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Abstract
Federated learning, an innovative artificial intelligence training method, offers a secure solution for institutions to collabo-
ratively develop models without sharing raw data. This approach offers immense promise and is particularly advantageous 
for domains dealing with sensitive information, such as patient data. However, when confronted with a distributed data 
environment, challenges arise due to data paucity or inherent heterogeneity, potentially impacting the performance of feder-
ated learning models. Hence, scrutinizing the efficacy of this method in such intricate settings is indispensable. To address 
this, we harnessed pathological image datasets of endometrial cancer from four hospitals for training and evaluating the 
performance of a federated learning model and compared it with a centralized learning model. With optimal processing 
techniques (data augmentation, color normalization, and adaptive optimizer), federated learning exhibited lower precision 
but higher recall and Dice similarity coefficient (DSC) than centralized learning. Hence, considering the critical importance 
of recall in the context of medical image processing, federated learning is demonstrated as a viable and applicable approach 
in this field, offering advantages in terms of both performance and data security.
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Introduction

Artificial intelligence is actively being used in various 
industrial environments [1–3] and various medical fields, 
including auxiliary diagnosis and health care [4]. Due to 
privacy policies, the sharing and collection of medical data 

required for multi-institutional artificial intelligence learn-
ing with/from other institutions is restricted [5]. However, 
training an artificial intelligence model with a single hos-
pital dataset can result in overfitting or biased result [6]. 
Therefore, it is crucial to find a way to train artificial intelli-
gence models without collecting data from various hospitals 
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[7, 8]. Federated learning is an emerging training method 
that resolves privacy and security concerns of patient data 
because it can be trained without collecting raw data from 
each hospital [9].

Lutnick et al. [10] used federated learning to segment 
pathological images associated with tissue fibrosis and 
tubular atrophy and compared its performance with that of 
centralized learning models; neither client model showed a 
statistically significant difference. Adnan et al. [11] divided 
large pathological images into patches, and multiple instance 
learning (MIL) [12] was applied to classify a bag of patches. 
In addition, they compared the performance of federated 
learning models trained with different numbers of clients to 
see how it affected federated learning. They found that fewer 
clients resulted better the performance, and the least-client 
model differed slightly from centralized learning. Terrail 
et al. [13] applied federated learning to train pathological 
whole slide images (WSIs) of triple-negative breast cancer 
(TNBC), a relatively rare data type, from two clusters and 
showed that federated learning outperformed each cluster 
model. Cetinkaya et al. [14] used data augmentation tech-
niques to address performance degradation caused by heter-
ogeneity in medical image data, and federated learning with 
data augmentation improved the performance compared to 
that without data augmentation.

However, learning the heterogeneous distribution and 
diversity of data held by clients is difficult for federated 
learning, and simply using the weight average of each client 

model can degrade the performance of the artificial intel-
ligence model [15]. Pathological images are also complex, 
containing not only various histologic patterns and cell types 
but also heterogeneous staining patterns for each hospital 
[16, 17]. Therefore, when using federated learning with 
pathological images, it is necessary to determine whether the 
model’s performance is degraded and to what extent. In this 
study, we compared the performances of models for each 
training method in pathological image segmentation tasks 
to focus on the effectiveness of federated learning compared 
to centralized learning. We also aimed to demonstrate the 
features of the federated learning model using pathological 
images.

Method

This comparative study utilized hematoxylin and eosin 
(H&E)-stained pathological whole slide image (WSI) of 
endometrial cancer from four hospitals. All the pathology 
slides were acquired from curettage or hysterectomy speci-
men and were scanned using PANNORAMIC® 250 Flash 
III scanner (3DHistech) at 40 × resolution. To adhere to the 
consistent amount of input data for each client model, the 
training dataset for each hospital was standardized to 66 
WSIs per hospital. The number of patients included from 
each hospital is as follows: Sinchon Severance Hospital 
(13 patients), Gangnam Severance Hospital (15 patients), 

Fig. 1  Representative endome-
trial cancer whole slide image 
(WSI) (a) and ground-truth 
(gray shaded area) overlaid with 
WSI data (b). The ground-truth 
area is indicated by arrows 
(black)
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and Gachon University Gil Hospital (38 patients). The 
study was approved by the Institutional Review Boards 
of each hospital (4–2016-0809, 3–2016-0236, and 
GBIRB2022-236).

The area suspected to contain cancer lesion were labeled 
by a pathologist irrespective of data source and the area was 
regarded as ground-truth of the WSI data (Fig. 1).

We used two labels, one for the pathologist-labeled cancer 
area and the other for the background which mostly include 
non-cancerous tissue. The quantity of WSI was increased 
from 66 to 198 for each hospital by applying horizontal and 
vertical flip augmentation techniques to the training data.

In anticipation of deploying the trained model in real-
world applications across diverse hospital settings, we per-
formed model validation by utilizing data from one of the 
four hospitals (Kangdong Sacred Heart Hospital) that were 
not part of the model training process. The validation dataset 
comprised 14 WSIs from six patients, ensuring its independ-
ence from the hospital utilized for model training. The origi-
nal input data size was 172,032 pixels in width with varying 
height from 250,000 to 420,000 pixels, encompassing 3 Red, 
Green, Blue (RGB) channels. Using the bi-cubic algorithm, 
each image was resized to 512 × 256 pixels before being used 
as input data. Furthermore, to address apprehensions regard-
ing the potential effects of variances in lesion size among 

hospital datasets on the federated learning model, we under-
took a validation of the distinctions in lesion size (Table 1).

The disparity in the sizes of cancer lesions in training 
data from three distinct hospitals did not exhibit statistically 
significant difference (p = 0.90).

The images from each hospital exhibited color distri-
bution heterogeneity from variations in the H&E slide 
preparation steps, encompassing factors such as fixation, 
dehydration, sectioning, staining, and the storage condi-
tions of H&E slides for digital scanning. Consequently. 
To address this issue, we employed vahadane [18] color 
normalization method (Fig. 2), which leverages structural 
properties, including sparseness and non-negativity within 
stained tissue samples, to establish structural color invari-
ance, a distinguishing characteristic not found in previous 
normalization methods.

Figure 3 depicts the overall structure of this study. Three 
of the four hospitals’ data (clients 1, 2, and 3: Sinchon 
Severance hospital, Gangnam Severance hospital, Gachon 
University Gil hospital) were utilized for model training. 
In federated learning, individual hospital datasets (clients 
1, 2, 3) were employed for training each respective client 
model, while integrated datasets from all hospitals were 
utilized for centralized learning. The fourth hospital’s data 
(client 4: Kangdong Sacred Heart Hospital) were used for 
validation and performance comparison of each model 
training method.

The experimental environment consisted of 40 Intel(R) 
Xeon(R) Silver 4210R CPUs, 1 NVIDIA A100 GPU, and 
128 GB memory capacity. Package versions used were 
Python 3.8.13, Tensorflow-GPU 2.7.4, CuDNN 7.6.5, 
cuda-toolkit 11.3.1.

Table 1  Comparison of cancer size ratio between each client dataset

Client 1 data Client 2 data Client 3 data p-value

Cancer size 
ratio

0.11 ± 0.10 0.11 ± 0.10 0.12 ± 0.09 p = 0.90

Fig. 2  Comparison of whole 
slide images before and after 
color normalization
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The segmentation model employed in this comparative 
study is the U-Net [19], a prominent deep learning archi-
tecture extensively employed for its effectiveness in image 
segmentation and medical image processing. U-Net [19] 
was originally developed with a primary focus on address-
ing segmentation tasks in the field of medical imaging. 
Additionally, we made a slight alteration to the original 
U-Net [19] model by using only two pooling steps in order 
to prevent the feature size of the extracted cell images 
from becoming excessively small. Furthermore, consid-
ering the heterogeneity observed among client’s datasets 
and mindful of the potential adverse effects of batch nor-
malization as indicated in Wang [20], we employ group 
normalization [21] as the normalization method.

The Adam optimizer [22] was used for the central-
ized learning and client model. Considering potential 
issues associated with applying FedAvg [23], which sim-
ply uses the average of weights among client models in 
non-convex scenarios due to data heterogeneity among 
clients, and taking note of the demonstrated performance 
improvements attributed to adaptive optimizers in feder-
ated learning, we introduced the FedYogi optimizer [24] 
for federated learning model. While sharing similarities 
with the Adam optimizer in terms of gradient handling, 
FedYogi [24] has recently exhibited superior perfor-
mance by mitigating dependency on the magnitudes of 
its recent gradient.

The batch size, number of epochs, and learning 
rates of the centralized learning model were set to 9, 
40, and 0.001, respectively, and the hyper-parameter 
of the federated learning model was set the same as for 
centralized learning.

We employed the two-sample t-test, Mann–Whitney U 
test to analyze the differences in the performance of the 
trained models. In addition, the Bland–Altman plot was used 
to measure the degree of performance difference between 
the two training methods.

Results

We have compared the performance metric scores (preci-
sion, recall, and Dice similarity coefficient) of the central-
ized learning model and federated learning model using 
FedYogi optimizer (Table 2).

Federated learning exhibited lower precision by 2.61% 
(p = 4.26e-04) and higher recall by 5.53% (p = 8.71e-03), 
higher Dice similarity coefficient (DSC) by 1.64% (p = 0.06) 
compared with centralized learning, with statistically signifi-
cant differences observed for precision and recall (p < 0.05) 
and marginal significance for DSC (p = 0.06).

Figure  4 presents predictions of validation data for 
the top-level outcomes of each learning method model, 
alongside the corresponding false-positive rate (FPR: 

Fig. 3  Overview of training 
and validation to compare each 
learning method. Federated 
learning (FL) comprises, a clint 
model for each individual hos-
pital dataset and an FL model 
that incorporates the weights 
from individual hospital client 
models. Meanwhile, centralized 
learning (CL) uses all data to 
train one model. The perfor-
mances of the differentially 
trained FL and CL models were 
compared using validation data

Table 2  Comparison of performance metrics between centralized and 
federated learning using FedYogi optimizer

DSC Dice similarity coefficient

Centralized learning Federated learning p-value

Precision 79.28 ± 4.90 76.32 ± 2.06 p < 0.05
Recall 74.12 ± 11.06 81.65 ± 10.39 p < 0.05
DSC 75.88 ± 4.83 78.51 ± 5.74 p = 0.06
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false-positive/actual negative) and false-negative rate (FNR: 
false-negative/actual positive) based on each area.

Furthermore, we compared the FPR and FNR for the 
validation data predictions of each learning method model 
(Table 3).

The FPR (p = 0.79) and FNR (p = 0.77) in the predictions 
between each learning method model exhibited no statisti-
cally significant differences (p > 0.05 for all).

Additionally, Fig. 5, which includes Bland–Altman plot 
and box plot, was used to visually represent the differences 
in mean and median values from the DSC perspective.

The subsequent results depict a comparative analysis 
of the effects of various techniques employed sequentially 

Fig. 4  Visual comparison of predicted area in validation dataset using centralized or federated learning with ground truth (green: true positive; 
yellow: false negative; red: false positive). The false-positive rate (FPR) and the false-negative rate (FNR) were shown in each case

Table 3  Comparison of the false-positive rate (FPR) and false-negative 
rate (FNR) between the predictions of the centralized and federated 
learning models using the validation data

Centralized 
learning

Federated learning p-value

False-positive rate 0.17 ± 0.21 0.15 ± 0.17 p = 0.79
False-negative rate 0.11 ± 0.11 0.10 ± 0.12 p = 0.77
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during the federated learning process, utilizing FedAvg as 
the baseline. These techniques incorporate augmentation, 
color normalization, and optimizer.

In order to assess the influence of data augmentation on 
federated learning, we conducted a performance comparison 
of federated learning models trained using data both before 
and after augmentation (Table 4).

Upon comparing the results before and after the application 
of augmentation, an enhancement in precision, approximately 
3.68% (p = 1.80e-07), and a substantial enhancement in recall 
by approximately 14.94% (p = 4.68e-07) and an increase in the 
DSC by approximately 11.49% (p = 7.98e-12) were demon-
strated. As a result, statistically significant differences were 
observed for all metrics (p < 0.05 for all). Especially despite 
being a simple flip augmentation technique, it demonstrated 
a substantial improvement across all performance metrics.

We also compared the performance of federated learning 
models using data before and after color normalization to assess 
the impact of color normalization on federated learning (Table 5).

Upon comparing the performance after adapting color 
normalization, precision exhibited a reduction of approxi-
mately 4.29% with statistical significance (p = 4.51e-07), 
while recall increased by approximately 2.29% with mar-
ginal significance (p = 0.10) and the DSC also increased by 
3.47% with statistical significance (3.46e-05).

Lastly, in order to assess the influence of the optimizer on 
the federated learning process, we conducted a performance 

comparison of models trained using the previously employed 
FedAvg and FedYogi optimizers (Table 6).

After adapting FedYogi optimizer exhibited an increase 
precision by 9.81% (p = 1.08e-26), recall by 12.27% 
(p = 2.69e-06), and DSC by 10.8% (p = 1.24e-11) compared 
with using FedAvg optimizer model, with statistically sig-
nificant differences observed for all three metrics (p < 0.05 
for all).

The difference in average performance (DSC) between 
the two learning methods appears to be approximately 0.02 
in Fig. 5a. The median DSC value for federated learning 
(0.80; range, 0.76–0.83) was higher by 0.04 than that for 
central learning (0.76; range, 0.66–0.83) and statistically sig-
nificant differences in the median were observed in Fig. 5b 
(p = 5.24e-3).

Fig. 5  Comparison of model 
performance (Dice similarity 
coefficient) for each learn-
ing method of centralized and 
federated learning as shown in 
Bland–Altman plot (a) and box 
plot (b)

Table 4  Comparison of performance metrics in federated learning 
using FedAvg optimizer, dependent on the application of data aug-
mentation

DSC Dice similarity coefficient

Federated learning 
without augmentation

Federated learning 
with augmentation

p-value

Precision 62.97 ± 2.77 66.65 ± 1.85 1.80e-07
Recall 54.44 ± 11.87 69.38 ± 7.66 4.68e-07
DSC 56.22 ± 6.02 67.71 ± 3.34 7.98e-12

Table 5  Comparison of performance metrics depending on whether 
color normalization is applied in federated learning using FedAvg 
optimizer

DSC Dice similarity coefficient

Federated learning 
without color 
normalization

Federated learning 
with color 
normalization

p-value

Precision 70.94 ± 3.52 66.65 ± 1.85 4.51e-07
Recall 67.09 ± 0.92 69.38 ± 7.66 0.10
DSC 64.24 ± 2.60 67.71 ± 3.34 3.46e-05

Table 6  Comparison of performance metrics between federated 
learning model using FedYogi optimizer and FedAvg optimizer

DSC Dice similarity coefficient

Federated learning 
using FedAvg 
optimizer

Federated learning 
using FedYogi 
optimizer

p-value

Precision 66.51 ± 1.85 76.32 ± 02.06 1.08e-26
Recall 69.38 ± 7.66 81.65 ± 10.39 2.69e-06
DSC 67.71 ± 3.34 78.51 ± 05.74 1.24e-11
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Discussion

In this study, as a response to the increasing demand for federated 
learning in the field of medical image processing, we conducted 
a comparative assessment of federated and centralized learning 
models using the same hyper-parameters, and datasets to verify 
the effectiveness of federated learning in pathological images.

The federated learning model yielded comparable 
or better performance on validation set from a DSC per-
spective and exhibited superior performance in terms of 
recall. Although the mean DSC of the federated learning 
(78.51 ± 5.74) was higher than that of centralized learning 
(75.88 ± 4.83) with marginal significance using two-sample  
t-test (p = 0.06), the median DSC of federated learning 
(0.80; range, 0.76–0.83) was significantly higher than that 
of centralized learning (0.76; range, 0.66–0.83) (p = 5.24e-
3). While the t-test results indicate marginal significance in 
the mean values, the Mann–Whitney U test, which is less 
sensitive to outliers, confirms that the median DSC is sig-
nificantly higher in federated learning.

To discover opportunities for further improve the feder-
ated learning model from learning what made the federated 
learning model confused, we compared the histology of 
the patches according to confusion matrix generated by the 
federated learning model. The pattern in true positive (TP) 
could be easily distinguished from the rest of the pattern, 
whereas the patterns in false positives (FP) and false nega-
tives (FN) were more difficult to distinguish histologically 
in low-power field view (Fig. 6).

The representative patch images of true positive (TP) 
contained images from common cancer cell types (endome-
trioid carcinoma). In contrast, the patches of false positives 
(FP) were primarily composed of normal tissue that was 
mostly excluded from the cancer (lesion) labeling and very 
few patches could have been included for learning. Simi-
larly, the false negative (FN) patches contained a relatively 
rare cancer cell type (e.g., carcinoma with signet ring cell 
features), which could have led to a lack of data for learning 
and led to failure to find distinguishable features.

In conclusion, federated learning method, complemented 
by a range of techniques, presented higher recall and DSC 
than centralized learning. Our study highlights that federated 
learning is an effective approach for deployment in sectors 
where data security is paramount. It exhibits particular suit-
ability for the domain of medical image processing, where 
an emphasis on recall and Dice similarity coefficient (DSC) 
performance holds significant importance. And our research 
emphasizes the proactive utilization of various techniques 
to mitigate performance degradation in federated learning 
models due to heterogeneity in distributed data environ-
ments and limited data quantity.
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