
Vol:.(1234567890)

Journal of Imaging Informatics in Medicine (2024) 37:1038–1053
https://doi.org/10.1007/s10278-024-01012-1

Interpretable Radiomic Signature for Breast Microcalcification 
Detection and Classification

Francesco Prinzi1,2  · Alessia Orlando3 · Salvatore Gaglio4,5 · Salvatore Vitabile1

Received: 28 July 2023 / Revised: 20 November 2023 / Accepted: 5 December 2023 / Published online: 13 February 2024 
© The Author(s) 2024

Abstract
Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. 
However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, 
and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, 
benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary data-
set, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct 
signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign 
and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random 
Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a 
multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was 
discovered between the detection and classification signatures. The performance of the models was highly promising, with 
XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications clas-
sification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method 
for model introspection, enabled models’ clinical validation. In fact, the most important features, namely GLCM Contrast, 
FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer.
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Introduction

Breast cancer poses the greatest threat to women’s health and 
stands as the most prevalent malignancy globally. According 
to Sung et al. [1], over two million cases were diagnosed in 
2020, making it the most frequently diagnosed cancer world-
wide. The World Health Organization (WHO) [2] estimates 
indicate that female breast cancer has now surpassed lung 
cancer as the most commonly diagnosed form of cancer. 
Furthermore, the presence of breast microcalcifications is 
strongly linked to the risk of developing breast cancer. When 
microcalcifications and breast density are combined, they 
significantly amplify the risk of breast cancer, particularly 
in cases with higher levels of breast density. Breast calcifi-
cations are small deposits of calcium salts, with a diameter 
less than 1 mm [3], radio-opaque on mammograms. While 
they are quite common and mostly benign, breast calcifica-
tions serve as one of the earliest indicators of breast can-
cer on mammograms. Kim et al. [4] showed that in women 
with microcalcifications, the average time of breast cancer 
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diagnosis was 7.9± 1.8 years, whereas, in women without 
microcalcifications, the average time of breast cancer diag-
nosis was 8.5 ± 1.8 years. They can be detected in around 
one-third of all malignant lesions diagnosed during screen-
ing mammography [5, 6]. About 50% of non-palpable breast 
cancers and approximately 95% of all ductal carcinoma-
in-situ (DCIS) are detected by mammography exclusively 
through microcalcification patterns [7, 8]. Furthermore, in 
a comprehensive meta-analysis conducted by Brennan et al. 
[9], it was found that while other mammographic abnormali-
ties such as mass, architectural distortion and asymmetry, 
palpability of the lesion, and lesion size were strongly corre-
lated with the upstaging of DCIS, DCIS manifesting as pure 
calcifications can also occult invasive disease. Breast micro-
calcifications classification may vary according to their size, 
shape, extent, density, and pattern of distribution on mam-
mograms [10]. In clinical practice, their biopsy referral is 
based on radiologists’ assessment of the morphology and 
distribution according to the Breast Imaging-Reporting and 
Data System (BI-RADS) Atlas [11]. Nevertheless, false-
positive biopsy rates for calcifications range from 30% to 
87% [12, 13]. In addition, their localization becomes more 
complicated in low-contrast mammographic images and 
dense breast tissues [14]. In fact, the screening sensitivity 
for detecting malignant calcifications remains relatively low.

Various imaging modalities have been used to facilitate 
the diagnostic process, and machine learning methods have 
proved invaluable in this context [15, 16]. For instance, 
mammography serves as a standard screening tool for detect-
ing specific abnormalities [17]. In such cases, several object 
detector architectures, including Yolo and Faster-RCNN, are 
employed for breast cancer localization and detection [18]. 
However, mammography may yield suboptimal results in 
cases of high breast density. Consequently, ultrasound plays 
a pivotal role in breast cancer diagnosis, serving both as 
a supplementary modality alongside mammography and 
as a primary imaging technique in certain regions [19]. In 
fact, machine learning-based tasks involving ultrasound 
images, such as segmentation [20] and classification [21], 
have gained prominence. Other examination modalities, like  
MRI, offer richer information for characterization purposes 
and are thus considered as an advanced examination [22].  
In such instances, convolutional-based methods, Vision 
Transformers, and Radiomic techniques have seen wide-
spread adoption [23]. However, the national prevention  
program recommends mammography as the primary screen-
ing examination, making it the main tool for early diagno-
sis of breast cancer. Screening sensitivity for the detection  
of malignant calcifications is low. Many detectable calci-
fications are not immediately flagged for further investiga-
tion but are instead identified during subsequent screening 
rounds when the disease has already progressed to an inva-
sive stage. [24]. To mitigate this scenario, it is possible to 

enhance the physician’s diagnostic process by incorporating 
a quantitative perspective.

Radiomics is a new multidisciplinary approach that aims 
to convert images into meaningful data and informative bio-
markers [25, 26]. Through radiomics it is possible to convert 
regions of interest (ROIs) into quantitative features to cor-
relate a clinical outcome. In fact, after feature extraction, 
pre-processing, and selection, machine learning algorithms 
are used for model training and prediction. Radiomic feature 
extraction is also called hand-crafted features extraction: 
features are calculated through appropriate mathematical 
formulas applied to the gray levels histogram, to texture-
defining matrices, or to the ROIs shape. Radiomic feature 
extraction has two enormous strengths. It is possible to 
extract radiomic features from ROIs at the original spatial 
resolution, avoiding any image resizing as is the case of deep 
feature extraction (e.g., via neural networks). Especially in 
the case of microcalcifications, in which the ROIs size is 
about 1 mm [3](e.g., a few pixels), the scaling can greatly 
reduce the information content. Moreover, since it is well 
known the meaning each radiomic feature expresses, it is 
possible to interpret the machine learning models’ findings 
and draw important clinical conclusions. This interpretation 
is a primary requirement to trust and validate the trained 
systems [27, 28].

The radiomic workflow has been applied in several medi-
cal contexts: to predict the involvement of lungs in COVID-
19 and pneumonia using CT [29]; to predict myocardial 
function improvement in cardiac MR images in patients after 
coronary artery bypass grafting [30]; for molecular subtype 
classification of low-grade gliomas in MR imaging [31]; 
in breast cancer for predicting prognostic biomarkers and 
molecular subtypes in MRI[32], to predict axillary lymph 
node status [33], to predict the nodal status in ultrasound 
considering clinically negative breast cancer patients [34]; 
and for many other applications [35–40].

Also for microcalcification the radiomic workflow has 
been exploited. Lei et al. [41] used radiomics to predict 
benign BI-RADS 4 calcifications. They built a nomogram 
incorporating radiomic features and the menopausal state. 
Also Stelzer et al. [42] focused on Bi-Rads 4 microcalcifica-
tion classification. Marathe et al. [43] presented a quantita-
tive approach to classify benign and actionable (high-risk 
and malignant) amorphous calcifications. Loizidou et al. 
[44] acquired a proprietary dataset considering two sequen-
tial screening mammogram rounds. They exploited the 
temporal subtraction between the recent and prior mammo-
grams, to classify between healthy tissue vs. microcalcifica-
tion and benign vs. suspicious microcalcification. In Fanizzi 
et al. [45] radiomic and wavelet features were used for both 
normal vs. abnormal and benign vs. malignant classification.

As shown, it is common to divide the microcalcification 
analysis into two separate tasks: detection and classification. 
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The detection aims to distinguish microcalcifications from 
healthy tissue. For classification instead, microcalcifica-
tions are assumed already been detected, and classification 
consists of distinguishing between malignant and benign. 
The small size of microcalcifications makes the detection 
process very sensitive because affected by factors such as 
human perception, breast density, and the nature of cancer 
itself [46]. For this reason, the capacity of radiomic work-
flow to provide a quantitative perspective, in addition to the 
visual assessment of physicians, can effectively support and 
enhance the diagnostic process.

In this work, a radiomic signature was proposed to train 
machine learning models for breast microcalcification detec-
tion and classification. In particular, a proprietary dataset 
collected at the Radiology section of University Hospital 
"Paolo Giaccone" (Palermo, Italy) was considered. Support 
Vector Machine (SVM), Random Forest (RF) and XGBoost 
(XGB) were compared both for detection and classification 
tasks. In addition, an analysis of the selected radiomic sig-
nature for the two tasks was performed to evaluate a com-
mon subset of radiomic features for simultaneous detection 
and classification. Indeed, we propose a radiomic signature 
able to distinguish between healthy tissue and benign and 
malignant microcalcifications. Figure 1 shows the general 
workflow. The main contributions of this study are:

• a well-structured processing pipeline [47] to define an 
informative radiomic signature for breast calcification;

• a multi-class model able to distinguish healthy tissue, 
benign and malignant microcalcifications;

• an interpretation of the more informative radiomic fea-
tures to provide a trusted system supporting the decision-
making processes.

This manuscript is structured as follows: "Materials and 
Methods" section describes the dataset, the extracted fea-
tures, and the pipeline for machine learning model training; 
"Results" section reports the selected features and the per-
formance for the detection (healthy vs. microcalcification), 
classification (benign vs. malignant microcalcification) and 
considering all the three classes; finally, "Discussion" and 
"Conclusions and Future Directions" sections conclude the 
paper, remarking the experimental findings and discussing 
the achieved results.

Materials and Methods

The methodology used in this work includes two main macro 
topics: radiomics for feature extraction and shallow learning 
methods for training data-driven models. This architectural 
choice derives from several crucial aspects that must respect 
the models in clinical contexts: training with small dataset, 
highly accurate models, and explainable models [48]. The 
combination of shallow learning and radiomics meets all 
these requirements for the following reasons:

Fig. 1  Overall architecture. The segmented data were divided into 
healthy tissue and benign and malignant microcalcifications. The 
same training pipeline was applied for task 1 (malignant vs. benign 
microcalcifications) and task 2 (healthy tissue vs. microcalcifica-
tions). In particular, after the feature extraction process, SMOTE was 
applied to the benign microcalcification samples for data balancing. 
Several feature selection steps were employed to select the best sig-

nature for tasks 1 and 2. The intersection between the two signatures 
was used to train a multi-class model, which can simultaneously 
distinguish healthy tissue, and benign and malignant microcalcifi-
cations (task 3). The validation performance were computed using 
a 20-repeated 10-fold cross-validation strategy. Finally, the perfor-
mance of the trained models were computed on the test set, and their 
introspection was performed
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• Radiomic Feature Extraction: radiomics is concerned 
with the extraction of highly informative features for 
regions of interest characterization. Radiomic features 
are defined and standardized through the Imaging Bio-
marker Standardization Initiative (IBSI) and for this 
reason, allow reproducibility and comparison between 
different works. Effective and efficient extraction does 
not require training of deep learning models, but only the 
mask on which statistics and texture have to be calculated 
[49]. Moreover, the meaning expressed by each feature is 
well known (intelligible features), making it possible to 
study the features and correlate the meaning with already 
established clinical findings.

• Highly Accurate Model: the use of radiomic features 
transforms an image dataset into a tabular dataset, ena-
bling the use of shallow learning models. It is well-
established that shallow architectures demand a smaller 
volume of training data compared to deep architectures. 
As shown in [50] shallow learning methods like SVM 
outperform their deep learning counterparts when tabular 
data are used. In addition, SL approaches offer relatively 
straightforward interpretations, making them attractive for 
many applications in healthcare. As shown in [51] there 
are important technical and social reasons to prefer inher-
ently intelligible AI models over deep neural models.

• Interpretable Models: shallow learning and explainable 
methods provide insights into the features driving their 
decisions, allowing clinicians to understand the reason-
ing behind the system’s recommendations. The union of 
explainable AI methods for the global explanation, shal-
low learning algorithms and radiomic features maintains 
an advantage by providing high-performance and highly 
interpretable models [52].

Dataset Description and Segmentation

A total of 161 images were acquired by a Fujifilm Full Field 
Digital Mammography at the Radiology section of the Uni-
versity Hospital "Paolo Giaccone" (Palermo, Italy). The 
images have a spatial resolution of 4728 × 5928 and a pixel 
size of 50 µm. The images were divided into healthy (76), 
benign microcalcifications (26), and malignant microcalci-
fications (59). The mean age is 57.6 ± 12.7 with a range of 
40 − 83 for the healthy patients, 55.7 ± 8.6 with a range of 
45 − 71 for benign microcalcification patients, 58.0 ± 14.4 
with a range of 28 − 82 for malignant microcalcification 
patients. Figure 2 compares the age box plots.

The ITK-SNAP toolkit was used for ROIs segmentation. 
The healthy ROIs were randomly selected and then manu-
ally segmented. For the microcalcification images instead, 
manual segmentation was performed to identify neighbor-
ing clusters of microcalcifications. Finally, 380 segmen-
tations of healthy tissue, 136 benign and 242 malignant 

microcalcifications were collected. The annotations were 
performed by an expert radiologist dealing with the identifi-
cation of abnormal regions. The first task, e.g. the detection 
task, was modeled considering the benign and malignant 
microcalcification vs. the healthy tissue (378 vs. 380 sam-
ples). The second task, e.g. the classification task, was per-
formed considering the benign vs. the malignant microcal-
cifications (136 vs. 242). The third task, e.g. the multi-class 
classification task, was performed considering the benign 
vs. malignant microcalcifications vs. healthy tissue (136 vs. 
242 vs. 380 samples).

Radiomic Feature Extraction

In this work, we conformed to the standardization process 
in line with the IBSI [53] to ensure that the extracted 
features adhered to the required standards. To achieve 
this, the PyRadiomics library was used (version 3.0.1) 
[54], which is designed to be fully IBSI compliant. 
Ninety-three radiomic features were extracted, listed and 
discussed in "Radiomic Features" Section of the Supple-
mentary Materials.

A bin-width of 25 was considered for image gray lev-
els discretization. Considering the average range of 5419 
(e.g., the difference between the maximum and minimum 
gray levels), this bin-width allows for about 216 bins 
histogram ( mean−range

bin−width
 ). Values of about 256 bins are com-

monly adopted [55].
The extracted features belong to intensity (or first-order 

(FO)) and textural features. First-order features define the 
intensity distribution of the pixel in a specified ROI. The 
texture features were computed from the following matrices: 
Gray Level Co-occurrence Matrix (GLCM) [56], Gray Level 
Run Length Matrix (GLRLM) [57–59], Neighboring Gray 
Tone Difference Matrix (NGTDM) [60], Gray Level Size 
Zone Matrix (GLSZM) [61] and Gray Level Dependence 
Matrix (GLDM) [62].

Instead, the 2D Shape features were not considered for 
the following reasons:

Fig. 2  Patients age comparison among the three groups



1042 Journal of Imaging Informatics in Medicine (2024) 37:1038–1053

• To develop a signature independent of the generated 
segmentation, but dependent on texture and/or gray 
level intensity.

• As shown in Fig. 3left and right, the generated segmen-
tations of malignant microcalcifications are on average 
larger than the benign ones. For this reason, shape fea-
tures could introduce a major bias for the models, and 
discriminate only by shape and not by texture and/or gray 
level intensity.

• Finally, the segmentations are coarse because the work 
aims to detect and classify clusters and not individual 
microcalcifications.

Feature Selection

In order to mitigate the risk of overfitting, several steps 
were executed in this study to reduce the initial feature 
set. In fact, the literature offers various relationships 
that define the appropriate number of features a model 
should incorporate based on the available training sam-
ples. From a purely statistical perspective, especially 
in the context of a binary classification problem, it is 
advisable to have around 10 to 15 samples for each fea-
ture incorporated into the radiomic signature [63]. This 
implies that a radiomic signature containing five features 
would require a dataset comprising between 50 and 75 
patients for effective model training [47]. Exploiting this 

relationship, in the worst scenario of small dataset (task 
2), 378 samples (242 malignant and 136 benign) allow 
for a 25-feature signature.

Two different signatures were selected for detection and 
classification tasks separately. In particular, variance anal-
ysis, correlation analysis, and statistical significance were 
performed to select an informative and non-redundant sub-
set of radiomic features [47, 64]. All the near-constant 
features were discarded, considering a variance threshold 
of 0.01. The Spearman’s rank correlation coefficient was  
used to remove correlated features, considering 0.85  
as threshold [65, 66]. The Mann–Whitney U test was used 
to test the class differences (healthy tissue vs. microcalci-
fications and benign vs. malignant microcalcifications). A 
p < 0.05 was considered statistically significant.

Finally, the Sequential Forward Floating Selection 
(SFFS) algorithm was used [67] to select the best fea-
tures subset for each model considered (e.g., RF, SVM, 
XGB). SFFS was applied for detection and classification 
tasks separately. In particular, the remaining features after 
analysis of variance, correlation, and statistical signifi-
cance, were fed as input to SFFS. The models considered 
for SFFS were trained using a stratified 10-fold cross-
validation strategy. Accuracy was the metric to maximize.

To train the multi-class model (e.g. simultaneously 
detection and classification), the common subset found 
for the two tasks separately was considered.

Fig. 3  Microcalcifications size representation. Maximum 2D diam-
eter Row (Column) is defined as the largest pairwise Euclidean 
distance between tumor surface mesh vertices in the column-slice 

(row-slice). These magnitudes represent the size width and height of 
lesions for benign (left image) and malignant (right image) microcal-
cifications
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Imbalanced Dataset Management

Considering the class imbalance between benign and malig-
nant microcalcifications (Task 1) several strategies were imple-
mented and compared. The Synthetic Minority Oversampling 
Technique (SMOTE) [68] is the most widely used technique 
for oversampling the minority class. In addition, ADASYN 
[69], BorderlineSMOTE [70] and KMeansSMOTE [71] were 
implemented. SMOTE-based methods are applied in countless 
works [72, 73], and its use is increasingly common [74].

The SMOTE-based techniques were applied to the train-
ing set to balance the two classes. Then, the minority class 
was over-sampled (i.e. the benign class) adding synthetic 
data to equalize the majority class (i.e. malignant class). 
No SMOTE was applied to the test set. This comparison 
was carried out before the training process, using the per-
formance computed via SFFS and the three shallow learning 
algorithms employed in the work.

Model Training and Test

Accurate extraction of radiomic features demonstrates its 
effectiveness in scenarios with limited data, in contrast to 
the data-intensive nature of deep training [49]. Additionally, 
radiomic features provide a valuable opportunity for leverag-
ing shallow training methods with tabular data. In fact in this 
study, three different classifiers were implemented: SVM, 
RF, and XGB. RF and XGB are two widely employed Tree 
Ensemble algorithms. XGB aims to minimize the model’s 
loss function by incorporating weak learners through gradient 
descent, employing the Boosting Ensemble Method. On the 
other hand, RF employs the bagging technique to construct 
multiple weak learners by considering random subsets of fea-
tures and bootstrap sample data. The decision of each learner 
is then aggregated using the Bagging Ensemble Method. Tree 
ensemble algorithms have demonstrated their effectiveness 
in classifying small datasets [75–77], making them among 
the most commonly employed alongside SVM [78]. Feature 
selection and model training were performed separately for 
detection and classification tasks. For this reason, it is pos-
sible to consider both tasks as binary classifications.

Before the feature selection and training stages, for the 
three tasks, the dataset was divided into 80% for feature 
selection and training, and the remaining 20% was used only 
for test. The test set was maintained separate from the tuning 
process, reserved solely for test (e.g., internal model valida-
tion [79]). In similar or smaller dataset-size the k-fold is typi-
cally used [80–82], while the Leave-One-Out (LOO) method 
is typically suggested in very-small dataset [83–85]. In addi-
tion, LOO validation is more susceptible to overfitting than 
k-fold cross-validation [55]. In any case, both k-fold cross-
validation and leave-one-out cross-validation strategies were 
conducted. The k-fold was stratified and repeated 20 times. 

For this reason, the validation performance were reported 
considering the mean and standard deviation for each metric. 
The model that exhibited the highest accuracy during the 
validation phase was selected for testing. The features that 
overlapped between the selected ones for the detection and 
classification tasks were used to train the multi-class model, 
employing the same training and testing procedure.

To evaluate model performance, Accuracy, Area Under the 
Receiver Operating Characteristic (AUC-ROC), Specificity, 
Sensitivity, Positive Predictive Value (PPV), Negative Predic-
tive Value (NPV)  and F-Score were considered. In addition, to 
ensure an accurate comparison between the trained models, the 
same seed was set for all probabilistic terms in the algorithms 
and for the splits generation for the stratified cross-validation.

Results

The experiments were conducted in Python 3.7 environ-
ment. RF was trained using the bootstrap technique, 100 
estimators and the Gini criterion; XGB was trained using 
100 estimators, 6 as max depth, ‘gain’ as importance 
type, binary logistic as loss function and 0.3 as learn-
ing rate. SVM was trained using the Radial basis kernel, 
regularization parameter C = 1.0 and kernel coefficient to 
1∕(nfeatures ∗ variance) . For SVM, features were standard-
ized before the training.

In addition, for multi-class training, the one-vs-rest strategy 
for SVM and the softmax loss function for XGB were used.

Features Selected and SMOTE Evaluation

Table 1 shows the selected features for the two tasks after 
the application of the variance analysis, correlation analysis, 

Table 1  Selected features for detection and classification tasks, before 
applying SFFS

Feature Class Det Clas

10Percentile FO X X
90Percentile FO X X
Energy FO X
Entropy FO X X
Kurtosis FO X
Maximum FO X X
Minimum FO X X
Skewness FO X X
Autocorrelation GLCM X
Contrast GLCM X X
DependenceVariance GLDM X
LargeAreaLowGrayLevelEmphasis GLSZM X X
Busyness NGTDM X
Contrast NGTDM X



1044 Journal of Imaging Informatics in Medicine (2024) 37:1038–1053

and statistical test. In particular, an important overlapping 
was found between the two subsets. Then, the SFFS method 
was applied for SMOTE-based data balancing comparison 
and for selecting the best signature for the classification and 
detection tasks.

Table 2 shows the accuracy values found by SFFS con-
sidering the subset maximizes the accuracy. In particular, 
no significant differences were found between the imple-
mented methods, with SMOTE providing slightly higher 
performance. Therefore, SMOTE was eventually selected 
as the data balancing method.

For detection and classification tasks, each model (e.g., 
SVM, XGB, RF) was trained considering the same number 
of features, computed via SFFS by considering the smallest  
radiomic signature providing the highest accuracy. In par-
ticular, Fig. 4left and right show the calculated accuracy 
considering the different subsets selected via SFFS for 
detection and classification tasks, respectively. Figure 4left 
illustrates that, on average, a signature size of seven maxi-
mizes accuracy for all three models in the detection task. 
Figure 4right demonstrates that a set of seven features also 
optimizes the classification task accuracy. For this reason, 
seven features were selected for detection and classification 
task training. For the detection task, the NGTDM Contrast 
feature was the first one selected via SFFS for each consid-
ered model. The NGTDM Contrast was not statistically sig-
nificant for the classification task. The FO Entropy feature 
was the first selected via SFFS in the classification task for 

each considered model. In addition, FO Entropy, GLCM 
Contrast and GLSZM LargeAreaLowGrayLevelEmphasis 
were the most frequently selected features via SFFS, that is, 
in at least 5 of the 6 models considered (RF, SVM and XGB 
for detection; RF, SVM and XGB for classification).

Considering the overlap between the features statistically 
significant ( p < 0.05 ) for the detection and classification 
task, the common subset was used to solve the two tasks 
simultaneously. Specifically, the 8 common features, shown 
in Table 1, were used to solve a multi-class problem, consid-
ering three classes: healthy tissue, and benign and malignant 
microcalcifications. For this reason, the results section is 
organized to expose the results of the three tasks separately.

Performance of the Three Tasks

The performance evaluation during feature selection via SFFS 
was conducted using a 10-fold stratified cross-validation 
approach (refer to Fig. 4left and right). The cross-validation 
process was repeated only once due to the computational 
complexity of the SFFS algorithm. Conversely, for model 
validation, a 10-fold cross-validation was repeated 20 times 
to ensure a more accurate evaluation of the models (refer to 
Figs. 5 and 6). The LOO performance are reported in Section 
"Leave-One-Out performance" of Supplementary Material. 
Ultimately, the most accurate model determined in the vali-
dation phase, was selected for testing on the independent test 
dataset (refer to Tables 3, 4 and 5).

Detection Performance

This task aims to classify healthy tissue from microcalcifica-
tion. The training set consisted of 306 healthy tissue samples 
and 302 microcalcifications; the test set of 78 microcalci-
fications and 74 healthy tissues. Figure 5 shows the valida-
tion performance computed during the 20-repeated 10-fold 

Table 2  Comparison of class balancing methods in terms of accuracy

Method XGB RF SVM

SMOTE 0.897 ± 0.050 0.894 ± 0.042 0.864 ± 0.041
ADASYN 0.891 ± 0.066 0.888 ± 0.031 0.852 ± 0.031
BorderlineSMOTE 0.892 ± 0.056 0.889 ± 0.047 0.864 ± 0.037
KMeansSMOTE 0.892 ± 0.055 0.889 ± 0.047 0.863 ± 0.037

Fig. 4  The graph generated via SFFS shows the accuracy value for 
each model (XGB, SVM, and RND) considering several feature sub-
sets. The x-axis represents the n − th step of the algorithm; the y-axis 

instead shows the accuracy value. On average, 7 is the features num-
ber that maximizes the accuracy of the three models for detection 
(left image) and classification (right image) tasks
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cross-validation. The performance in Fig. 5 are comparable 
with the one in LOO, shown in Table 7 of Supplementary 
Materials. XGB achieved a higher performance in the vali-
dation phase, almost comparable with RF. For each model, 
a higher specificity was found with respect to the sensitivity. 
It means a higher capability of the models to recognize the 
healthy tissue rather than microcalcifications.

In Table 3 are shown the metrics computed in the test 
phase. While SVM exhibited lower performance com-
pared to XGB and RF during the validation phase, it 
demonstrated superior generalization capabilities when 
applied to unseen data. In particular, SVM achieved an 
AUC-ROC of 0.865. Also, RF and XGB reached promis-
ing AUC-ROC performance of 0.859 and 0.854 respec-
tively. However, a strong imbalance between sensitivity 
and specificity was computed, with a higher specificity 
than sensitivity.

Classification Performance

This task aims to classify the benign and the malignant 
microcalcifications. The training set consisted of 198 malig-
nant microcalcifications and 198 benign microcalcifications 
(considering 104 real samples and 95 synthetic samples gen-
erated via SMOTE). The test set consisted of 44 malignant 
and 32 benign microcalcifications. Figure 6 shows the vali-
dation performance. The performance in Fig. 6 are compa-
rable with the one in LOO, shown in Table 8 of Supplemen-
tary Materials. The achieved performance in the test phase 
were reported in Table 4.

As the detection task, SVM exhibited lower performance 
compared to XGB and RF during the validation phase. 
However in the test phase decision tree-based models per-
form poorer than SVM, and again with a strong imbalance 
between sensitivity and specificity. However, the models 

Fig. 5  Validation performance for the detection task computed during the 20-repeated 10-fold cross-validation procedure

Table 3  Test performance for the detection task

Metric RF SVM XGB

Accuracy 0.756 0.789 0.750
AUC-ROC 0.859 0.865 0.854
Sensitivity 0.729 0.783 0.702
Specificity 0.782 0.794 0.794
PPV 0.760 0.783 0.764
NPV 0.753 0.794 0.738
F-Score 0.744 0.783 0.720

Table 4  Test performance for the classification task

Metric RF SVM XGB

Accuracy 0.868 0.868 0.842
AUC-ROC 0.921 0.927 0.933
Sensitivity 0.931 0.863 0.909
Specificity 0.781 0.875 0.750
PPV 0.854 0.904 0.833
NPV 0.892 0.823 0.857
F-Score 0.891 0.883 0.870
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result in very high performance, with an AUC-ROC of 
0.921, 0.927 and 0.933 for RF, SVM and XGB, respec-
tively. For decision tree-based models, a higher sensitivity 
was computed with respect to specificity. It means a higher 
capability of the models to recognize malignant rather than 
benign microcalcifications.

Multi‑class Model Performance

Considering the overlap between the discriminating features 
for the detection and classification tasks (Table 1), the com-
mon features set was used to address the two tasks simulta-
neously. For this reason, SVM, RF and XGB were trained 
for multi-class classification, considering the one-vs-rest 
strategy for SVM and the softmax loss function for XGB. 

In this case, 198 malignant microcalcifications, 198 benign 
microcalcifications (104 real and 97 generated via SMOTE), 
and 198 healthy samples were considered for the training 
set. The 198 healthy samples were randomly selected from 
the original 380 to avoid class imbalance in training. For the 
test instead, 78, 44 and 32 were used for healthy, benign and 
malignant microcalcification, respectively.

Table 5 shows the achieved test performance. For healthy 
tissue, a high specificity and a low sensitivity were com-
puted. This means that the model is more capable of detect-
ing microcalcification than healthy tissue. A similar obser-
vation applies to benign microcalcifications, wherein the 
model finds it easier to detect both malignant microcalcifica-
tions and healthy tissue. Consequently, in each scenario, the 
detection of malignant microcalcifications is comparatively 

Fig. 6  Validation performance for the classification task computed during the 20-repeated 10-fold cross-validation procedure

Table 5  Multi-class 
classification test performance, 
for simultaneous detection and 
classification task

Model Class Acc AUC Sens Spec PPV NPV F-Score

Healthy 0.746 0.810 0.679 0.815 0.791 0.712 0.731
RF B Micro 0.818 0.860 0.593 0.877 0.558 0.891 0.575

M Micro 0.811 0.890 0.772 0.827 0.641 0.900 0.700
Healthy 0.694 0.783 0.538 0.855 0.792 0.643 0.640

SVM B Micro 0.792 0.849 0.687 0.819 0.500 0.909 0.578
M Micro 0.824 0.840 0.818 0.649 0.927 0.882 0.870
Healthy 0.740 0.830 0.679 0.802 0.779 0.709 0.725

XGB B Micro 0.811 0.856 0.625 0.860 0.540 0.897 0.580
M Micro 0.824 0.876 0.750 0.854 0.673 0.895 0.710
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more straightforward. For this task, the decision tree-based 
models outperform the SVM classifiers, obtaining a higher 
AUC-ROC and accuracy for the recognition of the three 
classes. This means that tree-based models are more appro-
priate for multi-class classification.

Discussion

The work addressed the problem of breast microcalcifica-
tions to propose a data-driven system to support the phy-
sician’s diagnostic process. By using the radiomic work-
flow, the images were transformed into highly informative 
features, offering a quantitative perspective that comple-
ments the visual assessment of physicians. Considering 
the difficulty of microcalcifications diagnosis and their 
extremely small size, data-driven systems can play a crucial 
role. Indeed, a considerable proportion of microcalcifica-
tions progress into invasive lesions, underscoring the sig-
nificance of early detection in preventing advanced stages 
of the disease and facilitating appropriate management. In 
this context, the radiomics workflow combined with the 
shallow learning techniques can support the physician’s 
diagnostic process, as well as enable feature interpretation 
and explainable models. Explainable models are crucial 
for model validation and to compare the findings with the 
medical literature [86]. In addition, explainability improves 
the usability and acceptability of AI models [27]. In many 
intensive decision-based tasks, the interpretability of an AI-
based system may emerge as an indispensable feature [28]. 
In fact, our work presents important results, both in terms 
of predictive performance and findings resulting from the 
interpretability of radiomic features.

Model Performance and Findings Interpretation

Focusing on performance, the detection performance were 
promising, showing an AUC-ROC of 0.859, 0.856 and 0.854 
for RF, SVM and XGB, respectively. The performance 
increases when only microcalcifications are considered for 
malignant vs. benign classification, showing an AUC-ROC 
of 0.921, 0.927 and 0.933 for RF, SVM and XGB. This result 
is important because it means that the system is capable of 
detecting lesions that degenerate into invasive cancers. The 
difference in performance between the two tasks confirms 
that the main difficulty in the analysis of microcalcifica-
tions lies precisely in detection, which is the crucial task in 
screening for early diagnosis.

One of the main results lies in the discovery of an over-
lapping radiomic signature between the detection and clas-
sification tasks. In particular, Fig. 7 shows the importance 
of the features calculated using the Mean Decrease Accu-
racy method available in ELI5 framework [87]. The GLCM 
Contrast, FO Entropy, and FO Minimum represent the most 
important features. The GLCM Contrast is a measure of the 
local intensity variation, so a larger value correlates with 
a greater disparity in intensity values among neighboring 
pixels. We found a higher Contrast in healthy tissue with 
respect to microcalcification. A higher Minimum was found 
for the healthy tissue with respect to microcalcification: 
this is intuitive because the microcalcification intensity is 
much lower compared with healthy tissue. Finally, a higher 
Entropy was found in microcalcifications compared with the 
healthy tissue. With the Entropy is possible to measure the 
uncertainty/randomness in the image values. Unlike deep 
architectures, where feature extraction produces a latent 
space that lacks comparability and reproducibility with other 

Fig. 7  Features importance 
computed via the mean score 
decrease method
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works, radiomic workflow enables the comparison of signif-
icant features across different studies. This is achieved due 
to the known meaning associated with each feature, in con-
trast to deep features. Through this approach, a significant 
overlap was discovered with other studies. In fact, Entropy 
and Minimum were found important in PET and MRI for 
breast cancer phenotypes and prognosis [88]; again Entropy 
in multiparametric MRI for breast cancer tissue characteriza-
tion [89, 90], and also the GLCM Contrast [89]; the Mini-
mum in Dynamic Contrast-Enhanced MRI (DCE-MRI) for 
Sentinel Lymph Node Metastasis prediction [91].

Comparison

Several papers addressed the microcalcification analysis 
through radiomics. Although the following works use dif-
ferent datasets, a qualitative comparison was performed 
and shown in Table 6. In particular, Stelzer et al. [42] have 
focused only on BI-RADS 4 microcalcification, analyzing a 
dataset consisting of 150 benign and 76 malignant microcal-
cifications. They exploited the radiomic workflow for classi-
fication, in an attempt to avoid unnecessary benign biopsies. 
To the extracted features, the principal component analysis 
(PCA) was applied and a multilayer perceptron was trained. 
They obtained an AUC-ROC of 0.82−0.83 and found the 
GLCM Contrast the most important feature contributing to 
PCA. Lei et al. [41] focused also on BI-RADS 4 calcifica-
tions to discriminate benign from malignant calcifications. 
They selected 6 radiomic features and used the menopau-
sal state to train an SVM model, reaching an AUC-ROC 

of 0.80, a PPV of 73.53, and NPV of 84.21. Marathe et al. 
[43] analyzed 276 amorphous calcifications (200 benign and 
76 malignant). They extracted the radiomic features from 
the foreground and background masks, and global features 
from dilated foreground masks. Using the LightGBM clas-
sifier they obtained an AUC-ROC of 0.73, a sensitivity of 
1.0 and a specificity of 0.35. In addition, they proved that 
in small dataset scenario, local and global radiomic fea-
tures allows higher performance with respect to VGG-16 
and ResNet-50 deep architecture. In Fanizzi et al. [45] the 
healthy ROIs were considered to train two different classi-
fiers: normal vs. abnormal and benign vs. malignant. From 
the Breast Cancer Digital Repository [94] 130 microcalcifi-
cations (75 benign and 55 malignant) and 130 healthy ROIs 
were selected. They used the wavelet Haar transform before 
the feature extraction process. The selected features were 
used to train the random forest model, obtaining a median 
AUC-ROC value of 98.16% and 92.08% for the detection 
and classification tasks, respectively. As discussed, we found 
an opposite trend: the classification model performed bet-
ter than the detection model. Loizidou et al. [44] acquired 
a proprietary dataset considering two sequential screening 
mammogram rounds, to distinguish between normal tissue 
vs. microcalcifications, and benign vs. suspicious microc-
alcifications. For the two tasks, radiomic features from the 
recent mammogram (RM) and from the temporal subtracted 
(TS) mammograms were extracted. Then, several machine 
learning classifiers were compared, considering the RM and 
TS selected signatures for the two tasks. Focusing on the 
RM modality, a lower sensitivity and higher specificity were 

Table 6  Comparison with similar works

MC microcalcification, B benign, M malignant, H healthy

Work Dataset Size Lesion Type Features Methods Performance (AUROC)

[42] B:150, M:76 BI-RADS 4 MC Radiomic PCA, MLP Classification: 0.82−0.83
[41] a) 159 (49.06% M ratio) 

b) 53 (52.83% M ratio)
BI-RADS 4 MC Radiomic, Menopausal 

state
LASSO, SVM Classification: 0.80

[43] B:200, M:76 Amorphous MC Local: Radiomic Global: 
Topological structure 
features

LightGBM Classification: 0.73

[45] B:75, M:55, H:130 MC and H ROIs Wavelet-derived 
statistical features

Embedded methods, 
filter methods, Random 
Forest

Detection: 98.16 
Classification: 92.08

[44] H:40, Suspicious:40 MC Radiomic from RM and 
TS

Statistical test, SVM, 
TreeEnsemble

Using only RM: 
Detection: 0.77 
Classification: 0.79

[92] B:130, M:130 non-palpable MC with 
BI-RADS 4

Radiomic features, 
LoG-derived, Wavelet-
derived, LBP-derived

ANOVA, RFE, SVM Classification: 0.906

[93] Pure DCIS:161, DCIS 
with invasion:89

Suspicious MC in DCIS Radiomic, clinical 
imaging characteristics

Logistic Regression, 
XGB

Classification: 0.72

our H: 380, M: 136, H: 242 MC Radiomic SFS, SVM, XGB, RF Detection: 0.865, 
Classification: 0.933
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computed for the detection task, as in our work. In addition, 
compared to our work, they obtained a higher accuracy but 
an AUC-ROC significantly lower. However, their perfor-
mance increased significantly when the TS modality was 
considered. In Li et al. [92] a proprietary dataset composed 
by 260 patients with non-palpable microcalcifications and 
BI-RADS 4 was used to propose a signature to distinguish 
between noncancerous and cancerous microcalcifications. 
They used several higher-level radiomic features including 
Laplacian of Gaussian (LoG) spatial filters, single-level coi-
flet decomposition, and Local Binary Pattern (LBP). Then, 
several shallow learning algorithms were implemented, 
showing an AUC of 0.906 using SVM. Predicting invasion 
carcinoma from DCIS lesions diagnosed was investigated 
in [93]. Using 161 pure DCIS and 89 DCIS with invasion, 
radiomic and clinical features were used to train an XGB 
model, showing an AUROC of 0.72 (Table 6).

Conclusions and Future Directions

This work aimed to train a radiomic model for breast micro-
calcifications diagnosis. The signatures extracted for the 
detection and classification tasks were used also to train 
a multi-class model to distinguish healthy tissue, benign 
and malignant microcalcifications. The proposed signature 
introduces several quantitative biomarkers to support the 
diagnostic process. The performance appears promising and 
comparable or higher with the literature.

As emphasized by Caroprese et al. [95], following the 
explicit incorporation of the right to explanation within the 
General Data Protection Regulation, the urgent need for 
fully transparent and interpretable models has emerged. Our 
research is dedicated to enhancing model interpretability 
by introducing intelligible input in the form of radiomic 
features and employing a post-hoc explanation method. The 
fusion of these two elements renders the model comprehen-
sible on a global scale, facilitating its clinical validation. 
However, it’s worth noting that we have not conducted an 
analysis for locally explaining the model, which is an impor-
tant aspect for justifying and reinforcing the model’s results 
[28]. One of the most intriguing and promising develop-
ments in the field of breast cancer research and neural net-
works is the integration of histopathological images. With 
the advent of deep learning technologies, researchers are 
making significant strides in improving the accuracy and 
efficiency of breast cancer diagnosis and prognosis. It was 
shown for example the promising for invasive ductal carci-
noma breast cancer grade classification using an ensemble 
of convolutional neural networks [96]. Convolutional-based 
neural networks showed promising results also on the clas-
sification of invasive and non-invasive cancer [97]. Another 
avenue for further exploration is the relationship between 

intelligible features, such as radiomic features, and learned 
features extracted from neural networks. While radiomic 
features contribute to model explainability, deep features 
enhance model accuracy [98]. This study has the potential 
to delve into the well-known trade-off between explainabil-
ity and accuracy, a subject of interest highly discussed [99, 
100].
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