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Abstract
High-resolution (HR) magnetic resonance imaging (MRI) can reveal rich anatomical structures for clinical diagnoses. How-
ever, due to hardware and signal-to-noise ratio limitations, MRI images are often collected with low resolution (LR) which 
is not conducive to diagnosing and analyzing clinical diseases. Recently, deep learning super-resolution (SR) methods have 
demonstrated great potential in enhancing the resolution of MRI images; however, most of them did not take the cross-
modality and internal priors of MR seriously, which hinders the SR performance. In this paper, we propose a cross-modality 
reference and feature mutual-projection (CRFM) method to enhance the spatial resolution of brain MRI images. Specifi-
cally, we feed the gradients of HR MRI images from referenced imaging modality into the SR network to transform true 
clear textures to LR feature maps. Meanwhile, we design a plug-in feature mutual-projection (FMP) method to capture the 
cross-scale dependency and cross-modality similarity details of MRI images. Finally, we fuse all feature maps with parallel 
attentions to produce and refine the HR features adaptively. Extensive experiments on MRI images in the image domain and 
k-space show that our CRFM method outperforms existing state-of-the-art MRI SR methods.

Keywords  Cross-scale self-similarity · Cross-modality similarity · Magnetic resonance imaging · Reference-based super-
resolution · Convolutional neural network

Introduction

Magnetic resonance imaging (MRI) is a non-ionizing radia-
tion imaging technique that is crucial for diagnosing condi-
tions such as brain tumors, intracranial infections, cerebral 
ect. The quality of MRI images is affected by many factors 
like the signal-to-noise ratio (SNR) and spatial resolution. In 
clinical practice, MRI scanning thickness is usually increased 
to decrease the imaging time to meet SNR requirements and 
reduce motion artifacts caused by the movements of scanned 
objects. However, increasing the scanning thickness will pro-
duce low-resolution (LR) MRI images, which hinders the 
precision of follow-up analyses and diagnoses. As a post-
processing method, super-resolution (SR) is able to effec-
tively enhance the resolution of MRI scans without upgrad-
ing or replacing existing hardware equipment. However, the 
SR problem remains challenging due to there being multiple 
solutions for any LR-to-high-resolution (HR) mappings.

In recent years, deep learning represented by convo-
lutional neural networks (CNNs) has become increas-
ingly attractive in solving the SR problem. They use 
series of convolution operations to automatically extract 
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hierarchical features and optimize parameters via numer-
ous samples, which has achieved impressive performance 
in restoring and enhancing the degraded sharpness, con-
trast, and texture of the HR MRI image. Current efforts 
mainly focus on increasing network depth or width 
through various techniques to improve the ability of fit-
ting SR mapping functions. However, increasing the net-
work size does not bring about significant MRI image SR 
performance improvements, because it is continuously 
extracting redundant features with heavy computing load. 
In the diagnosis of certain diseases (glioma), it is diffi-
cult to extract all the necessary information from a single 
MRI modality to ensure clinical accuracy and examination 
intensity. Therefore, the complementary characteristics of 
multi-modality MRI image information are usually used 
to improve the diagnostic accuracy of certain diseases.

In this paper, we propose cross-modality reference and fea-
ture mutual-projection (CRFM) to enhance the spatial resolu-
tion of MRI image. Our model receives two types of inputs: 
LR images of a certain MRI modality are used to generate SR 
images, and HR volumes of another modality provide reference 
features for accurate SR. Specifically, the CRFM network uses 
cascaded residual channel attention (RCA) blocks to extract 
features from LR inputs. In this process, we propose a feature 
mutual-projection (FMP) method according to the cross-scale 
similarity of the image to capture the internal correlations 
of repeated plaques in features at different scales. Moreover, 
we extract the gradients of HR images of referenced imag-
ing modality and feed them into the FMP module, comple-
menting the true external HR details for the SR task. At the 
tail of CRFM network, we upscale all feature maps and then 
fuse these maps with the mutual projected features and refer-
ence gradients to predict the missed HR details. In addition, 
cross-scale residual learning is adopted to facilitate parameter 
optimization. Extensive experiments show that our CRFM 
surpasses some existing 3D brain MRI image SR techniques.

The contributions of this paper are summarized as 
follows:

•	 We propose an reference-based MRI image SR method 
that fully utilizes image gradients from reference MRI 
modality. Moreover, for the case in which no reference 
exists, we propose a single image SR method cross-scale 
feature transformer (CFT) network that only uses the 
self-similarity of different scale MRI images to recon-
struct HR details.

•	 We design a feature mutual-projection method by cross-
scale feature matching via transformer according to the 
self-similarity of MRI images, which can be flexibly 
inserted anywhere in the SR network.

•	 We develop a parallel channel and spatial attention to 
achieve efficient feature refinement and enhancement, 
and meanwhile producing the HR details.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the Related Work. The details of the proposed 
CRFM method are provided in Materials and Methods. The 
implementation details, ablation study, and comparisons 
with state-of-the-art methods are presented in Results. 
Finally, the last section concludes this paper (Conclusion).

Related Work

To deal with the ill-posed resolution reconstruction prob-
lem, various techniques have been developed and can be 
roughly grouped into interpolation-based, reconstruction-
based [1, 2], and learning-based SR methods [3–6]. Among 
them, interpolation algorithms are easy to perform but may 
lead to blocking, ringing, and jagged artifacts. In contrast, 
reconstruction-based SR methods simulate the process of 
MRI and introduce priors to improve image quality. As one 
kind of data-driven technique, learning-based SR methods 
learn complicated LR-to-HR mappings from large numbers 
of training samples. Although reconstruction-based and 
traditional learning-based methods have made noteworthy 
progress in enhancing the resolution of MRI images, it is 
difficult to utilize the insufficient additional information and 
limited representation capabilities to solve the challenging 
MRI SR reconstruction problem.

Recently, deep learning has achieved impressive success 
in natural image SR, and some techniques have been intro-
duced to address the MRI SR problem [7, 8]. There are two 
different types of CNN-based MRI SR methods including 
single image SR (SISR) and reference-based SR (RefSR). 
SISR methods focus on learning a spatial mapping func-
tions to restore HR images from a given LR acquisition. 
Dong et al. [9] initiatively designed a three-layer recon-
struction network (called SRCNN) to enhance the resolu-
tion of two-dimensional (2D) natural images. Then, Pham 
et al. [10] proposed a three-dimensional (3D) SRCNN model 
to produce HR 3D brain MRI images. It is well-known that 
deep learning networks could enhance the representation 
ability by increasing their depth and width. However, these 
models may be difficult to optimize due to the vanishing or 
exploding gradient problem. To alleviate training difficulty, 
residual learning [11, 12] and dense connections [13, 14] 
have been widely applied by MRI image SR networks. Shi 
et al. [15] integrated global connections and local skips into 
a progressive wide residual network to reconstruct HR MRI 
slices. Similarly, Oktav et al. [16] and Giannakidis et al. [17] 
adopted residual learning in increasing the spatial resolution 
of cardiac and brain MRI images, respectively.

In addition, some well-designed strategies have been 
developed in unlocking the restoration capacity of MRI 
image SR networks, such as multi-scale learning  [18], 
attention mechanism  [19, 20], generative adversarial 
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networks [21, 22], and multi-branch networks [23]. Wang 
et al. [24] designed a 3D attention mechanism to make the 
network concentrate on meaningful features and regions 
that are more conducive to improving the resolution of 
MRI image. Wang et al. [25] constructed a convolution and 
deconvolution model to increase the resolution of 3D MRI 
scans, which used convolution and deconvolution kernels in 
parallel to obtain different levels of features and enrich the 
feature extraction methods. Zhao et al. [26] put forward a 
channel splitting method to input features into two sub-net-
works with different information transmission capabilities. 
Through multiple channel splitting and fusion operations 
to fuse different levels of features and reconstruct the 2D 
MRI slices.

Compared with SISR, RefSR introduces the information 
of one or more known HR images as additional references to 
reconstruct high-frequency details. In general, the references 
contain objects, scenes, or textures similar to those in the LR 
images [27], for example, videos or images obtained from 
different viewpoints of the same scene. Zhang et al. [28] 
and Yang et al. [29] designed an enumerated feature patch 
matching and fusion method for introducing HR details from 
the referenced images into the SR process. Zheng et al. [30] 
developed an end-to-end SR neural network by combining 
the optical flow-based warping process and image synthe-
sis to transfer high-frequency features from HR references. 
Zhang et al. [31] introduced a progressive feature alignment 
and selection module, which performs feature selection in 
a deliberate manner to align the reference image, thereby 
enabling more accurate transfer of reference features into 
input features, thus achieving higher precision in the pro-
cess. Cao et al. [32] improved the deformable convolutional 
technique, allowing for the acquisition of relevant features 
from the surrounding areas of the reference image based 
on established correspondences. By aggregating these fea-
tures along with pertinent textural details, they ultimately 
synthesize visually superior high-resolution (HR) images. 
Huang et al. [33] designed a lightweight RefSR module 
that harnesses the high-frequency information from a high-
resolution reference image. This module is employed in an 
inverse degradation process to restore the missing fine tex-
tures and details, thereby enhancing the overall visual qual-
ity. Since RefSR can find more meaningful clues according 
to the referenced objects, the quality of the SR images can 
be considerably enhanced.

Although CNN-based MRI image SR methods have 
evolved greatly, their potential has not been fully exploited, 
as the internal priors of LR images and external priors of 
multi-modality MRI have been neglected. In fact, priors are 
essential for correctly recovering clear textures and edges, 
especially for deep learning methods that can automatically 
extract image features. As a multi-parametric imaging tech-
nique, MRI can produce complementary multi-modality 

scans with different tissue contrasts, such as T1w, T2w and 
FLAIR images, which have been widely used to diagnose 
and evaluate clinical diseases. Therefore, to improve the 
resolution of MRI images of a certain modality, informa-
tion from other imaging modalities could be used as ideal 
references. In 2019, Pham et al. [11] inputted images with 
different contrasts into the network to explore the impact of 
images with different contrasts on model performance. The 
results showed that both FLAIR and T2w can improve the 
resolution of T1w images. In 2021, Feng et al. [34] utilized 
the information complementarity of multi-modality MRI 
images to propose a first level non asymptotic network and 
a two-stage asymptotic network based on residual asymp-
totic thinking to solve the problem of MRI super-resolution 
reconstruction. Sarasaen et al. [35] utilized the different 
organizational structure information of the brain and the lon-
gitudinal information of multi-modality data collected from 
different directions to improve the performance of super-
resolution networks. In 2022, Kang et al. [36] established an 
associative memory network between T1w images and T2w 
images to learn high-frequency features from T1w images 
to T2w images at different scales. In 2023, Yang et al. [37] 
integrated a multi-contrast MRI observation model into a 
deep unfolding network framework, explicitly capturing 
and leveraging the complex relationships between different 
contrasts through an iterative optimization process for super-
resolution reconstruction. Huang et al. [38] proposed a dual-
cross attention multi-contrast super-resolution framework 
that captures and fuses shareable information across multi-
contrast images by utilizing highly downsampled reference 
images. In 2024, Kang et al. [39] constructed an end-to-end 
mapping network for multi-resolution analysis, incorporat-
ing a low-frequency filtering module to avoid interference 
from redundant T1-weighted information while effectively 
guiding T2-weighted super-resolution reconstruction using 
informative T1-weighted data.

Materials and Methods

This section details our proposed CRFM method. Let F(⋅) 
with the parameter � represent the mapping function given 
by CRFM network. The goal of F(⋅) is to generate an estima-
tion which is as similar as possible to real HR MRI image 
IHR according to an input degraded counterpart ILR of a spe-
cific imaging modality and referenced MRI image IRef of 
other modalities. The following parts present the overview 
and main components of the CRFM network.

Network Overview

The architecture overview of CRFM network is outlined 
in Fig.  1. To generate SR images that approximate the 



	 Journal of Imaging Informatics in Medicine

ground-truth MRI image, we extract the additional gradient 
from IRef and transfer it into the backbone of the CRFM net-
work. The backbone focuses on extracting features from ILR 
and fusing reference feature maps.

To extract the initial feature maps X0 from ILR , we first 
adopt a convolution layer that followed by an LReLU acti-
vation function. Then, we extend the RCA module in [40] 
to 3D space and replace the ReLU with LReLU. After that, 
n improved RCA modules are cascaded as the backbone to 
map initial features X0 to deep feature maps {X1,X2,… , Xn} , 
which are finally connected as Xc.

In the backbone, a feature mutual-projection strategy is 
proposed to enhance meaningful texture features. Let FFMP(⋅) 
denote the function represented by the proposed FMP module; 
the output of this function can be obtained as

where XRef refers to the reference features and m is the index 
of the RCA module. Here, FMP produces feature maps Y′

m
 

with high frequency textures and the downsampled X′

m
 from 

the corresponding Xm and XRef.
Then, X′

m
 is input into RCAm+1 , allowing the CRFM network 

to explore more important cross-scale and cross-modality infor-
mation. Following RCAn , the output of all RCA modules and 
X

′

m
 are concatenated along the channel direction. Finally, XRef , 

Y
′

m
 , and [X1,⋯Xn, X

�

m
] are input into the upsampling and fea-

ture fusion (UFF) module to upsample and fuse the HR details, 
producing the output Yf  . Similar to [25, 41], global cross-scale 
residual learning is utilized to improve the learning efficiency 
of SR network. The final produced SR image is obtained as

where ISR represents the desired estimation corresponding 
to real HR MRI scans.

Cross‑Modality Reference

MRI images of different modalities (such as T1w and T2w) 
have highly similar edges and structures, but their contrasts 

(1)[X
�

m
, Y

�

m
] = FFMP

([
Xm, XRef

])

(2)ISR = Yf + I
↑

LR

are different. This contrast difference causes information 
interference if the images are fed directly into the RefSR 
network with the original IRef . Considering that the gradient 
indicates the sharpness and structure of an image, we input 
the gradients of IRef into the backbone. The gradients of the 
reference HR image IRef are obtained as

where Gh(⋅) , Gw(⋅) , and Gl(⋅) denote the gradient map extrac-
tion operation in the height, width, and length directions, 
respectively, and ▿G(⋅) represents the operation of extracting 
the gradient strength. Then, a convolution layer is utilized 
to capture the structural dependency and spatial relation-
ship between IRef and the corresponding output features 
XRef . As is known that MRI is a native multi-modal imag-
ing technique, thus we can flexibly obtain a lot of desired 
information of different modalities as available references 
for MRI image accurate SR. For example, we can introduce 
the gradients of T2w images as references when restoring 
HR T1w images.

Feature Mutual‑Projection

Rich relevant texture details at different scales are condu-
cive to addressing the SR problem [42]; therefore, we pro-
pose a feature mutual-projection (i.e., FMP) method which 
mines meaningful textures through capturing cross-scale and 
cross-modality self-similarity property of MRI images. The 
detailed FMP process is shown in Fig. 2. In contrast to intro-
ducing the information of external HR samples, as described 
in [43, 44], our FMP utilizes the internal self-similarity in 
3D MRI images. Thus, our method reduces the interference 
of erroneous pathological information from external refer-
ence samples.

In the FMP module, the mutual-projection is applied to 
extract and combine different scale feature maps. Given 

(3)

⎧⎪⎨⎪⎩

Gh

�
IRef

�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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��‖2

Fig. 1   The architecture of 
CRFM network, where the 
UFF module and FMP module 
respectively represent the 
upsampling and feature fusion 
module and feature mutual-
projection module
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inputs Xm and XRef , the FMP module outputs X′

m
 and Y′

m
 

as follows:

where X′

m
 is the enhanced counterpart of Xm , and Y′

m
 refers 

to the features obtained from the cross-scale feature match-
ing and transformer (CFMT) with the same size as the HR 
images. Here, Fup(⋅) and Fdown(⋅) represent deconvolution 
upsampling and convolution downsampling operations with 
strides of s, respectively. The mutual-projection manner 
allows the FMP module to effectively enhance feature Xm 
according to the cross-scale dependencies in Y′

m
 and cross-

modality self-similarity priors in XRef . It is worth noting that 
the FMP module can be flexibly inserted between any two 
RCA modules in a plug-and-play manner.

As the main component of the FMP method, the CFMT 
aims at mining the self-similarity property of different scale 
MRI features. As displayed in Fig. 2, the input Xm ∈ ℝ

H×W×L 
is first downsampled to X↓

m
∈ ℝ

H

s
×

W

s
×

L

s by the Cubic interpo-
lation method with a scale of s, thereby ensuring that the 
dependencies between the captured cross-scale features cor-
respond to the mapping between the LR and HR feature maps 
extracted by CRFM module. Through this manner, the inter-
nal image-specific exemplars can be mined to complement 
the external information captured from the training samples. 
Then, three convolution layers with 1 × 1 × 1 kernels extract 
the embedding features XV , XQ , and XK . Next, XV , XQ , and 
XK are unfolded into patches vj , qi , and kj with sizes of sp, p, 
and p and strides of sg, g, and g, respectively, where 
1 ≤ i ≤ ⌊H

g
⌋ × ⌊W

g
⌋ × ⌊L

g
⌋ and 1 ≤ j ≤ ⌊ H

sg
⌋ × ⌊W

sg
⌋ × ⌊ L

sg
⌋ . To 

extract the cross-scale dependencies between XQ and XK , we 
calculate the similarity weight wi,j for qi and kj:

(4)
{

Y
�

m
= Fup

(
Xm

)
+ Ym

X
�

m
= Fdown

(
Y

�

m
+ XRef

)

(5)wi,j =
exp

�
< qi, kj >

�
∑

j exp
�
< qi, kj >

�

where < ⋅, ⋅ > and subscript respectively represent inner 
product operation and the coordinate of the weight w. The 
above unfolding operation and similarity calculation are 
implemented by convolution and softmax operations, where 
kj is the kernel and qi is the input.

To recover as many HR details as possible, wi,j is assigned 
to corresponding patch vj , which can be written as

where ⊗ refers to the element-wise product operation. Then, 
v′
i
 is folded to obtain the feature Ym of size sH × sW × sL . 

The aforementioned weighted aggregation and folding 
operation are achieved by a deconvolution with kernel vj 
and input w. Through the cross-scale feature matching and 
transfer operation, Ym contains abundant HR features from 
different scale patches.

Upsampling and Feature Fusion

To map the extracted features to HR space, we adopt an 
upsampling and feature fusion (UFF) operation as the tail of 
CRFM model. As shown in Fig. 3, the inputs to the UFF 
module include the reference feature XRef , the feature set Xc 
produced by all improved RCA modules, and the output Y′

m
 of 

the FMP module. The size of XRef and Y′

m
 is the same as that 

of the desired HR estimation ISR , and the size of features in 
Xc is equal to that of ILR . Specifically, we apply a 3D subpixel 
convolution layer [45] to upsample Xc to the target size. Then, 
the upsampled features, namely, XRef , and Y′

m
 , are fused via 

element-wise addition to produce new feature maps.
Although Y′

m
 contains rich high-frequency information 

that is beneficial to SR, there is some inevitable useless 
repetitive information. In addition, there may be errors in the 
registration between XRef and the upsampled input image. 
To alleviate these undesirable effects, we exploit parallel 
spatial attention (SA) and channel attention (CA), which can 

(6)v�
i
=
∑
j

wi,j ⊗ vj

Fig. 2   The architecture of the proposed FMP module, where ⊙ represents inner product. The patches in qi and kj are matched according to their 
similarity. The corresponding patches in vj replace the LR patches in kj , and finally produced the features in HR space
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adaptively enhance meaningful features and while suppress-
ing irrelevant information. Here, the architectures of the CA 
and SA are the same as those in [40] and [46], respectively. 
We expanded these CA and SA architectures to 3D space 
and used the LReLU activation function in the CA. The fea-
tures refined by the CA and SA are connected and input into 
a convolution layer without being activated. Therefore, UFF 
Yf  produce the output through:

where YCA and YSA are the CA and SA outputs, respec-
tively. By comprehensively utilizing the inter-spatial and 
inter-channel relationships of the feature maps, the CRFM 
network can focus on informative feature regions and 
channels, thereby ensuring more efficient MRI image SR 
reconstruction.

Loss Functions

When training the proposed CRFM network, we adopt the 
mean absolute error (MAE) with a regular term as loss 
function to minimize the reconstruction error between ISR 
and IHR . Let L(⋅) denote the objective function of N training 
pairs; it is defined by

where F(⋅) refers to the above-mentioned LR-to-HR recon-
struction function represented by the CRFM network with 
parameter � . Here, � is set to 1e−6 to balance the loss func-
tion and the regular term. Meanwhile, � is updated by an 
Adam optimizer [47] with the learning rate of 1e−4.

Results

Implementation Details

Following [11, 14, 48], we trained the CRFM network using 
the Kirby21 [49] dataset (KKI06-KKI42) and tested it on 

(7)Yf = FConv

([
YCA, YSA

])

(8)L(�) =
1

N

N�
k=1

‖F�Ik
LR
;�
�
− Ik

HR
‖1 + �‖�‖2

the Kirby21 (KKI01-KKI05) and BRATS2015 [50] data-
sets. As in [14, 51], we adopted a Gaussian kernel ( � = 1 
) and Cubic downsampling to produce LR MRI images in 
the image domain. To imitate the acquisition of real MRI 
images [17, 26, 52]), we also produced LR MRI images in 
k-space. Specifically, we utilized fast Fourier transform to 
convert the original scans to k-space, followed by data trun-
cation (partial data is set to zero). Then, we used inverse fast 
Fourier transform to obtain spatial domain data and finally 
produced LR images via Cubic downsampling. Before train-
ing, we cropped the LR inputs into 26 × 26 × 26 patches with 
the stride of 13. We evaluated the performance of CRFM 
method according to the peak signal-to-noise ratio (PSNR) 
and structural similarity index measure (SSIM) [53].

In this paper, we used T2w and FLAIR MRI images as 
HR references and applied the CRFM network to SR recon-
struct LR T1w MRI images. In reality, there may be some 
small shifts between different modalities images, which 
interfere with the SR task. To address this issue, we used 
the Cubic method to interpolate LR T1w images to the target 
size and registered the reference volumes onto the corre-
sponding interpolated T1w images.

In the CRFM network, all convolution layers have 48 
channels with kernel sizes of 3 × 3 × 3 . The number of RCA 
modules was set to 10, and the FMP module was inserted 
between RCA5 and RCA6 . In the FMP module, the patch 
size p and stride g were set to 3 and 2, respectively. The 
parameters of CRFM model are iteratively optimized for 100 
epochs using PyTorch and Adam on an RTX 3090 GPU with 
the mini-batch size of 16. The MRI image SR performance 
was evaluated via the same equipment.

Ablation Studies

This section discuses the influence of the main com-
ponents and parameter setting of CRFM, including the 
insertion position and number of FMP modules, the patch 
size and stride of the CFMT, the number of channels and 
RCA modules, and the imaging modality. All models 
were trained with the Kirby21 dataset for the 2 × SR in the 
image domain. 

Fig. 3   The architecture of the 
proposed UFF module
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1.	 Effects of the FMP position We inserted the FMP mod-
ule at three typical positions: the head (between RCA1 
and RCA2 ), the middle (between RCA5 and RCA6 ), and 
the end (between RCA9 and RCA10 ) to investigate the 
influences of the position and count of FMP modules 
on the SR results and model parameters. The effects are 
presented in Table 1, and we can see that inserting the 
FMP module at any position boosts the SR reconstruc-
tion outcome. The best performance gains and balance 
between performance and efficiency were obtained by 
using one FMP module in the middle of the network. 
Although inserting multiple FMP modules into the net-
work shows slightly better performance, the number of 
parameters increases linearly (approximately 4.3 MB per 
FMP module). Considering SR performance and model 
complexity, we inserted only one FMP module in the 
middle of the CRFM network.

2.	 Effects of the CFMT parameters Subsequently, we 
studied the influences of patch size p and stride g in 
the CFMT. As shown in Table 2, we first fixed g = 1 
to study the effect of p. The GPU consumption was 
obtained by reconstructing the 40 × 40 × 40 LR patches. 
The PSNR and SSIM values in Table 2 indicate that 
the best performance was obtained when p = 3 , which 
shows that small patches ( p = 3 ) can be better used as 
regional descriptors. The comparison of the GPU con-

sumption of the models with p = 3 and p = 5 indicates 
that the significant improvement in the PSNR and SSIM 
is more worthy of attention. Therefore, we set the patch 
size to p = 3 . Then, we explored the effect of g by fix-
ing p = 3 . As seen from Table 2, slightly better results 
are obtained from the model with g = 1 than g = 2 , but 
the GPU consumption is noticeably higher by 3.48 GB. 
Although the GPU consumption of the network with 
g = 2 is slightly higher than that of g = 3 , the PSNR and 
SSIM metrics are increased by a margin of 0.09dB and 
0.0006, respectively. Finally, we set g = 2 to balance the 
GPU consumption and SR performance.

3.	 Effects of the number of RCA modules and chan-
nels Here, we first studied the effect of the number 
of RCA modules with 48 fixed channels. As shown 
in Table 3, when the number of RCA modules was 
increased from 8 to 10, the PSNR and SSIM metrics 
were significantly improved, and the SR performance 
remained constant when the number of RCA modules 
was increased to 12. Then, we investigated the influence 
of the number of convolution channels with 10 RCA 
modules. When the RCA modules had 48 channels, 
our model achieved the best PSNR and SSIM values. 
Therefore, the count of RCA modules and channels are 
respectively configured to 10 and 48.

4.	 Effects of the reference image modality In this paper, 
we also studied how to leverage HR reference images of 
different MRI modalities to promote the SR accuracy. 
As presented in Table 4, transferring the gradients of the 
reference image is an effective method to improve the 
SR performance. More specifically, when introducing 
the gradients of T2w images into the FMP module (i.e., 
C1), the PSNR and SSIM metrics were improved from 
39.70dB and 0.9847 to 39.80dB and 0.9881, respectively. 
Similarly, only fusing gradients of T2w images in the UFF 
module (i.e., C2) improved the PSNR and SSIM values to 

Table 1   Effects of the FMP 
position on SR performance and 
model parameters

Head ✓ ✓ ✓ ✓

Middle ✓ ✓ ✓ ✓

End ✓ ✓ ✓ ✓

Params(MB) 9.06 13.35 13.35 13.35 17.63 17.63 17.63 21.93
PSNR(dB) 39.49 39.68 39.70 39.67 39.72 39.71 39.72 39.74
SSIM 0.9836 0.9844 0.9847 0.9844 0.9848 0.9847 0.9847 0.9849

Table 2   Effects of the stride g and patch size p in CFMT on SR per-
formance and GPU memory

Stride (g) 1 1 1 2 3
Patch size (p) 1 3 5 3 3

GPU(GB) 8.34 6.04 4.85 2.56 2.22
PSNR(dB) 39.68 39.72 39.62 39.70 39.61
SSIM 0.9845 0.9849 0.9844 0.9847 0.9841

Table 3   Comparative study 
on the number of RCA and 
channels in RCA​

RCA​ 8 10 12 10 10 10
Channel 48 48 48 32 40 64

PSNR(dB) 39.62 39.70 39.70 39.52 39.61 39.68
SSIM 0.9839 0.9847 0.9846 0.9831 0.9839 0.9846
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39.78dB and 0.9877, respectively. As predicted, when the 
FMP and UFF modules (C1 &C2) simultaneously incor-
porate gradients, the best performance is achieved, which 
indicates that referencing gradients of HR images is ben-
eficial for SR. Directly incorporating the original images 
improved the SR results, but the PSNR and SSIM metrics 
are 0.08dB and 0.0016 lower than when introducing the 
gradients. Although MRI images have cross-modality 
self-similarity, there are some differences in content. The 
image gradients reflect voxel-level changes and contain 
the missed high-frequency texture details in the degraded 
image. Therefore, it is conducive to increase the resolu-
tion of the target modality images. From Table 4, we also 
can see that referencing T2w and FLAIR images have the 
same effect on improving the resolution of T1w, demon-
strating the robustness of the CRFM network.

5.	 The effects of CA and SA In light of the aforementioned 
analysis, we discussed the influence of channel and spa-
tial attention in UFF module on SR performance. Table 5 
shows the results of different attention architectures in 
the UFF module. Certainly, both CA and SA facili-
tated SR reconstruction, and simultaneously using them 
showed the most outstanding performance. It is notewor-
thy that adopting CA and SA in parallel achieved the best 
SR performance, which is beneficial for improving the 
resolution of the acquired MRI images.

 Comparisons with SOTA Methods

In this paper, we compared the proposed CRFM method 
with that of traditional methods (Cubic and NLM) and 

SOTA CNN-based SR techniques (SRCNN3D, ReCNN, 
EDDSR, and FASR) on the Kirby21 and BRATS2015 data-
sets. Here, all the compared methods were implemented with 
the parameters and settings provided by the corresponding 
paper.

Quantitative Evaluation  Tables 6 and 7 present the quan-
titative results of 2 × and 3 × SR reconstruction in image 
domain. Since FASR was trained by generative adversarial, 
it does not have superiority over PSNR and SSIM. There-
fore, we used FASR-L

1
 that merely trained with L 1 loss for 

a fair comparison. Here, CFT represents the non-reference 
version of the proposed CRFM network. As compared in 
Tables 6 and 7, among the non-reference SR methods, the 
CFT method achieved the best results on all datasets and 
scale factors. Furthermore, our CRFM method that refer-
encing gradients of HR T2w image outperformed all com-
pared methods. This observation shows that referencing the 
features of HR images could effectively compensate for the 
missed mid- and high-frequency details for LR MRI images. 
On the Kirby21 dataset, the improvement in the PSNR and 
SSIM (0.41dB and 0.0049) with CRFM over FASR-L1 were 
significant on scale of 2 × . Meanwhile, CRFM obtained the 
highest PSNR of 36.12dB and SSIM of 0.9664 at a scale 
of 3 × . For the BRATS2015 dataset collected from glioma 
patients, the CRFM also obtained the best PSNR and SSIM 
results at both 2 × and 3 ×.

Tables 8 and 9 show the SR results of reconstructing 
the images degenerated in k-space. The proposed CRFM 
method showed a substantial advantage over the other meth-
ods, demonstrating the stable SR performance of our method 
under real world degradation conditions. Similar to the 
image domain degradation, the proposed method achieved 
SOTA results on all datasets and scale factors with refer-
ence and non-reference images. In particular, on the Kirby21 
dataset, the proposed CRFM outperformed FASR-L

1
 , with 

PSNR improvements of 0.74dB and 0.41dB on the 2 × and 
3 × SR reconstruction, respectively. Furthermore, our CFT 
and CRFM networks obtained more stable result distribu-
tions (smaller SDs) than other deep learning SR methods. 
These results and comparisons demonstrate the superiorities 
of our CRFM method over SOTA methods.

Visual Evaluation  Figures 4 and 5 provide visual compar-
isons of MRI images collected from healthy volunteers 
under spatial domain and k-space degradation, respec-
tively. The zoomed view of the restored image shows 
that the proposed CFT and CRFM networks maintained 
more anatomical details than the other methods. A visual 
inspection shows that the reference-based CRFM net-
work produced more clear SR images than the SISR tech-
niques, which demonstrate the effectiveness of embedding 

Table 4   Study on reference modality over Kirby21 dataset with scale 
2. Here, C1 and C2 indicate incorporating reference features into 
FMP and UFF, respectively

Modality Reference Connection PSNR(dB) SSIM

– – – 39.70 0.9847
T2w Gradient C1 39.80 0.9881
T2w Gradient C2 39.78 0.9877
T2w Gradient C1 &C2 39.85 0.9890
T2w Image C1 &C2 39.77 0.9874
FLAIR Gradient C1 &C2 39.83 0.9890

Table 5   Effects of channel and spatial attention in UFF. Here, the 
symbol & represents that CA and SA are used in parallel, and the out-
puts of them are connected through channel direction. CA-SA means 
that they are used in series

– SA CA CA & SA CA-SA

PSNR(dB) 39.76 39.80 39.79 39.85 39.82
SSIM 0.9869 0.9880 0.9877 0.9890 0.9883
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cross-modality image features in the SR task. Figure 6 
visualizes an image of a glioma scan (T1c.36601 in the 
BRATS2015) reconstructed by different SR methods. 
The images produced via compared methods were blurry, 

especially that interpolated with the Cubic method. In con-
trast, our CFT and CRFM methods better recovered the 
glioma part and eliminated blurred edges (indicated by 
the red arrow) to a certain extent.

Table 6   Quantitative results 
with standard deviation of MRI 
image SR methods on the image 
domain degradation. The best 
and second-best are highlighted 
in bold and underline, 
respectively

Method Kirby21

2× 3×

PSNR(dB) SSIM PSNR(dB) SSIM

Cubic 33.35 ± 1.71 0.9217 ± 0.0123 31.87 ± 1.70 0.8939 
± 0.0165

NLM [54] 34.19 ± 1.71 0.9349 ± 0.0104 33.01 ± 1.65 0.9173 
± 0.0134

SRCNN3D [10] 37.51 ± 1.76 0.9735 ± 0.0049 34.03 ± 1.71 0.9384 
± 0.0112

ReCNN [11] 38.80 ± 1.84 0.9797 ± 0.0046 35.20 ± 1.73 0.9530 
± 0.0111

EDDSR [14] 39.24 ± 1.84 0.9822 ± 0.0044 35.95 ± 1.78 0.9599 
± 0.0094

FASR-L
1
 [48] 39.44 ± 1.84 0.9841 ± 0.0038 35.71 ± 1.82 0.9577 

± 0.0089
CFT(Ours) 39.70 ± 1.87 0.9847 ± 0.0038 36.03 ± 1.83 0.9612 ± 

0.0085
CRFM(Ours) 39.85 ± 1.87 0.9890 ± 0.0030 36.12 ± 1.81 0.9664 ± 

0.0079

Table 7   The results of different 
methods on the BRATS2015 
dataset degraded in the image 
domain

Method Kirby21

2× 3×

PSNR(dB) SSIM PSNR(dB) SSIM

Cubic 35.46 ± 1.79 0.9660 ± 0.0080 34.43 ± 1.82 0.9640 ± 
0.0111

NLM [54] 36.12 ± 1.76 0.9712 ± 0.0067 35.40 ± 1.78 0.9645 ± 
0.0085

SRCNN3D [10] 38.67 ± 1.66 0.9847 ± 0.0036 36.09 ± 1.85 0.9694 ± 
0.0075

ReCNN [11] 39.14 ± 1.65 0.9887 ± 0.0029 36.55 ± 1.98 0.9729 ± 
0.0077

EDDSR [14] 39.60 ± 1.71 0.9890 ± 0.0027 36.82 ± 1.80 0.9728 ± 
0.0065

FASR-L
1
 [48] 39.97 ± 1.74 0.9908 ± 0.0037 37.02 ± 1.83 0.9750 ± 

0.0063
CFT(Ours) 40.13 ± 1.76 0.9910 ± 0.0029 37.13 ± 1.87 0.9760 ± 

0.0063
CRFM(Ours) 40.17 ± 1.77 0.9942 ± 0.0021 37.23 ± 1.90 0.9791 ± 

0.0066
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Table 8   Results of 2 ×and 3 × SR 
reconstruction of MRI image 
on the k-space degradation. The 
best and second-best results 
are highlighted in bold and 
underline, respectively

Method Kirby21

2× 3×

PSNR(dB) SSIM PSNR(dB) SSIM

Cubic 35.31 ± 1.70 0.9453 ± 0.0096 32.49 ± 1.68 0.8809 ± 
0.0175

SRCNN3D [10] 37.22 ± 1.78 0.9691 ± 0.0061 34.06 ± 1.77 0.9341 ± 
0.0127

ReCNN [11] 38.67 ± 2.04 0.9781 ± 0.0055 35.13 ± 1.94 0.9494 ± 
0.0117

EDDSR [14] 38.85 ± 1.82 0.9788 ± 0.0045 35.52 ± 1.79 0.9534 ± 
0.0094

FASR-L
1
 [48] 38.90 ± 1.99 0.9797 ± 0.0050 35.43 ± 1.87 0.9526 ± 

0.0103
CFT(Ours) 39.47 ± 1.89 0.9859 ± 0.0037 35.75 ± 1.80 0.9596 ± 

0.0086
CRFM(Ours) 39.64 ± 1.89 0.9864 ± 0.0035 35.91 ± 1.80 0.9625 ± 

0.0083

Table 9   The results of different 
methods on the BRATS2015 
dataset degraded in the k-space

Method BRATS 2015

2× 3×

PSNR(dB) SSIM PSNR(dB) SSIM

Cubic 35.60 ± 1.77 0.9324 ± 0.0173 34.68 ± 1.78 0.9260 ± 
0.0193

SRCNN3D [10] 36.30 ± 1.82 0.9565 ± 0.0108 35.71 ± 1.81 0.9310 ± 
0.0178

ReCNN [11] 36.42 ± 1.84 0.9595 ± 0.0105 35.93 ± 1.87 0.9363 ± 
0.0180

EDDSR [14] 36.30 ± 1.82 0.9571 ± 0.0107 35.93 ± 1.78 0.9591 ± 
0.0091

FASR-L
1
 [48] 36.36 ± 1.83 0.9581 ± 0.0100 36.29 ± 1.86 0.9613 ± 

0.0094
CFT(Ours) 38.38 ± 1.76 0.9833 ± 0.0041 36.22 ± 1.81 0.9612 ± 

0.0098
CRFM(Ours) 38.55 ± 1.76 0.9823 ± 0.0047 36.30 ± 1.88 0.9633 ± 

0.0098

Fig. 4   SR results of an MRI 
case (KKI02 from Kirby21) 
degenerated in the image 
domain with isotropic scale 
factor 2×. The zoomed area (red 
arrow) illustrates that CRFM 
restored more fine anatomy 
details and produced the best 
performance
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Discussion

SRFormer [55] employs permuted self-attention to effi-
ciently establish relationships among pixel pairs within 
large windows, while DATSR [33] extracts texture fea-
tures from reference images to supplement detail infor-
mation in low-resolution (LR) images. However, our 
application differs from these two methods. We propose 
an innovative cross-modal reference and feature mutual 
projection (CRFM) method that effectively transfers high-
resolution texture details from the reference modality to 
the target MRI image by incorporating cross-modal refer-
ence information. The feature mutual projection mecha-
nism allows us to capture internal correlations across 
different scales, further enhancing super-resolution per-
formance. This method’s novelty and practicality hold 
significant implications for MRI image analysis and diag-
nosis. There are two main technical distinctions between 
SRFormer, DATSR, and our proposed method (CRFM): 
First, in reference-based super-resolution tasks for natural 
images (as addressed by SRFormer), registration steps are 
typically crucial due to the inherent variations in view-
point or environment among the source images. Con-
versely, in MRI super-resolution reconstruction, particu-
larly when dealing with different modalities of scans that 

depict the same anatomic structure of the same subject, 
rigorous spatial registration is not always necessary to 
harness high-resolution information from other modality 
reference images. The inherent correlation and consist-
ency between MRIs, which provide complementary tissue 
contrast information of the same subject, make them par-
ticularly suitable for implementing reference-based super-
resolution techniques. CRFM effectively leverages this 
characteristic by merging the attributes of multi-modal 
MRI images, thus significantly enhancing the resolution 
and diagnostic value of a specific MRI modality image. 
Second, CRFM uniquely utilizes gradient information 
from high-resolution MRI images as a reference input and 
incorporates a feature mutual projection (FMP) module 
designed to capture dependencies and similarity details 
across scales and modalities in MRI images, a strategy 
that is not commonly found in single-modal image-based 
super-resolution methods like SRFormer. By excavating 
such internal feature correlations, CRFM improves the 
accuracy of detail recovery during the super-resolution 
reconstruction process. Furthermore, CRFM’s distinc-
tive FMP module, rooted in cross-scale similarity, delves 
deeply into the intrinsic interdependencies between MRI 
images at different scales, thereby enabling more precise 
restoration of lesion regions and elimination of blurred 

Fig. 5   SR results of an MRI 
image (KKI03 from Kirby21) 
degraded in the k-space with the 
isotropic scale factor 3 ×

Fig. 6   Comparisons on an MRI 
scan with glioma (T1c.36601 
from BRATS2015) that 
reconstructed by different SR 
techniques with the isotropic 
scale factor 2 × (degraded in the 
k-space)
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edges, a level of refinement that pure single-scale self-
attention mechanisms as employed by SRFormer alone 
are unable to match.

Conclusion

In this paper, we propose a cross-modality reference and 
feature mutual-projection (CRFM) method to increase the 
resolution of brain MRI image.Specifically, the CRFM net-
work integrates reference modality MRI images with global 
cross-scale self-similarity priors to extract gradients from the 
reference image which are extracted to mine potential external 
HR details. Meanwhile, we designed a mutual-projection fea-
ture enhancement method to capture cross-scale correlations 
across the MRI features to effectively mine potential internal 
HR details. At the end of the CRFM network, parallel atten-
tions were used to refine informative channels and feature 
regions. Extensive experiments on two publicly available MRI 
datasets demonstrate that CRFM significantly outperforms the 
current state-of-the-art (SOTA) methods in terms of super-
resolution reconstruction. The method enables us to obtain 
high-quality brain scans with rich detail, which is poised to 
greatly facilitate more accurate diagnoses and ultimately sup-
port clinicians in making more informed medical decisions.
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