acutely induced by 
applied negative thoracic pressure was primarily mediated 
by combined sympathovagal activation, since it could be 
influenced by atropine, bilateral vagotomy or beta-receptor 

blockade [54, 56]. Compared to beta-blocker treatment, 
RDN resulted in more pronounced attenuation of the 
shortening in atrial refractoriness during OSA maneuvers, 
which might explain the superior anti-arrhythmic effect 
of RDN compared with beta-blocker therapy in this ani-
mal model [55]. Importantly, anti-arrhythmic drugs such 
as amiodarone or sotalol displayed a considerably less 
pronounced anti-arrhythmic effect compared to RDN in 
the same model [55]. In pigs undergoing repetitive OSA 
maneuvers over 4 h, RDN inhibited spontaneous atrial 
premature beats, and reduced the number AF episodes 
as well as AF duration [56]. The observed reduction in 
spontaneous atrial extra beats by RDN may reduce the 
trigger for AF in OSA [56]. Additionally, RDN has been 
shown to reduce susceptibility to AF in a canine models 
of renal impairment, induced by embolization of small 
branches of the renal artery in the right kidney using 
gelatin sponge granules [57], and tachycardiomyopathy, 
induced by ventricular tachypacing [58]. Taken together, 
these studies provide strong preclinical evidence towards 
an anti-arrhythmogenic effect of RDN.

Fig. 3  Effects of renal denervation (RDN) on efferent and afferent signaling of the kidney. NE Norepinephrine, MSNA muscle sympathetic nerve 
activity, LSG Left stellate ganglion



380 Clinical Autonomic Research (2018) 28:375–384

1 3

Clinical data

RDN can reduce heart rate in patients with resistant hyper-
tension [59]. In persistent AF, RDN can improve rate control 
[60], which might improve clinical symptoms and outcomes 
in patients with AF. RDN has been shown to prevent or even 
reverse atrial remodeling determined by echocardiography 
[61] or by electroanatomical mapping [62]. In a small study 
of patients with symptomatic AF and resistant hyperten-
sion, the atrial anti-arrhythmic effects of circumferential 
pulmonary vein isolation (PVI) combined with RDN were 
investigated [63–65]. Patients who received the combined 
procedures showed significant reductions in average systolic 
and diastolic blood pressure, whereas those in the PVI-only 
group did not show any significant improvement in blood 
pressure. Other electrophysiological parameters were not 
obviously changed by RDN. At 1-year follow-up, 69% of 
patients who received both procedures maintained sinus 
rhythm, compared to 29% of those in the PVI-only group 
[63]. In chronic kidney disease patients, the addition of RDN 
to pulmonary vein isolation reduced recurrence of parox-
ysmal atrial fibrillation [66]. In a case report, even RDN 

without PVI reduced blood pressure and attenuated par-
oxysmal AF episodes, which were symptomatic and drug-
resistant before RDN [67]. It remains unknown whether 
sympathetic modulation of the autonomic nervous system 
by RDN can display anti-arrhythmic effects in hypertensive 
AF patients independent from its blood pressure-lowering 
effects. This important clinical and pathophysiological ques-
tion should be addressed in a randomized sham controlled 
trial, in which RDN is compared to aggressive and adopted 
up-titration of antihypertensive drugs in the control group.

Ventricular arrhythmias, heart failure 
and renal denervation

In dogs, 3 h of renal sympathetic nerve stimulation increased 
LSG neuronal activity, and facilitated the incidence of ven-
tricular arrhythmias during acute myocardial ischemia. 
Interestingly, the increase in ventricular arrhythmias could 
be attenuated by LSG ablation [34]. In different pig mod-
els with acute ischemia/reperfusion [66] (Fig. 5) or with 
myocardial infarction induced by a permanent coronary 

Fig. 4  Effects of renal denervation (RDN) compared to sham inter-
vention (SHAM) in goats with atrial fibrillation induced by an 
implanted pace maker. a Representative X-ray images of the kidney. 
Locations of ablation delivery are indicated by superimposed small 
black points in the vessels. b Renal tissue norepinephrine concen-
trations in the left (white bars) and right (black bars) kidneys deter-
mined after the sacrifice experiments. c Representative perivascular 
tyrosine hydroxylase (TH) staining (brown twigs) of cardiac sympa-
thetic nerves in SHAM and RDN goats with 6 weeks AF (magnifica-

tion, ×1000). d Quantification of TH-positive (indicating sympathetic 
nerve structures) fraction of the perivascular area in the anterior left 
atrium (LAant), posterior left atrium (LApost) and right atrium (RA). 
e Quantification of AF complexity: representative spatial and tempo-
ral distribution of AF activation pattern during one AF cycle length 
of the right and left atrium in SHAM (top) and RDN (bottom) goats 
with 6 weeks. Isochronal maps: time between isochrones 10 ms, red 
earliest, blue latest activation. (Adopted from [32])
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occlusion [69–71], RDN has been shown to reduce ventricu-
lar ectopic activity and ventricular fibrillation. Also in a dog 
model of heart failure induced by atrial tachycardiomyopa-
thy induced by ventricular high-rate pacing, RDN attenuated 
the ventricular remodeling process [72, 73]. The occurrence 
of spontaneous premature ventricular contractions and the 
subsequent ventricular dysfunction could be prevented by 
sympathetic modulation by the procedure [74]. Similarly, 
arrhythmogenic prolongation of ventricular repolarization 
(QT-interval) induced by simulated sleep apnea [75] or by 
cesium [76] could be attenuated by RDN.

Clinical data

In patients with heart failure with reduced ejection fraction, 
circulating norepinephrine concentrations predict mortality 
[77]. Interestingly, cardiac and renal norepinephrine spillo-
ver is increased in mild to moderate and severe chronic heart 
failure compared to healthy subjects, with the absolute renal 
norepinephrine spillover higher than the cardiac spillover 
suggesting that the kidney contributes more to total norepi-
nephrine spillover than the heart in heart failure [78, 79].

A small case series has provided evidence that, in patients 
with dilated cardiomyopathy and an electrical storm, RDN 
was able to reduce ICD shocks and ventricular ectopic activ-
ity [80]. These anti-arrhythmic effects could be confirmed 
in several other case series [81, 82] and in an international 

multicenter registry [83]. RDN may be most beneficial for 
patients with heart failure with recurrent, refractory arrhyth-
mias that cannot tolerate maximal beta-blockade and are not 
eligible for anti-arrhythmic catheter-based ablation of ven-
tricular tachycardia. Alternatively, RDN may also be used as 
an adjunct strategy in patients undergoing catheter ablation. 
In patients with heart failure, RDN reduced NT-proBNP and 
was safe without any adverse event deterioration of other 
indices of cardiac and renal function [84]. The role of auto-
nomic modulation by RDN in patients with heart failure and 
ventricular arrhythmias needs to be further investigated in 
randomized, sham-controlled trials.

Conclusions

RDN is a promising and safe strategy to modulate the auto-
nomic nervous system activity. Beyond its blood pressure-
lowering effects, animal models of atrial fibrillation have 
demonstrated favorable electrophysiological changes, 
reverse remodeling and potential anti-arrhythmic effects 
of sympathetic modulation by RDN. Interestingly, adjunct 
RDN improved outcome of catheter ablation in atrial fibril-
lation patients in small non-randomized clinical trials; these 
findings warrant further clinical trials. Additionally, animal 
experiments and early registry data also suggest promising 
ventricular anti-arrhythmic effects by RDN in the setting of 

Fig. 5  Effects of renal denervation (RDN) on ventricular fibrilla-
tion (VF) in a pig model for ventricular ischemia and reperfusion. a 
Representative view of the left ventricular during ischemia reperfu-
sion experiments. Atrial electrophysiology was recorded by an epicar-
dial catheter. b Incidence of VF during ischemia and the reperfusion 

phase in RDN-treated compared to SHAM-treated pigs. c Representa-
tive hemodynamics and electrocardiographic (ECG) tracings dur-
ing 20  min of left anterior descending coronary artery ligation fol-
lowed by reperfusion in a SHAM-treated and a RDN-treated animal. 
(Adopted from [68])
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heart failure. Further studies are needed to investigate the 
anti-arrhythmic effects of RDN.
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