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Abstract
This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep 
learning-based computer diagnostic system. It also seeks to ascertain the system’s potential in clinical practices and to offer 
a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 
different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, Effi-
cientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer). The dataset comprises 1258 
panoramic radiographs from patients who received implant treatments at Erciyes University Faculty of Dentistry between 
2012 and 2023. It is utilized for the training and evaluation process of deep learning models and consists of prototypes from 
six different implant systems provided by six manufacturers. The deep learning-based dental implant system provided high 
classification accuracy for different dental implant brands using deep learning models. Furthermore, among all the architec-
tures evaluated, the small model of the ConvNeXt architecture achieved an impressive accuracy rate of 94.2%, demonstrating 
a high level of classification success.This study emphasizes the effectiveness of deep learning-based systems in achieving 
high classification accuracy in dental implant types. These findings pave the way for integrating advanced deep learning 
tools into clinical practice, promising significant improvements in patient care and treatment outcomes.
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Introduction

Dental implants have become a standard and widespread 
solution for addressing tooth loss, with annual installations 
exceed 800,000 in the USA and 1.8 million in Europe, 
respectively [1]. The success rates of dental implants are 

high; however, factors such as patient health, dentist tech-
nique, and implant suitability contribute to potential fail-
ures [2]. As the aging population increases, the demand for 
dental implants is expected to rise, emphasizing the need 
for careful selection of appropriate implants from manufac-
turers [3]. This is especially crucial due to the complexity 
and duration of the implant procedure. In clinical practice, 
complications related to dental implants, including biologi-
cal and mechanical aspects, have been reported since their 
introduction to the market [4]. Technical complication rates 
vary, and it becomes imperative to possess detailed infor-
mation, such as the implant manufacturer, system classifi-
cation, diameter, and abutment type, to address challenges 
effectively [5].

Deep learning algorithms have emerged as powerful 
tools in addressing challenges within medical image pro-
cessing, overcoming issues like low accuracy and manual 
feature extraction often associated with classical machine 
learning [6]. Widely applied in healthcare, defense, and 
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agriculture sectors, deep learning, especially through con-
volutional neural networks (CNNs) and vision transformers, 
facilitates swift and accurate diagnoses in fields like medical 
image processing [7, 8]. CNNs are specialized deep learn-
ing models designed specifically for image-processing tasks. 
They excel in tasks such as image classification and object 
detection, leveraging convolutional layers to detect and learn 
hierarchical patterns in images [9]. Conversely, vision trans-
formers, a newer category of models, utilize a transformer 
architecture initially designed for natural language process-
ing [10]. Vision transformers have demonstrated remarkable 
effectiveness in image classification by transforming input 
images into sequences of tokens, allowing the model to iden-
tify global dependencies and relationships within the data-
set [11, 12]. In dental applications, these techniques prove 
invaluable, aiding in implant classification and the diagnosis 
of dental diseases [7].

To access implant components and associated structures, 
specific knowledge about the implant’s brand is required, as 
each brand possesses unique screw and connection struc-
tures [13]. In dental applications, integrating image process-
ing and deep learning techniques is crucial, assisting in tasks 
such as implant classification, dental disease diagnosis, and 
treatment planning. Deep learning technologies like CNNs 
and vision transformers promise to improve performance 
and generalization in medical imaging, including dental 
applications [14, 15].

However, a notable research gap exists regarding the 
clinical efficiency of deep learning algorithms in classify-
ing dental implant systems [16]. This study aims to fill this 
gap by conducting experiments using various deep learning 
models, focusing on their clinical performance in implant 
dentistry. The proposed decision system classifies implant 
brands, offering advantages in terms of time and effort for 
both patients and dentists. Additionally, we expand the den-
tal implant dataset to six classes, enhancing the system’s 
reliability and applicability in different dental clinics. The 
contributions of our study are notably significant in the 
realm of dental implantology and the application of deep 
learning technologies. They can be succinctly outlined as 
follows:

• Creation of a novel dataset: We curated a unique data-
set of dental implant images, meticulously collected by 
specialized dentists at the Faculty of Dentistry, Erciyes 
University in Turkey. This dataset is foundational for 
the research and application of deep learning in dental 
implant classification.

• Dataset annotation and labeling: The dataset was thor-
oughly annotated and labeled into six distinct classes, 
setting the stage for precise and meaningful classifica-
tion efforts. This detailed categorization is crucial for the 
training and evaluation of deep learning models.

• Evaluation of cutting-edge deep learning architectures: 
Our study involved the comprehensive evaluation of 
recent deep learning architectures, including ConvNext, 
RegNet, DenseNet, VGG, and vision-based transformers. 
We leveraged transfer learning and data augmentation 
techniques to maximize the potential of these models for 
our specific application.

• Fine-tuning transformers: We fine-tuned selected trans-
former models specifically to address the classifica-
tion challenge, significantly improving accuracy. This 
approach demonstrates the adaptability and effectiveness 
of transformer models in domain-specific applications.

• Advancing the application of deep learning in implan-
tology: The primary focus of our article is to highlight 
and explore the application of deep learning technology 
in identifying dental implant brands from images. This 
addresses a critical and relatively unexplored aspect of 
dental implantology, showcasing the potential of AI to 
revolutionize this field.

Together, these contributions not only advance the sci-
entific understanding and technological capabilities in the 
classification of dental implants but also open up new path-
ways for the practical application of deep learning in dental 
medicine, improving diagnostic accuracy and patient out-
comes. The remainder of the paper is structured as follows: 
The “Materials and Methods” section outlines the materials 
and methods employed, “Experiments and Discussion” sec-
tion presents the experiments and subsequent discussions, 
and “Conclusion” section concludes with final remarks and 
findings.

Materials and Methods

Deep Learning in Healthcare

As a machine-learning approach, deep learning encompasses 
using artificial neural networks to analyze extensive datasets 
[17]. Deep learning can analyze medical images, such as 
X-rays and MRIs, within the healthcare domain to detect 
diseases and medical conditions [18, 19]. Additionally, it can 
leverage medical records and other pertinent data to iden-
tify patterns and predict patient outcomes. Integrating deep 
learning in healthcare can significantly enhance the preci-
sion and effectiveness of medical diagnoses and treatments, 
ultimately leading to improved patient outcomes. Deep 
learning architectures are specifically designed artificial 
neural networks that are capable of learning hierarchical rep-
resentations of data [20, 21]. These architectures typically 
consist of multiple layers of interconnected nodes, with each 
layer responsible for extracting distinct levels of abstraction 
from the data. Among the most widely used deep learning 
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architectures are CNNs, recurrent neural networks, and feed-
forward neural networks. These architectures find applica-
tion in various domains, including image classification, 
natural language processing, and speech recognition [22]. 
Deep learning architectures can be classified into supervised 
architectures and unsupervised architectures. Supervised 
architectures, including CNNs and recurrent neural net-
works (RNNs), are trained with labeled data and commonly 
used for tasks like image classification and sequence mod-
eling [23]. On the other hand, unsupervised architectures, 
including Autoencoders, Restricted Boltzmann Machines 
(RBMs), and Deep Boltzmann Machines (DBMs), do not 
require labeled data for training and are often used for tasks 
like data representation learning and generative modeling 
[24]. However, it is worth noting that certain architectures, 
like generative adversarial networks (GANs), exhibit char-
acteristics of both supervised and unsupervised approaches 
depending on their training and utilization methods. GANs 
are known for their ability to generate new data samples 
that resemble the training data distribution, making them 
valuable for tasks such as image synthesis and data aug-
mentation [25].

In summary, deep learning offers immense potential in 
healthcare by enabling the analysis of medical images and 
data, leading to improved medical diagnoses and treatment 
outcomes. The diversity of deep learning architectures pro-
vides flexibility in addressing various tasks across different 
domains, empowering researchers and practitioners in their 
quest for innovative solutions.

CNNs

CNNs have become the most used deep learning tech-
niques, providing the highest throughput among other 
artificial intelligence algorithms [26]. Researchers have 
collaborated by proposing new approaches to increase the 
efficiency of CNNs [27]. Different typical and recent deep 
convolutional neural network (DCNN) architectures, which 

are now utilized as building blocks in various classifica-
tion, segmentation, and detection designs, will be briefly 
discussed in this section. The earliest CNN model, the LeNet 
architecture, was described in research by Yann LeCun [28]. 
CNNs gained prominence in 2012 when the AlexNet design 
[29] won the ImageNet competition, offering a more robust 
structure with additional feature filters compared to LeNet. 
The most popular forms used as a backbone in CNN struc-
tures for object classification and detection of VGG design 
are VGG16 and VGG19. Also, with a 6.66% error rate and 
22 layers, GoogLeNet [14] won the 2014 ILSVRC. This 
structure decreased the computational cost and the overfit-
ting risk using the Inception modules [30]. In contrast, the 
architecture of ResNet [31] won the 2015 ILSVRC, which 
consists of 152 layers, with a 3.6% error rate. Later, several 
additional designs were introduced, including DenseNet 
[15], EfficientNet [32], and MobileNets [33]. VGG, Incep-
tion, and ResNet are the most often used architectures for 
disease analysis and image classification. In addition, while 
CNN structures were first employed for classification, they 
were widely adopted because of their effectiveness in object 
identification and segmentation applications [34].

This section provides a more comprehensive overview 
of the CNN architecture than other deep learning systems. 
The discussion encompasses a detailed examination of the 
construction of CNN architecture, including the descrip-
tion of its various topologies. Furthermore, notable CNN 
techniques employed in object recognition and image clas-
sification are elaborated upon, with specific emphasis on 
their application in the study of dental implants and the pro-
cessing of medical images. An illustrative example of CNN 
architecture is depicted in Fig. 1 [35].

CNN Architectures

As the filter traverses the image from the previous layer or 
input image, the pixel values are multiplied, and the result-
ing values are summed and stored in the corresponding pixel 

Fig. 1  A typical CNN architecture [35]
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region of the output data [36]. This iterative process uses 
identical filters until the entire image has been analyzed 
[37]. The outcome is a feature map or matrix that encap-
sulates information about the distinct features identified by 
each filter. Mathematically, this convolution (S) process can 
be represented by Eq. 1 [38].

where I represents the input image, K is the kernel, and (i, 
j), m, and n are coordinates pertaining to the output feature 
map and the kernel, respectively. Through this process, as 
the kernel moves across the input image, it calculates the 
cumulative element-wise multiplication of the kernel with 
the corresponding segment of the image, thereby generat-
ing the output feature map. Consequently, this mechanism 
allows CNNs to discern and learn various filters that identify 
essential features of the image for a range of applications 
[39]. A convolutional layer incorporates multiple feature 
matrices, which are applied to either the input layer’s image 
or the output of preceding layers [40]. As each cycle pro-
gresses, the characteristics within each column and row of 
the feature matrix are learned, utilizing the propagated gradi-
ent value for updating the column and row feature matrices 
[41]. By employing the same feature map and filters, weight 

(1)S(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n
I(i + m, j + n).K(m, n)

sharing occurs within the convolutional layer, subsequently 
reducing the network parameters’ quantity [42]. The design-
ers determine the filter number, width, padding, and stride 
parameters [28]. Conventionally, odd numbers serve as the 
dimensions for filters during the convolution process, facili-
tating balanced and centered padding. The stride parameter 
dictates the extent of the kernel’s shift across the image. 
Padding ensures that the output size matches the input size 
by evenly adding zeros [43].

As illustrated in Fig. 2, an example of an output image 
generated from a convolution process employs a stride of 1, 
an input image of dimensions 4 × 4, and a convolution core 
of dimensions 3 × 3. Multiple kernels are utilized to identify 
varying characteristics, with repetition occurring to gener-
ate the required feature maps. Following convolution, Eq. 2 
determines the output size [44].

For instance, in cases where the filter size is 3 × 3 and the 
input picture measures 64 × 64, with a step shift of one, the 
resulting output matrix will have dimensions of 64 × 64. If no 
padding is applied, the output matrix size reduces to 62 × 62. 

(2)

output matrix dimension

=
(inputsize + 2 ∗ padding − kernel size)

stride
+ 1

Fig. 2  A Convolution matrix with a kernel (3 × 3), an input picture (4 × 4)
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Following the preceding layers, nonlinear activation func-
tions, commonly referred to as nonlinearity layer functions, are 
employed to augment the network’s nonlinearity. The incor-
poration of these activation functions has a profound impact 
on the performance of CNNs [30].

By promoting the independence of neurons in subsequent 
layers without excessive input values, these functions con-
tribute to the generation of feature maps, thereby enhancing 
the overall stability of the network. Figure 3 depicts the most 
frequently utilized nonlinear activation functions, including 
Leaky ReLU, Softmax, ReLU, Sigmoid, Tanh, GELU, SiLU, 
Mish, and Swish. Leaky ReLU is a popular and effective 
method for tackling the dying ReLU problem, mathematically 
described in Eq. 3.

(3)fLeakyReLU(x) =

(

0.01xifx < 0

xifx ≥ 0

)

By introducing a slight slope in the negative range, Leaky 
ReLU functions as an improved version of ReLU, thereby 
mitigating the problem. The softmax function produces a 
vector of values that sum up to 1.0, allowing their interpre-
tation as probabilities representing class membership. The 
sigmoid function yields outputs ranging from 0 to 1, mak-
ing it particularly suitable for models requiring probability 
estimation. Similarly, the Tanh function ranges from − 1 to 
1, where negative values indicate negativity, and zero val-
ues indicate neutrality. However, unlike sigmoid, the Tanh 
function exhibits symmetry. Nevertheless, the rectified lin-
ear unit (ReLU) has emerged as the most prevalent nonlin-
ear function in CNNs. ReLU limits output to a range of (0, 
x), mapping positive inputs directly and negative inputs to 
zero, without modifying the output. Due to its computational 
efficiency compared to Tanh and sigmoid functions and its 
ability to alleviate gradient vanishing issues, ReLU is widely 

Fig. 3  Commonly used activation functions
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employed in CNNs. These three well-known functions are 
defined mathematically in Eqs. 4, 5, and 6.

Swish is an activation function that includes a learn-
able parameter. Nearly all implementations do not use the 
learnable parameter, in which case the activation function 
is (“Swish-1”) in Eq. 7.

The SiLU (sigmoid linear unit), introduced before being 
popularized as “Swish,” was first mentioned alongside 
Gaussian error linear units (GELUs) and later explored in 
reinforcement learning research. It gained further attention 
through the study “Swish: A Self-Gated Activation Func-
tion,” highlighting its effectiveness in various neural net-
work applications. This illustrates the SiLU/Swish function’s 
development and increasing acceptance in the field [45]. 
These three advanced activation functions are mathemati-
cally represented in Eqs. 8 and 9.

The Mish activation function outperforms ReLU in vari-
ous tasks, enhancing accuracy in models from YOLOv1 to 
YOLOv5. Its integration into YoLov4 yielded a substan-
tial qualitative improvement, exceeding the performance 
of YOLOv3 in mean average precision (mAP). Mish 

(4)fReLU(x) = max(0, x) =

(

0ifx < 0

xifx ≥ 0

)

(5)fsigmoid(x) =
1

1 + e−x

(6)ftanh(x) =
2

1 + e−2x
− 1

(7)fswish(x) = x ∗ sigmoid(�x)

(8)fSiLU(x) = x ∗ sigmoid(x) =
x

1 + e−x

(9)fGELU(x) = xΦ(x) = x

�

1 + erf (
x
√

2
)

�

∕2

distinguishes itself in the broader landscape of prevalent 
activation functions encompassing ReLU, Tanh, Sigmoid, 
Leaky ReLU, and Swish. In a specific instance involving 
Squeeze Excite Net-18 for CIFAR 100 classification, Mish 
demonstrated superior performance to Swish and ReLU, 
underscoring its distinctive advantages. The Mish activa-
tion function, expressed in Eq. 10, where Softplus(x) = ln 
(1 + e^x), offers a refined alternative to ReLU, consistently 
proving effective in enhancing model accuracy [46].

The dropout layer, a regularization layer, is used to elimi-
nate specific node connections within the network to prevent 
it from excessively memorizing the trained data [47]. By ran-
domly disabling network parameters, the process facilitates 
more effective learning. Control over the size of acquired 
features from the preceding layer is achieved by utilizing 
chosen filters that traverse the image, thus implementing a 
subsampling mechanism in the pooling layer. As a result, the 
model is safeguarded against overfitting, and the subsequent 
layer’s data is reduced. However, it is important to acknowl-
edge that this reduction entails the loss of specific vital data. 
The pooling layer offers a significant advantage by reducing 
the number of parameters that necessitate computation in 
the network, thereby diminishing the network’s computa-
tional complexity and facilitating expedited training. Vari-
ous techniques, including average, minimum, or maximum 
pooling, can be employed within the pooling process. Maxi-
mum pooling involves selecting the largest value among the 
pixel values within the filter size, while minimum pooling 
chooses the smallest value. Conversely, average pooling 
entails dividing the sum of pixel values within the filter size 
region by the filter window size. Figure 4 visually illustrates 
the processes of maximum, average, and minimum pooling.

Following the non-linear, pooling, and convolution lay-
ers, CNNs feature the fully connected layer (FC). This layer 
transforms output feature matrices into feature vectors by 
stacking individual vectors, resembling a grading process. 
The number of such layers may vary based on the design. 

(10)fMish(x) = x ∗ tanh
[

Softplus(x)
]

= ⋅tanh[ln(1 + ex)]

Fig. 4  Maximum, average, and minimum pooling
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This resulting feature vector is subsequently labeled like 
a regular neural network. SoftMax has been one of the 
most preferred choices for classification tasks owing to its 
diverse accomplishments and classifications. The output for 
each object type falls within the [0,1] range. The object is 
assigned to a class for classification based on the output neu-
ron with the highest value. Beyond the CNN layers, several 
crucial aspects depend on user experience throughout the 
training process. These aspects, known as hyperparameters, 
encompass maximum epoch, momentum, initial learning 
rate, minibatch size, regularization, and shuffle features.

Advanced CNN Architectures

CNNs have become the most used deep learning tech-
niques, providing the highest throughput among other AI 
algorithms. Researchers have collaborated to propose new 
approaches for increasing the efficiency of CNNs. Different 
typical and recent Deep CNN architectures, which are now 
utilized as building blocks in various classification, segmen-
tation, and detection designs, will be briefly discussed in 
this section. The earliest CNN model is the LeNet architec-
ture, described in research by Yann LeCun [28]. This model, 

fundamentally simple and basic, has a relatively small scale. 
This structure was used to classify handwritten pictures.

CNN launched in 2012 when the AlexNet design [29] 
won the ImageNet competition, comparable to the design 
of LeNet. It is a more robust structure with more feature 
filters. The AlexNet architecture success has altered the 
path of image processing research significantly. The ZFNet 
design [47] improves the AlexNet design’s architecture, 
leading the ImageNet competition in 2013 [48]. Figure 5 
depicts the architecture of VGG16. Furthermore, the VGG 
architecture demonstrated a 7.3% error rate [49].

Later, several additional designs were introduced, includ-
ing DenseNet [50], EfficientNet [32], and MobileNets [33]. 
VGG, Inception, and ResNet are the most often used archi-
tectures for disease analysis and image classification. In 
addition, while CNN structures were first employed for 
classification, they were widely adopted because of their 
effectiveness in object identification and segmentation 
applications. Many practical CNN-based algorithms were 
published in this sector since object identification is one of 
the most prominent bases of deep learning. Because of its 
success, faster R-CNN [51], one of these two-phase topolo-
gies in object detection, has been raised [30].

Fig. 5  Architecture of VGG16 network
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VGG Architecture

The VGG network represents a major breakthrough in deep 
learning, especially in image recognition tasks. VGG archi-
tectures, as shown in Fig. 5, are deep CNN architecture that 
uses blocks consisting of only 3 × 3 dimensional filters and an 
increasing number of convolutional layers [52]. Also, to reduce 
the size of the resulting activation maps, the size is reduced by 
half by interspersing the maximum pooling blocks between the 
convolutional ones. Lastly, a classification block consists of 
two dense layers, each with 4096 neurons and the output layer 
with 1000 neurons. In VGG, the suffixes 16 and 19 indicate 
each network’s respective number of weighted layers.

ResNet Architectures

Conversely, ResNet architectures gained prominence primar-
ily due to the introduction of residual connections. Among 
these architectures, ResNet50 has garnered substantial pop-
ularity, boasting a significantly greater number of layers 
than VGG, yet requiring a mere one-fifth of the memory, 
thanks to including the global average pooling layer. In 
contrast, the initial version of Inception architectures mani-
fests as a 22-layer deep CNN network comprising 5 million 
parameters. These architectures possess the ability to cap-
ture distinct features through the utilization of filters with 
dimensions of 1 × 1, 3 × 3, and 5 × 5. Integrating 1 × 1 filters 
serves the purpose of size reduction, effectively eliminat-
ing computational bottlenecks [52]. Xception architectures, 
on the other hand, act as derivatives of Inception modules, 
having undergone notable modifications by incorporating 
deeply separable folds. Furthermore, several renowned 

CNN architectures exist, including MobileNet, SqueezeNet, 
ResNet, and DenseNet. Each architecture harbors its own 
set of advantages and disadvantages, catering to different 
domains. For instance, architectures with fewer parameters 
and memory requirements are favored for real-time applica-
tions [15]. Conversely, deeper architectures are preferred for 
achieving heightened performance and facilitating diverse 
feature extractions, as depicted in Fig. 6 [53].

RegNet Architecture

ResNet and its variations have undoubtedly achieved remarkable 
outcomes across various computer vision tasks. Nonetheless, the 
architecture has a significant limitation: the absence of intermedi-
ate layer information communication within its building blocks. 
To overcome this drawback, a novel memory mechanism, known 
as a regulator module, is introduced to the ResNet [53].

This module extracts complementary features from the 
intermediate layers and facilitates feedback into the ResNet 
architecture. The regulator module effectively captures 
spatiotemporal information by incorporating convolutional 
recurrent neural networks, such as long short-term memo-
ries (LSTMs) or convolutional gated recurrent units (GRUs). 
This integration culminates in the birth of the regulated 
residual network (RegNet), which seamlessly integrates 
into any ResNet architecture. Experimental investigations 
conducted on three image classification datasets unequivo-
cally demonstrate the superior performance of the RegNet 
architecture. Compared to the standard ResNet, the squeeze-
and-excitation ResNet, and other state-of-the-art architec-
tures [53], the RegNet exhibits remarkable capabilities, as 
depicted in Fig. 6.

Fig. 6  ResNet and RegNet architecture and visualization of feature maps
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ConvNeXt Architecture

The ConvNeXt architecture is a CNN architecture designed 
with visual recognition tasks in mind. Its primary focus is 
improving recognition accuracy, reducing computational 
costs, and increasing parallelism. The architecture employs a 
hybrid module that combines depthwise and group convolu-
tions to achieve these goals. This hybrid module replaces the 
traditional stacked convolutional layers in other CNN archi-
tectures. ConvNeXt architecture can increase recognition 
accuracy while simultaneously reducing the computational 
cost of the model. The architecture also utilizes channel 
shuffle operations to increase the parallelism of the model. 
These operations allow the architecture to shuffle feature 
maps across channels, reducing the correlation between fea-
ture maps. This reduced correlation enables the architecture 
to parallelize more efficiently, resulting in faster and more 
accurate predictions. ConvNeXt has achieved state-of-the-art 
performance on several recognition benchmarks, including 
ImageNet classification, COCO detection, and ADE20K 
segmentation block designs comparison for a ResNet and 
a ConvNeXt presented in Fig. 7 [54]. This success is partly 
attributed to the architecture’s innovative design paradigm 

and hybrid module, enhancing recognition accuracy, reduc-
ing computational costs, and increasing parallelism [54].

DenseNet Architecture

DenseNet, an acronym for dense convolutional network, 
marks a groundbreaking development in the deep learning 
landscape, particularly in image classification. Its unique 
approach involves directly connecting every layer to all sub-
sequent layers in a feed-forward fashion, setting it apart from 
conventional architectures. Such dense connections enhance 
feature recycling, reduce the overall parameter count, and 
bolster the information transmission across the network. 
These attributes enable DenseNet to achieve outstanding 
efficiency and precision across diverse image recognition 
tasks, cementing its role as a crucial technology in the field 
of computer vision. Additionally, DenseNets significantly 
reduces the number of parameters, thus enhancing com-
putational efficiency. Extensive evaluations are conducted 
on four demanding object recognition benchmarks, namely 
CIFAR-10, CIFAR-100, SVHN, and ImageNet, to assess 
the efficacy of the DenseNet architecture. The results dem-
onstrate substantial improvements over the state-of-the-art 
methods across most of these benchmarks while demanding 
fewer computational resources to achieve exceptional per-
formance shown in Fig. 8 [50].

Transformers Architectures

Transformers are a revolutionary deep learning method that 
has significantly impacted various fields, including natu-
ral language processing (NLP) and computer vision. They 
are neural network models designed to process sequential 
data by leveraging attention mechanisms. In healthcare, 
transformers have been applied to medical image analysis, 
electronic health records, and disease outcome prediction, 
showcasing their potential to extract meaningful insights 
from complex healthcare data. Vision transformers (ViTs) 
adapt the classical transformer architecture, making them 
powerful models for computer vision tasks. By emulating 
the structure and functionality of the human brain, trans-
formers have revolutionized artificial intelligence by enhanc-
ing the accuracy and performance of various applications, 
albeit demanding substantial computational resources [55].

Fig. 7  Block designs for a ResNet and a ConvNeXt

Fig. 8  A deep DenseNet architecture that is composed of three dense blocks
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The vision transformer (ViT) has been applied to vari-
ous healthcare contexts [56]. The latest developments in 
machine learning, including deep learning, provide a great 
opportunity to improve patient outcomes, reduce socioeco-
nomic disparities, and enable early indication and detection 
of diseases in healthcare [57]. As a key component of deep 
learning, transformers have the potential to contribute to 
these advancements due to their ability to capture long-range 
dependencies and contextual information, making them suit-
able for analyzing complex healthcare data [11].

Dataset Preparation

Data Collection

This research was carried out jointly in the Department of 
Oral and Maxillofacial Radiology, Faculty of Dentistry, 
Erciyes University, and the Department of Computer Engi-
neering, Engineering Faculty, Erciyes University, with the 
approval of the Erciyes University Ethics Committee. A 
total of 14,811 panoramic images of six implant brands were 
obtained from the Department of Oral and Maxillofacial 
Radiology, Faculty of Dentistry, Erciyes University. Ethi-
cal approval of the study was obtained from Erciyes Uni-
versity Ethics Committee number 2021/234 and followed 
by institutional guidelines. The archives of the Department 
of Oral and Maxillofacial Surgery, Faculty of Dentistry, 
Erciyes University were scanned to create a data pool from 
panoramic images. The file numbers of the patients who 
underwent implant surgery and the implant information were 
obtained. The hospital’s file records and patient informa-
tion system (MEDDATA) contained information about the 

implant’s brand, diameter, and bone or tissue level placed on 
the patient. Then, the panoramic radiographs taken routinely 
after the implant surgery of the patients in the faculty were 
accessed using the patient information system.

These radiographs were archived in JPEG format accord-
ing to file numbers, creating a data pool. By creating sepa-
rate sub-folders for each brand in the data pool, the status 
of the implant’s bone or tissue level and its diameters were 
filed separately, and the data pool was created. The informa-
tion obtained in the data pool was evaluated in three main 
parameters: the patient’s implant brand, the tissue or bone 
level information, and the implant’s diameter. The collected 
data were classified, and radiographs of implants that did 
not match the archive information or were inaccurate were 
removed from the data pool. Similarly, radiographs unsuit-
able for radio diagnostics were excluded from the collection. 
Information on six different implant brands is presented in 
Fig. 9 in detail. Images with serious noise, blur, distortion, 
and other conditions preventing the expert from marking 
will be removed from the dataset.

Radiographs with unidentifiable implants were removed, 
leaving 1258 implant images, rich in detail regarding brand, 
system, and diameter, for the project. These images under-
went necessary preprocessing to prepare them for deep 
learning models. To achieve an even distribution across 
brands and assess the models’ ability to generalize, the 
dataset was segmented into training, validation, and test-
ing groups, as illustrated in Fig. 9. Some sample images 
from the dataset containing images of six implant brands are 
depicted in Fig. 10 [35]. Subsequently, these images were 
sorted into folders and uploaded to a labeling interface for 
thorough examination.

Fig. 9  Implant brands, systems, and diameters defined in the study
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Data Annotations

Implants were labeled according to archival data directly 
on the actual image, without taking cross-sections from the 
panoramic radiographs in a single patient’s mouth, where 
images also included different implant brands. The tagging 
interface developed by the researchers was used, and all data 
was stored in the cloud system of the same interface to pre-
vent data loss. While labeling, the labeling rules in similar 
studies in the literature were followed, and the label was 
chosen as a rectangle [58]. With the help of this method, the 
screw part of the implant was entirely inside this rectangle, 
and the rectangle was kept as narrow as possible. In the 
labeling interface, the label was created from 2 points as a 
starting and ending rectangle, and each brand’s name, the 
tissue/bone level options, and its diameter were determined. 
All this information was registered to the system interface, 
and the labels were labeled per the archive data from these 
records.

Data Preprocessing

In the preparation of the dataset for deep learning model train-
ing, specialist physicians played a critical role by meticulously 
reviewing and approving the labels for the implant systems, 
ensuring the annotations’ accuracy and reliability. Following 
this expert verification, the dataset underwent a comprehen-
sive preprocessing stage, where image processing techniques 
were employed to enhance image quality and remove noise. 
This step was vital for refining the dataset, utilizing methods 
such as noise filtering and contrast enhancement to eliminate 
irrelevant details and improve the visibility of crucial features.

Table 1 illustrates the distribution of 1258 implant images 
across six brands for deep learning model training, includ-
ing Straumann (106), Bilimplant (121), Impliance (236), 
Dyna (248), Megagen (253), and Dentium (294). As part of 
data preprocessing, images are resized to 224 × 224 pixels 
to standardize input size. Further preprocessing includes 
normalization to adjust pixel values for computational effi-
ciency and augmentation to introduce variabilities, such as 
rotations and flips. These steps are crucial for preparing the 
dataset, ensuring models are trained on consistent, diverse 
data for accurate implant brand recognition

Data Augmentation

In this study, we implemented various data augmentation 
techniques to improve the performance and generalization 
ability of deep learning models that require a large amount 
of data. We utilized the most recent data augmentation meth-
ods available in the PyTorch library. The data augmentation 
techniques used in this study are listed in Table 2 and were 
applied during the training process rather than before training.

Fig. 10  The study used six 
different samples of implant 
brands in the dataset [35]

Table 1  Implant brands and 
numbers used in this study

Implant brand Total

Straumann 106
Bilimplant 121
Implance 236
Dyna 248
Megagen 253
Dentium 294
Total images 1258
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One of the main benefits of using data augmentation dur-
ing training is that it allows each image to be used only once 
with a specific probability, which reduces the training time 
for the model. To ensure a fair comparison, we used default 
values rather than optimizing hyperparameters, and exam-
ples of augmented images can be seen in Fig. 11 [35].

Proposed Decision Support System

In this study, we proposed a deep learning-based diagnostic 
system for the autonomous identification of implant brands, 
incorporating a combination of 18 current CNN models and 
10 vision transformer models that have gained significant 
popularity in recent years. As illustrated in Fig. 12 [35], the 
methodology encompasses the creation of a novel dataset 
meticulously labeled by experts (at least four dental special-
ists in the field), training deep learning models, applying 
transfer learning (utilizing pre-trained ImageNet weights), 
and employing data augmentation techniques. This compre-
hensive approach aims to test and identify the most optimal 
model for effective and accurate implant brand recognition.

The dataset at our disposal was partitioned into train-
ing, validation, and test subsets, with the former dedicated 
to training CNN architectures. Additionally, we delved into 
transfer learning, leveraging pre-trained models from various 

datasets to enhance our approach. Upon completing the train-
ing phase, we pinpointed the most effective network through 
its test set performance, incorporating insights from domain-
specific medical experts. Classification accuracy, the ratio of 
correctly identified cases, was our principal metric for gaug-
ing performance. We also utilized secondary metrics, includ-
ing examining features detected by the CNN within pertinent 
image areas. We calculated several key metrics to assess the 
classifier’s efficacy on the test dataset: accuracy, precision, 
recall, F1-score, and the area under the ROC curve, using a 
confusion matrix. These evaluations considered the congru-
ence between the actual labels of positive dental implants 
and the classifier’s predictions, providing a comprehensive 
overview of the system’s diagnostic capabilities.

Experiments and Discussion

Implementation Details

The study included specific system specifications, including 
Ubuntu 20.04 as the operating system. The processing power 
relied on an Intel Core i9 9900X processor, featuring ten 
cores and a clock speed of 3.50 GHz. The plan had 32 GB 
of DDR4 RAM to ensure optimal performance. Addition-
ally, an RTX 2080TI graphics card, with 11 GB of GDDR6 
memory and 4352 CUDA cores, was employed. The study 
used various software components, including Python 3.8, 
PyTorch, NVIDIA CUDA Toolkit 11.4, and NVIDIA GPU-
Accelerated Library (cuDNN) version 8.2. Several perfor-
mance metrics, such as classification accuracy, a confusion 
matrix, and a classification report, were employed to assess 
the model's efficacy. Classification accuracy was calculated 

Table 2  Some hyper-parameters and their values employed for data 
augmentation in this research

Hyper-parameter Value Hyper-parameter Value

Hue (fraction) 0.015 Scale (+ / − gain) 0.5
Rotation (+ / − degrees) 0.1 Flip (up-down, right-

left, probability)
0.5

Fig. 11  Samples of techniques 
used on implant system dataset 
augmentation [35]
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by dividing the number of correct predictions by the total 
number of input samples. However, it is crucial to note that 
relying solely on overall classification accuracy may create 
a misleading impression of high accuracy, particularly when 
misclassifying samples from the minor class is more prob-
able. Consequently, this study incorporated additional evalu-
ation metrics to scrutinize the accuracy of the implemented 
classifier thoroughly.

Transfer Learning (TL)

When tackling the task of training a CNN model for medi-
cal image analysis, a significant hurdle arises in acquiring 
large-scale labeled datasets. However, this limitation can 
be overcome by employing transfer learning (TL), which 
capitalizes on the learned parameters (i.e., weights) of a 
well-established CNN model trained on a substantial data-
set like ImageNet. This can be accomplished by fine-tuning 

or freezing the convolutional layers of the pre-trained CNN 
model and initiating the training of the fully connected layers 
from scratch, utilizing the medical dataset. The essence of 
transfer learning lies in understanding that fundamental fea-
tures, such as straight lines and curves that form the basis of 
images, possess universal applicability across diverse image 
analysis tasks. Consequently, the transferred weights serve 
as a dependable set of features, diminishing the reliance on 
extensive datasets while minimizing training time and mem-
ory requirements. Two distinct approaches exist within trans-
fer learning: feature extraction and fine-tuning [59].

Evaluation Metrics

To ensure accurate and reliable results, the classification 
accuracy report must encompass several essential metrics, 
including precision, recall, F1, and support scores for each 
class within the model. These metrics play a crucial role in 

Fig. 12  Proposed decision support system architecture [35]
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assessing the accuracy and effectiveness of the classifier. 
Precision, in particular, is a key indicator of a classifier’s 
accuracy. It calculates the ratio of true positives to the total 
number of true positives and false positives. By referring 
to Eq. 11, one can determine the percentage of correctly 
classified positive cases out of all the positive cases present.

The measure of recall serves as an indicator of the clas-
sifier’s completeness and capacity to identify all positive 
instances correctly. It quantifies the ratio of true positives 
to the total number of true positives and false negatives for 
each class, as demonstrated in Eq. 12. This metric provides 
insights into the classifier’s effectiveness in capturing and 
retrieving all relevant positive instances within the dataset.

The F1-score, ranging from 0.0 to 1.0, represents a 
weighted harmonic average of precision and recall. It com-
prehensively assesses a classifier’s performance, consider-
ing its ability to correctly identify positive instances (preci-
sion) and its completeness in capturing all positive instances 
(recall). The F1-scores are typically lower than other accu-
racy measures as they incorporate precision and recall. 
Instead of relying solely on overall accuracy, the weighted 
average of F1-scores is often employed to evaluate the effec-
tiveness of classifier models, as depicted in Eq. 13. This 
approach offers a more robust and nuanced evaluation of the 
classifier’s performance, considering the trade-off between 
precision and recall.

The following four values represent this:

– True positive (TP): When an element is predicted to be 
positive, and it is.

– False positive (FP): An element is expected to be positive 
but not.

– True negative (TN): An element is expected to be nega-
tive, and it is.

– False negative (FN): An element is expected to be nega-
tive, but it is positive.

(11)Precision = TP∕(TP + FP)

(12)Recall = TP∕(TP + FN)

(13)
F1Score = 2 ∗ (Recall ∗ Precision)∕(Recall + Precision)

Evaluating Training Strategy

In this study, the effectiveness of our training approach was 
assessed through the use of the stochastic gradient descent 
(SGD) optimizer, with the inclusion of defined parameters. 
These parameters included a learning rate (lr) of 0.001, a 
momentum of 0.9, and a learning rate scheduler comprising 
a step size of 7 and a gamma value of 0.1. The SGD opti-
mizer is widely employed in deep learning models, particularly 
for image classification tasks. The learning rate governs the 
extent of parameter updates during training, while momentum 
aids in avoiding local minima and guiding the model toward 
the global minimum. A learning rate scheduler was imple-
mented to enhance model performance, adjusting the learn-
ing rate throughout training. A step size of 7 was selected, 
indicating that the learning rate would decrease by 0.1 every 
seven epochs. This approach facilitated quicker convergence 
and mitigated overfitting. Table 2 highlights the various data 
augmentation techniques employed to augment the training 
data and alleviate overfitting. The model was trained for 300 
epochs, utilizing cross-entropy loss as the objective function. 
The performance of our training strategy was assessed using 
the same metrics as outlined in the “Evaluation Metrics” sec-
tion, including accuracy, precision, recall, and F1-score.

RegNet Architectures

The performance metrics of fine-tuned RegNet architec-
tures, both before and after applying data augmentation, 
are presented in Table 3. The two models under evaluation 
are regnet_y_32gf and regnet_y_16gf. These models were 
assessed using various performance metrics, including accu-
racy, precision, recall, and F1-score, which provide insights 
into their ability to classify images accurately. Before data 
augmentation, regnet_y_32gf achieved an accuracy of 0.904, 
precision of 0.896, recall of 0.89, and an F1-score of 0.888. 
After incorporating data augmentation, the accuracy improved 
to 0.936, precision to 0.928, recall to 0.928, and F1-score to 
0.928. Similarly, regnet_y_16gf achieved an accuracy of 
0.872, precision of 0.872, recall of 0.844, and an F1-score of 
0.840 before data augmentation. Following data augmenta-
tion, the accuracy increased to 0.924, precision to 0.93, recall 
to 0.927, and F1-score to 0.934. These results highlight the 

Table 3  Performance metrics 
of fine-tuning of RegNet 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

regnet_y_32gf 0.904 0.896 0.89 0.888 0.936 0.928 0.928 0.928
regnet_y_16gf 0.872 0.872 0.844 0.840 0.934 0.924 0.93 0.927
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benefits of data augmentation for both models, as evidenced 
by the accuracy, precision, recall, and F1-score improve-
ments. Furthermore, the extent of enhancement in F1-score 
accuracy can be quantified. For RegNet_y_32gf, the average 
improvement is 4.00%, while for RegNet_y_16gf, it reaches 
8.70%. This notable increase underscores the substantial per-
formance boost achieved through data augmentation. These 
findings affirm the value of data augmentation as a technique 
to enhance the performance of deep learning models in image 
classification tasks. It is important to note that the impact of 
data augmentation on performance was more pronounced for 
regnet_y_32gf compared to regnet_y_16gf.

DenseNet Architectures

The performance of the DenseNet-121 architecture, as 
depicted in Table 4, reveals a remarkable enhancement 
in the model’s effectiveness through data augmentation. 
This is evident from the substantial increase in accuracy, 
amounting to 7.8%. Moreover, there is a notable improve-
ment in precision, which rose from 0.832 to 0.934, repre-
senting an increase of 10.2%. Similarly, the recall increased 
from 0.832 to 0.916, signifying a noteworthy improvement 
of 8.4%. Additionally, the F1-score exhibited a significant 
increase, rising from 0.828 to 0.922, reflecting an improve-
ment of 9.4%. These results underline the considerable posi-
tive impact of data augmentation on the performance of the 
DenseNet-121 architecture.

VGG Architectures

The performance metrics of VGG models are presented in 
Table 5, showcasing the impact of applying data augmen-
tation. Notably, VGG16 exhibited notable enhancements 
across multiple metrics, with accuracy increasing to 0.926, 
precision to 0.932, recall to 0.905, and F1-score to 0.918. 
Similarly, VGG19 demonstrated improvements in accuracy 
(0.924), precision (0.92), recall (0.91), and F1-score (0.915). 

These findings substantiate the significant role of data aug-
mentation in enhancing the performance of deep learning 
models when tackling image classification tasks.

Efficientnet Architectures

The performance metrics of fine-tuning Efficientnet archi-
tectures, both before and after incorporating data augmen-
tation, are presented in Table 6. Before data augmentation, 
Efficientnet_b4 exhibited an accuracy of 0.882 and an 
F1-score of 0.860. However, after integrating data aug-
mentation techniques, these metrics experienced signifi-
cant improvement, with the accuracy rising to 0.924 and 
the F1-score increasing to 0.916. Similarly, Efficientnet_b0 
showcased an accuracy of 0.880 and an F1-score of 0.858 
before data augmentation. Nevertheless, after the implemen-
tation of data augmentation, these metrics were enhanced, 
resulting in an accuracy of 0.886 and an F1-score of 0.874. 
Consequently, the performance of both Efficientnet models 
was substantially improved through data augmentation.

ResNet Architectures

Based on the performance metrics of fine-tuning of ResNet 
Architectures shown in Table  7, we can observe that 
ResNet50, wide_resnet101_2, and wide_resnet50_2 have 
good accuracy scores of 0.894, 0.874, and 0.888, respec-
tively, after applying data augmentation. These architec-
tures also show improvements in other metrics such as pre-
cision, recall, and F1-score. On the other hand, ResNet18 
and ResNet34 have lower accuracy scores but still show 
improvements in the precision, recall, and F1-scores after 
applying data augmentation. ResNet101 has a higher accu-
racy score than ResNet18 and ResNet34 but a lower score 
than ResNet50 and the wide ResNet models. Therefore, 
based on these results, ResNet50, wide_resnet101_2, and 
wide_resnet50_2 could be good choices for this dental 
implant brand classification task.

Table 4  Performance metrics 
of fine-tuning of DenseNet 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Densenet-121 0.854 0.832 0.832 0.828 0.932 0.934 0.916 0.922

Table 5  Performance metrics 
of fine-tuning of VGG 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

VGG16 0.899 0.897 0.880 0.888 0.926 0.932 0.905 0.918
VGG19 0.894 0.888 0.868 0.878 0.924 0.92 0.91 0.915
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ConvNext Architectures

The impact of data augmentation on the performance of both 
ConvNeXt architectures is evident in Table 8. Notably, data 
augmentation played a pivotal role in improving the accu-
racy of the large model from 0.788 to 0.878, while the base 
model’s accuracy increased from 0.745 to 0.856. Moreover, 
both models observed significant enhancements across vari-
ous metrics, including precision, recall, and F1-score. Spe-
cifically, the large model’s precision, recall, and F1-score 
experienced substantial improvements, rising from 0.776, 
0.732, and 0.724 to 0.884, 0.842, and 0.85, respectively. 
Similarly, the base model showcased noteworthy enhance-
ments in precision, recall, and F1-score, with values pro-
gressing from 0.743, 0.712, and 0.719 to 0.854, 0.818, and 
0.826, respectively. These findings indicate that data aug-
mentation has significantly bolstered the performance of 
both ConvNeXt architectures across all evaluated metrics, 
highlighting its effectiveness in improving the models’ clas-
sification capabilities.

MobileNet Architectures

Table 9 presents the performance metrics of two MobileNet 
architectures before and after applying data augmenta-
tion. Both models have demonstrated improvement in 
their performance after applying data augmentation. The 
MobileNet_v2 architecture achieved an accuracy score of 
0.8 before data augmentation, which significantly increased 
to 0.844 after data augmentation. The MobileNet_v2 
architecture increased precision, recall, and F1-score from 
0.76, 0.752, and 0.748 to 0.834, 0.816, and 0.824, respec-
tively. Overall, the findings suggest that applying data 

augmentation has positively impacted the performance of 
both MobileNet architectures.

Transformers Architectures

The performance metrics of several transformer architec-
tures before and after applying data augmentation are pre-
sented in Table 10, including accuracy, precision, recall, 
and F1-score. The results indicate that all models experi-
enced performance improvements after data augmentation. 
The maxvit_large and maxvit_small models demonstrated 
a notable increase in accuracy score, rising from 0.839 and 
0.833 before data augmentation to 0.930 and 0.926 after. 
Conversely, the accuracy of the swin_large and swin_small 
models improved from 0.823 to 0.915 and from 0.785 
to 0.872, respectively, after data augmentation. For the 
vit_b_16 model, the accuracy score improved from 0.819 
to 0.910 after data augmentation, while the vit_b_32 model 
improved from 0.785 to 0.872. The vit_l_32 model improved 
from 0.771 to 0.856 before and after data augmentation. In 
conclusion, data augmentation enhanced performance for 
the swin_large, swin_small, vit_b_16, and vit_b_32 models, 
while the swin_s and vit_l_32 models did not experience 
significant improvements.

Discussion

Performance metrics from Table 3 to 9 reveal that data aug-
mentation significantly enhances the accuracy, precision, 
recall, and F1-score across many models. This technique, 
which enlarges and diversifies the training dataset, helps 
mitigate overfitting and boosts overall model efficacy. 

Table 6  Performance metrics 
of fine-tuning of Efficientnet 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Efficientnet_b4 0.882 0.88 0.86 0.860 0.924 0.924 0.908 0.916
Efficientnet_b0 0.88 0.872 0.856 0.858 0.88 0.886 0.7096 0.874

Table 7  Performance metrics 
of fine-tuning of ResNet 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

ResNet50 0.83 0.82 0.802 0.802 0.894 0.886 0.886 0.884
wide_resnet101_2 0.822 0.814 0.796 0.794 0.874 0.89 0.874 0.88
wide_resnet50_2 0.836 0.82 0.818 0.814 0.888 0.888 0.868 0.876
ResNet101 0.808 0.798 0.782 0.786 0.868 0.866 0.86 0.864
ResNet34 0.782 0.78 0.75 0.75 0.844 0.836 0.824 0.824
ResNet18 0.748 0.724 0.708 0.698 0.82 0.808 0.786 0.79
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ConvNeXt architectures stood out in classifying dental 
implant systems, particularly benefiting from data aug-
mentation. The ConvNeXt_small model led the pack with 

a remarkable accuracy of 94.2%, precision at 95.6%, recall 
of 93.3%, and an F1-score of 94.2%, closely followed by 
the ConvNeXt_tiny variant. RegNet models, especially 

Table 8  Performance metrics 
of fine-tuning of ConvNeXt 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

ConvNeXt (tiny) 0.847 0.853 0.835 0.842 0.942 0.948 0.929 0.936
ConvNeXt (small) 0.847 0.860 0.839 0.847 0.942 0.956 0.933 0.942
ConvNeXt (large) 0.788 0.776 0.732 0.724 0.878 0.884 0.842 0.850
ConvNeXt (base) 0.745 0.743 0.712 0.719 0.856 0.854 0.818 0.826

Table 9  Performance metrics 
of fine-tuning of MobileNet 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MobileNet_v2 0.8 0.76 0.752 0.748 0.844 0.834 0.816 0.824

Table 10  Performance metrics 
of fine-tuning of transformers 
architectures

Without applying data augmentation With applying data augmentation

Model\average Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

swin_large 0.823 0.830 0.816 0.822 0.915 0.922 0.906 0.913
swin_small 0.785 0.777 0.767 0.770 0.872 0.863 0.853 0.856
vit_b_16 0.819 0.839 0.809 0.818 0.910 0.9327 0.8994 0.909
vit_b_32 0.785 0.782 0.777 0.778 0.872 0.8693 0.8638 0.864
vit_l_16 0.829 0.844 0.811 0.822 0.920 0.938 0.901 0.913
vit_l_32 0.771 0.763 0.766 0.764 0.856 0.848 0.851 0.848
maxvit_tiny 0.814 0.824 0.799 0.807 0.904 0.916 0.888 0.897
maxvit_small 0.833 0.829 0.821 0.823 0.926 0.921 0.913 0.915
maxvit_base 0.814 0.815 0.813 0.812 0.904 0.906 0.903 0.902
maxvit_large 0.839 0.842 0.837 0.839 0.930 0.935 0.93 0.932

Fig. 13  Confusion matrices of ConvNeXt-small and RegNetY32 models, achieving optimal results for dental implant identification
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RegNet_y_32gf alongside ConvNeXt_small, showed sig-
nificant improvement across all metrics with data augmen-
tation. Similarly, DenseNet-121 and VGG models expe-
rienced notable performance boosts, with DenseNet-121 
showing a significant jump in accuracy from 85.4 to 93.2%. 
The EfficientNet_b4 model also enhanced performance 
with data augmentation over the EfficientNet_b0 model. 

In contrast, ResNet18 lagged, indicating better options exist 
for classifying dental implant systems. Summarizing, Con-
vNeXt and RegNet architectures emerge as the top choices 
for this classification task, offering the highest accuracy, 
precision, recall, and F1-score. Figure 13 presents the con-
fusion matrix for the model with the highest accuracy from 
each architecture.

Fig. 14  Examples of false negatives and false positives. Bilimplant, Dentium, Dyna, Implance, Megagen; Straumann
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These models demonstrated significant performance 
improvements with data augmentation, highlighting the 
effectiveness of this technique in enhancing the performance 
of deep learning models. We demonstrated the effectiveness 
of fine-tuning and data augmentation techniques on vari-
ous architectures. ConvNeXt models perform the highest in 
classifying six dental implants based on panoramic X-ray 
images. The ConvNeXt-small algorithm had the best clas-
sification accuracy and F1-score performance. The model 
resulted in the impeccable classification of Bilimplant and 
Implance classes, achieving a classification accuracy of 
100%. Moreover, Strauman exhibited an approximate accu-
racy rate of 95%, Dentium manifested a precision of 93%, 
Megagen demonstrated a proficiency of 92%, and Dyna 
registered an accuracy rate of 88%. The graphical represen-
tation of these outcomes employs the x-axis for predicted 
labels and the y-axis for true labels within the confusion 
matrices. Notably, the matrix rows delineate instances of 
false negatives, while the columns delineate occurrences of 
false positives, providing a comprehensive visualization of 
the model’s classification performance, as shown in Fig. 14.

Examining the confusion matrix depicted in Fig. 13 and 
evaluating the detections of the ConvNeXt-small model on 
the test set in Fig. 14, it is apparent that the model accurately 
identifies the Bilimplant and Implance classes. However, there 
are more incorrect detections observed in other classes. This 
phenomenon can be attributed to the fact that deep learning 
algorithms typically exhibit greater efficacy with larger data-
sets. Despite the dataset containing a limited number of train-
ing images for each implant brand class, totaling 1258 images, 
the model may encounter difficulty in distinguishing between 
similar implant brands. As illustrated in Fig. 14, it is evident 
that classes which are often closely related, such as Dyna and 
Dentium, are misidentified. Working with larger datasets and 
utilizing finely-tuned models, along with employing differ-
ent data augmentation techniques, can lead to more favorable 
outcomes in the effective detection of implant classes. While 
these models achieve high accuracy with a small-scale dataset, 
it is evident that employing more effective techniques and 
larger datasets can result in higher levels of success. There-
fore, we hope to achieve more accurate results in identifying 
implant brands in the future by utilizing better-optimized, 
more advanced, and effective models.

Limitations and Future Work

This study encountered several limitations that warrant 
acknowledgment and consideration. Firstly, the retrospective 
nature of the investigation introduced a potential spectrum 
bias, although all dental radiographic images were sourced 
from the same hospital. This inherent limitation implies that 
the study may not fully represent the broader population or 
diverse clinical scenarios. Furthermore, a notable area for 

enhancement pertains to the automated deep-learning algo-
rithm employed in this study. It did not undertake an analy-
sis or evaluation of periapical radiographic images; conse-
quently, these crucial images were excluded from the scope 
of the investigation. This omission represents a significant 
limitation as periapical images are recognized in previous 
research as being instrumental for accuracy in assessing api-
cal and periodontal conditions. The exclusion of periapical 
radiographs might have implications on the comprehen-
siveness of the findings, and future studies should consider 
incorporating such images to ensure a more comprehensive 
and representative evaluation of dental conditions. In sum-
mary, while this study provides valuable insights, the men-
tioned limitations underscore the need for cautious interpre-
tation of the results. Future research should address these 
constraints and adopt a more inclusive approach to cover a 
broader range of dental imaging data, including periapical 
radiographs, to enhance the overall robustness and generaliz-
ability of the findings.

Conclusion

In this study, we highlighted the impressive capability of 
various deep learning models to accurately classify six dif-
ferent dental implant systems using panoramic X-ray images. 
These models showcased their potential for deep learning, 
even in the face of diverse conditions encountered during 
the implant treatment phase. By employing transfer learning 
and fine-tuning techniques on pre-trained deep CNN archi-
tectures, we achieved high accuracy in image classification, 
overcoming the challenges posed by a relatively modest and 
imbalanced dataset. The outcomes of this study provide a 
valuable reference point for future research endeavors in 
dental implant identification. Notably, the ConvNeXt_small 
model exhibited exceptional proficiency in classifying dental 
implant brands, effectively addressing issues associated with 
dataset imbalances. The deep learning architectures dem-
onstrated classification accuracy on panoramic radiographs 
comparable to board-certified periodontists. These advance-
ments hold significant potential for dental professionals 
in their clinical practice, offering an efficient and precise 
method for classifying diverse dental implant systems. The 
study's findings underscore the applicability and promise 
of deep learning techniques in the field, paving the way for 
enhanced diagnostic capabilities in dental implantology.
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