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Abstract
Deep learning (DL) has recently attracted attention for data processing in positron emission tomography (PET). Attenuation 
correction (AC) without computed tomography (CT) data is one of the interests. Here, we present, to our knowledge, the 
first attempt to generate an attenuation map of the human head via Sim2Real DL-based tissue composition estimation from 
model training using only the simulated PET dataset. The DL model accepts a two-dimensional non-attenuation-corrected 
PET image as input and outputs a four-channel tissue-composition map of soft tissue, bone, cavity, and background. Then, 
an attenuation map is generated by a linear combination of the tissue composition maps and, finally, used as input for 
scatter+random estimation and as an initial estimate for attenuation map reconstruction by the maximum likelihood attenu-
ation correction factor (MLACF), i.e., the DL estimate is refined by the MLACF. Preliminary results using clinical brain 
PET data showed that the proposed DL model tended to estimate anatomical details inaccurately, especially in the neck-side 
slices. However, it succeeded in estimating overall anatomical structures, and the PET quantitative accuracy with DL-based 
AC was comparable to that with CT-based AC. Thus, the proposed DL-based approach combined with the MLACF is also 
a promising CT-less AC approach.

Keywords  Positron emission tomography · Attenuation correction · Deep learning · Tissue composition · Semantic  
soft segmentation

Introduction

Positron emission tomography (PET) [1] is a powerful imag-
ing modality used in clinical medicine and medical research. 
Other equally powerful clinical imaging modalities include 

computed tomography (CT) and magnetic resonance (MR) 
imaging. Attenuation correction (AC) [2] and scatter cor-
rection (SC) [3] are two essential components of PET data 
processing for quantitative PET imaging. The accuracy of 
the attenuation map directly affects the correction accuracy, 
and tremendous efforts have been made to improve the accu-
racy of PET data correction [4].

In combined PET-CT scanners, an acquired CT image 
is used to generate an attenuation map by applying sim-
ple piecewise linear scaling to CT values [5]. In combined 
PET-MR scanners, an attenuation map is usually generated 
by segmenting an acquired MR image into several regions 
and assigning known attenuation coefficients to the regions 
[6]. Before the advent of combined PET-CT, a transmission 
source, such as a 137-Cs point source and 68-Ge-68-Ga rod 
source, rotates around the subject, and an attenuation map is 
reconstructed from the acquired transmission data [7]. The 
breakthrough discovery in 2012 [8] that time-of-flight (TOF) 
PET emission data can determine attenuation factors except 
for a global scale factor triggered the development of joint 
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reconstruction algorithm of activity and attenuation [9], i.e., 
combined with some scaling compensation method, attenu-
ation map can be reconstructed from an acquired emission 
data without using any CT/MR data or transmission data. 
Bal et al. [10] developed a joint reconstruction algorithm 
combined with the activity domain scaling compensation 
method and showed using clinical brain PET data its good 
correlation with CT-based attenuation correction (CT-AC). 
In a recent dedicated head TOF-PET scanner [11], an attenu-
ation map is reconstructed using a joint reconstruction algo-
rithm combined with an attenuation domain scaling compen-
sation method [12, 13].

Deep learning (DL) has recently attracted attention for 
data processing in PET [14–16], and attenuation correc-
tion (AC) without CT data is one of the interests. As listed 
in the recent review paper [17], there are four DL-based 
approaches to generate attenuation maps in terms of the 
input–output relation: (1) MR to pseudo-CT attenuation 
map, (2) non-attenuation-corrected (NAC) PET to pseudo-
CT, (3) joint reconstruction output to CT attenuation map, 
and (4) NAC PET to corrected PET, i.e., (1) is the MR-based 
approach, and the others (2)–(4) are PET-based approaches. 
The pseudo-CT can be converted to an attenuation map by 
the scaling method mentioned above. The limitation of each 
approach is as follows [17]: the MR-based approach requires 
an MR image, and its performance depends on input MR 
image artifacts and PET-MR registration error. Although 
the PET-based approaches are free from such limitations due 
to their self-closed nature, common limitations of the PET-
based approaches (2) and (4) is limited bone and air cavity 
delineation due to poor anatomical information on input 
NAC PET images. The PET-based approach (3) requires 
additional image reconstruction time, and its applicability 
is limited to the TOF-PET system.

In this paper, we present a new method employing tis-
sue composition (TC) estimation to generate attenuation 
maps for the human head (Fig. 1), a DL-based approach 
that differs from the existing four approaches. Our research 

started from an idea that image soft (fuzzy) segmenta-
tion, which estimates the composition (mixture) ratio of 
multiple components in a single pixel, can handle the situ-
ation in PET imaging that multiple types of tissues (e.g., 
soft tissue, bone, and cavity) mixed within a single voxel 
of attenuation map. Conventional hard segmentation, in 
which a single label is assigned to each voxel, assumes 
that a single voxel consists of a single type of tissue; how-
ever, as voxel size gets larger, such assumption no longer 
holds, and soft segmentation is reasonable in such situa-
tion. Here, we state that our research motivation is not to 
overcome the limitations of the existing DL-based attenu-
ation map generation approaches but to combine soft seg-
mentation DL processing and joint image reconstruction. 
Then our approach shares the same limitations with the 
existing PET-based approaches.

Anatomical components of the human head can be 
roughly partitioned into the following three parts: soft 
tissue (including muscle, fat, and brain), bone, and cav-
ity. In addition, the approximate attenuation coefficients of 
these three regions are known because segmentation-based 
MR-AC methods use these coefficients [18]. An attenu-
ation map can be generated by a linear combination of 
the estimated TC map, as shown in Fig. 1. Although it is 
straightforward to use the DL estimate of the attenuation 
map directly for AC, we implement it as an initial attenu-
ation map for reconstruction by the maximum likelihood 
attenuation correction factor (MLACF) [19], and thus, 
the DL estimate is refined by the MLACF. This indirect 
approach enables the integration of DL processing with 
existing data processing in our dedicated head TOF-PET 
scanner [13] released in 2021 in Japan.

The feasibility of our new DL-based AC approach is 
demonstrated using a limited number of clinical brain PET 
data, in which the accuracy of DL-based AC is compared 
with that of CT-AC. The results indicate that the proposed 
approach can be a promising fifth approach for DL-based 
PET AC.

Fig. 1   Attenuation map 
obtained through linear combi-
nation of four tissue composi-
tion maps of background, cav-
ity, soft tissue, and bone using 
known attenuation coefficients 
as combination coefficients
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Method

Proposed DL Model

Our proposed method is based on modeling an attenuation 
map of the human head as a linear combination of four TC 
maps of soft tissue, bone, cavity, and background (Fig. 1). 
The voxel value of the TC map represents the volumetric 
mixture ratio of a certain tissue in the voxel. Therefore, the 
sum of four TC values always equals one. We believe that 
no more fine partitioning is needed to achieve clinically 
acceptable quantitative accuracy inside a brain region.

The proposed DL model accepts a two-dimensional 
intensity-normalized NAC PET image as input and out-
puts a four-channel TC map. This DL task can be seen 
as an instance of the semantic soft segmentation [20]. A 
modified U-net [21] was employed as the neural network 
structure (Fig. 2). Specifically, the input NAC image was 
encoded repeatedly to lower dimensional feature space 
via the blocks consisting of stride-1 convolution, batch 
normalization (BN), and leaky ReLU (LReLU) followed 
by downsampling by stride-2 convolution and then, to 
reach TC maps, decoded repeatedly to higher dimen-
sional feature space via the blocks consisting of bilinear 
upsampling, stride-1 convolution, BN, and LReLU, with 
concatenating the intermediate feature maps in encoding 
stage to that of decoding stage. The soft-max activation 
in the output layer, which consists of similar building 
blocks used in the encoding and decoding stages, inher-
ently guarantees the aforementioned sum-one constraint 
of the TC values.

Head position along the axial direction in the field of 
view may vary from patient to patient. If 3-D U-net was 
employed, such positional variations of the head must be 
considered in training dataset preparation unless some posi-
tional-invariance mechanism is introduced into the network 
architecture of the DL model. Then, employing 2-D U-net 
is a simple way to free from the consideration.

An attenuation map can be generated by a linear combina-
tion of the estimated four TC maps with known attenuation 
coefficients of soft tissue, bone, cavity, and background. The 
approximate attenuation coefficients for soft tissue, bone, 
and cavity are 0.096 mm−1, 0.0146 mm−1, and 0.0 mm−1, 
respectively [18].

In our approach, if needed, a final attenuation map can 
be tuned quantitatively by adjusting those attenuation coef-
ficients or by post-processing the estimated TC maps (e.g., 
thresholding small TC values and smoothing the four TC 
maps in different manners). This kind of attenuation map 
tuning is impossible in existing DL-based approaches, which 
directly estimate the pseudo-CT values or attenuation coef-
ficients. Therefore, this tunable feature distinguishes our 
indirect approach from existing direct approaches.

Reconstruction Flow

In our reconstruction flow (Fig. 3), the DL estimate of 
the attenuation map is used as input for scatter + random 
(S + R) estimation and as an initial estimate for attenuation 
map reconstruction by the MLACF, i.e., the DL estimate is 
refined by the MLACF. If the DL estimate is highly reliable, 
this refinement is not required. Processing with DL-based 

Fig. 2   A U-net architecture used for tissue composition estimation. The model accepts a two-dimensional intensity-normalized NAC PET image 
as input and outputs a four-channel tissue composition map. The number in the brackets indicates the number of channels of the feature map
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attenuation map generation was introduced into the existing 
reconstruction flow of our dedicated head TOF-PET scan-
ner [13]. In the scanner, a uniform attenuation map without 
bone and cavity regions, derived from the NAC image is 
currently used as input for S + R estimation and as an initial 
estimate for attenuation map reconstruction. The use of a 
uniform attenuation map is not optimal but easy to imple-
ment and provides clinically acceptable results, as reported 
in a clinical study [22]. In short, we replaced the uniform 
attenuation map in the existing reconstruction flow with the 
DL estimate.

The accuracy of S + R estimation and attenuation map 
reconstruction can be improved by using the DL estimate, 
but this aspect was not investigated in detail in this study. 
In addition, alternating iteration of S + R estimation and 
attenuation map reconstruction, which is expected to pro-
vide better PET quantification, was not tested to simplify 
the reconstruction flow.

Dataset for Training

The DL model for TC estimation was trained using only 
the simulated dataset generated by an in-house analytical 
PET simulation tool. This Sim2Real approach of applying 
AI models trained only on simulated data to real-world 
data is uncommon in DL-based PET data processing and 

is completely distinct from previous DL-based AC meth-
ods using real-world (i.e., clinical) datasets for model 
training [23–25]. Although it is straightforward to train 
AI models using real-world data, it is beneficial to be 
able to build practical AI models using only simulated 
data, because it is not easy for companies to access large 
amounts of clinical data and that is a major barrier for 
companies to start developing AI for medical data. In 
addition, if realistic simulation data can be prepared, AI 
for new or rare cases (e.g., new radiotracers, rare diseases) 
can be developed without waiting for large amounts of 
real data to be accumulated.

Using the BrainWeb dataset [26], we generated a variety 
of activity and attenuation maps as input for PET simula-
tion and the corresponding TC maps. The BrainWeb dataset 
includes a collection of high-resolution, three-dimensional 
(3-D) human head images of anatomical labels, which are 
derived from MR images of 20 adult subjects [26]. Seven-
teen subjects were used in the training step (12 for training 
and 5 for validation). We manually modified the anatomi-
cal labels. Specifically, labels of cavities corresponding to 
sinuses around the nose, cavities mimicking mastoid cells, 
and skin were added or corrected.

The TC maps were generated by conceptually binning 
the high-resolution labels of 0.5-mm isotropic voxels to the 
low-resolution labels of 4.5-mm isotropic voxels, i.e., the TC 

Fig. 3   Proposed reconstruction flow including DL-based tissue composition map estimation
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values in each low-resolution voxel are computed by binning 
9 × 9 × 9 voxels. Here, 4.5 mm corresponds to the voxel size 
of the simulated NAC image.

Activity and attenuation maps were generated by assign-
ing relative activity values and attenuation coefficients to 
each anatomical region. Here, to simulate 18F-fluorodeox-
yglucose (FDG) and amyloid-imaging radiotracers (e.g., 
18F-Flutemetamol, 18F-Florbetapir, and 18F-Florbetaben), 
we generated seven activity patterns with different gray mat-
ter (GM) to white matter (WM) concentration ratios in the 
range of 1:8 to 8:1 (Fig. 4).

The diameter and axial length of a simulated cylindrical 
non-TOF scanner were 300 mm and 180 mm, respectively, 
and the sinogram size was 128 [radial bins] × 64 [angular 
bins] × 452 [ring pairs]. The radial bin pitch was 2.0 mm, 
and the ring pitch was 4.0 mm. The scatter sinogram com-
puted by the single scatter simulation [27] and the uniform 
random sinogram were added to the forward projection true 
sinogram after adjusting their number of counts. Scatter 
fractions were set to 30% and 40%, and the random fraction 
was set to 30%. The simulated numbers of prompt counts 
were 16 M, 32 M, and 64 M. To simulate the finite spatial 
resolution of the PET scanner, noise-free prompt sinograms 

were blurred by a Gaussian filter. Noisy prompt sinograms 
of all simulation settings of all subjects were reconstructed 
using 3-D ordered-subsets expectation–maximization (OS-
EM) [28] without AC and SC at the 4.5-mm isotropic voxel 
with a matrix of 64 × 64 × 64.

To ensure the robustness of the DL model, in addition 
to general data augmentation by the affine transformations 
(flip, rotation, shift, and scaling), global intensity scaling 
and local intensity scaling for the background and skin 
regions were applied independently after intensity nor-
malization. Finally, we prepared approximately 660,000 
slices of NAC images for each GM-to-WM ratio for train-
ing. Examples of simulated NAC images of 16-M prompts 
are shown in Fig. 5.

Model Training

We trained two DL models: the GM model for GM-dominant 
radiotracers and the WM model for WM-dominant 
radiotracers. Specifically, the GM and WM models were 
trained using the simulated dataset of GM-to-WM ratios in 
the range of 8:1–1:1 and 1:1–1:8, respectively. Although 

Fig. 4   Examples of seven activ-
ity patterns with different GM 
to WM concentration ratios 
used in the PET simulation for 
training dataset generation

Fig. 5   Examples of simulated 
NAC PET images of 16 [M] 
prompts with different GM to 
WM ratios
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it is possible to train a single general-purpose model with 
a mixed dataset of PET tracers [29], we trained multiple 
dedicated models to minimize the scope of influence when 
upgrading the models.

The cross-entropy loss was optimized using a gradient-
based optimization algorithm (ADAM) [30] with a learn-
ing rate of 0.001, which was reduced by half if the vali-
dation loss did not decrease after ten training epochs. The 
mini-batch size was 1100, and the number of epochs was 
400. The DL model was trained using the Keras package 
(ver.2.40, https://​keras.​io/) with the TensorFlow libraries 
(ver.2.30) [31] as computing backend. NVIDIA DGX Sta-
tion (OS: Ubuntu 18.04.3 LTS, CPU: Intel Xeon E5-2698 v4 
2.20 GHz, System memory: 256 GB, GPU: NVIDIA Tesla 
V100, GPU memory: 64 GB) was used for model training.

Dataset for Preliminary Evaluation

To demonstrate the feasibility of the proposed DL-based 
AC approach, three patients’ data were used: two patients of 
18F-Flutemetamol (one is amyloid positive, and the other is 
amyloid negative) and one patient of 18F-FDG. These data 
were obtained in a past clinical study using our dedicated 
head TOF-PET scanner [22]. In the reconstruction flow, 
the NAC image was reconstructed at the 4.4-mm isotropic 
voxel with a matrix of 60 × 60 × 37 using 3-D OS-EM. After 
padding the in-plane matrix size to 64 × 64 and intensity 
normalization, each slice of the NAC image was input-
ted to the DL model. The GM model was applied to the 
18F-FDG data, and the WM model was applied to the two 
18F-Flutemetamol data.

PET Quantitative Evaluation

PET quantitative evaluation was performed for the attenu-
ation and scatter-corrected images computed through the 
reconstruction flow mentioned above (Fig. 3). Final 3-D 
reconstruction was performed at the 2.2-mm isotropic voxel 
with a matrix of 120 × 120 × 74 using the list-mode dynamic 
row-action maximum-likelihood algorithm [32] with the 
post-median filter. As a comparison, reconstructions with 
CT-AC [5] were performed using CT images of the same 
subjects acquired during the same clinical study. Prior to 
the reconstructions, CT images were registered to the PET 
image coordinate system by using the 3-D rigid registra-
tion method based on the optimization of mutual informa-
tion [33]. After applying anatomical standardization to the 
reconstructed images using SPM12 (https://​www.​fil.​ion.​
ucl.​ac.​uk/​spm/​softw​are/​spm12/), the mean voxel values in 
ten anatomical regions (frontal lobe, temporal lobe, pari-
etal lobe, occipital lobe, cerebellum, brain stem, striatum, 
thalamus, cingulate gyrus, and white matter) and the relative 

error between the proposed DL-based AC and CT-AC were 
computed using CT-AC as the baseline.

Results

The estimated TC and attenuation maps before and after 
MLACF refinement are shown with the corresponding 
input NAC images and CT-based attenuation maps in 
Figs. 6, 7, and 8. In the figures, DL and DL + MLACF 
mean before and after MLACF refinement, respectively. 
The CT-based attenuation maps show that anatomical 
structures in the neck-side slices are more complex than 
that in the parietal-side slices, and the proposed DL-based 
method tends to estimate anatomical details inaccurately, 
especially in the neck-side slices. In 18F-Flutemeta-
mol cases (Figs. 7 and 8), the attenuation coefficient of 
0.0160 mm−1 was used for bone in the linear combination 
process to compensate underestimation of the bone TC 
value. The reconstructed PET images with DL-based AC 
and CT-AC and their relative error maps are shown in 
Fig. 9, and the corresponding attenuation maps and their 
error (subtraction) maps are shown in Fig. 10. In Fig. 9, 
the relative activity errors in most brain regions are less 
than 5.0%; however, the other regions of bones and cavi-
ties have errors larger than 10%. As shown in Fig. 10, 
bones and cavities correspond to the regions having large 
attenuation errors. Specifically, attenuation coefficients of 
bones and cavities tend to be underestimated and overes-
timated, respectively. The joint histograms of the recon-
structed activity values with the DL-based AC and CT-AC 
are shown in Fig. 11. The histogram bin width was unified 
in the two 18F-Flutemetamol cases but differs from that of 
the 18F-FDG case because their range of activity values is 
different. The joint histograms indicate that overall activ-
ity correlations between the DL-based AC and CT-AC are 
high; however, the reconstructed activity values with the 
DL-based AC tend to be underestimated at high activity 
voxels, and the relative errors are larger for low activ-
ity voxels than for high activity voxels. These trends are 
shared by both the radiotracers.

Axial slices including nasal cavities are separately 
shown in Fig. 12. Attenuation error maps in Fig. 12 also 
show that low attenuation regions such as nasal cavities 
and mastoid cells have large positive errors and, by com-
paring them with the activity error maps in Fig. 9, it is 
apparent that the large attenuation errors of such regions 
were expansively propagated to the PET images.

The relative errors of mean voxel values at each ana-
tomical region between the proposed DL-based AC 
(DL + MLACF) and CT-AC are summarized in Table 1. 
In this table, error values without MLACF refinement 
(i.e., DL-estimated attenuation map was directly used 

https://keras.io/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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in the list-mode reconstruction) were also included. 
The comparison between the DL + MLACF and the DL 
shows that the MLACF refinement resulted in a decrease 
in reconstructed activity values. The bottom row of the 
table shows the counts of regions having smaller abso-
lute errors. There are 30 regions in total (ten regions per 
patient by three patients) without distinguishing between 
patients, and the DL + MLACF has smaller errors in eight 
regions, and the DL has smaller errors in the other 22 
regions. This means that, in our study using the three 
patients’ data, we could not demonstrate the positive 
effects of post-processing the DL-estimated attenuation 
map by the MLACF on PET quantification.

The computation time of our DL inference was less 
than 1.0 s per patient (i.e., not per slice) in our specific 
computation environment. The computational complexity 
of our DL inference would be comparable or lower to that of 
the direct generation methods because we employed ordinary 
simple 2-D U-net architecture; however, our reconstruction 
flow (Fig. 3) contains attenuation map reconstruction step 
by MLACF then its computation time increases overall 
computation time. This is the same as the existing joint 
reconstruction-based DL approach mentioned in the 
introduction. In principle, the computation time of list-mode 
reconstruction is proportional to the number of measured 
coincidence events, and the overall processing time using 

GPU (NVIDIA Quadro RTX 5000) was approximately 
10 min per patient on average.

Discussion

In this study, we developed a new method based on TC esti-
mation to generate Sim2Real DL-based attenuation maps for 
the human head. TC estimation is an instance of semantic 
soft segmentation. The attenuation map was reconstructed 
by the MLACF using the DL estimate of the attenuation 
map (i.e., a linear combination of the TC maps) as the initial 
estimate. Here, the DL models converting the NAC PET 
image to the four-channel TC map were trained with only the 
simulated dataset computed by using the in-house analytical 
PET simulation tool and the open database of high-resolu-
tion human head images of anatomical labels. Our Sim2Real 
approach is distinct from previous DL-based AC methods 
using clinical datasets for model training.

According to the attenuation maps shown in Figs. 6, 
7, 8, 10, and 12, the proposed DL-based method tends to 
estimate anatomical details inaccurately, especially in the 
neck-side slices. However, a visual inspection indicated 
that the head shape and overall anatomical structure of 
soft tissues and bone were estimated well. There are two 
reasons for the inaccuracy in the neck-side slices. First, the 

Fig. 6   Representative slices of the estimated TC and attenuation maps before and after MLACF refinement with corresponding input NAC 
images and CT-based attenuation maps for the 18F-FDG case
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Fig. 7   Representative slices of the estimated TC and attenuation maps before and after MLACF refinement with corresponding input NAC 
images and CT-based attenuation maps for the 18F-Flutemetamol case (amyloid positive)

Fig. 8   Representative slices of the estimated TC and attenuation maps 
before and after MLACF refinement with corresponding input NAC 
images and CT-based attenuation maps for the 18F-Flutemetamol 
case (amyloid negative). The arrows indicate that overestimation of 

the attenuation coefficients in the nasal cavities and mastoid cells and 
underestimation of the skull thickness in DL can be improved through 
the MLACF in DL + MLACF
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anatomical structures of the cavity and bone in the neck-
side slices vary widely from individual to individual, and 
our training dataset derived from 12 subjects would not 
capture the variety of structures. Second, the axial cover-
age of the BrainWeb dataset is limited to 181 mm, which 
covers the whole brain but not the whole head. Therefore, 
the neck-side slices including oral cavities are completely 
missed and the neck-side slices including nasal cavities are 
partially missed in the training dataset. To remedy those 

problems, a larger number of whole-head MR images 
should be collected and segmented, although this task is 
not easy in terms of human, time, and financial resources. 
In any case, the results showed the practicality of the pro-
posed method in the brain region, as we expected.

According to the TC maps shown in Figs. 6, 7, and 
8, the bone TC value of the 18F-Flutemetamol cases 
tends to be smaller than that of the 18F-FDG case. There-
fore, the bone region is obscure on the attenuation map, 

Fig. 9   Reconstructed PET 
images of three subjects 
obtained with DL-based AC 
(DL + MLACF) and CT-AC and 
their relative error maps

Fig. 10   Attenuation maps of 
three subjects obtained with 
DL-based AC (DL + MLACF) 
and CT-AC and their relative 
error (subtraction) maps
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which negatively affects PET quantification (omitted in 
this paper). The larger noise in the input NAC images of 
18F-Flutemetamol cases may cause the degradation.

To compensate for the degradation in the 18F-Flutemetamol 
cases, we adjusted the attenuation coefficient of bone used in 
the linear combination process. Specifically, to compensate 
for the underestimation of the bone TC value, the excessive 
attenuation coefficient of 0.0160 mm−1 was used for bone 
instead of 0.0146 mm−1, which was used in the 18F-FDG 
case. Although this kind of manual parameter adjustment is 
not preferred, our attenuation map generation approach based 
on TC estimation allows this tuning to obtain the preferred 
output.

The joint histograms of the PET images shown in 
Fig. 11 indicate that overall activity correlations between 
the DL-based AC and CT-AC are high and, as shown in 
Table 1, the relative quantification errors of all the anatom-
ical regions are less than 5.0% in both the DL + MLACF 
and the DL. According to the relative error maps shown in 
Fig. 9, although some regions have relatively large errors, 

the relative errors in most brain regions are less than 5.0%. 
This quantification error is worse than that of the previ-
ous DL-based head AC method [20], in which the average 
errors are less than 1% in most brain regions. According 
to Fig. 9, the relative errors outside of the brain region 
are locally large, especially inside the low attenuation 
regions and surrounding areas. These large errors likely 
originate in the overestimation of the attenuation coeffi-
cients of nasal and oral cavities in the attenuation maps 
(see Figs. 10 and 12). In addition to cavity regions, attenu-
ation coefficients in bone regions were underestimated. 
Attenuation errors in bone regions generally affect PET 
quantification of not only the corresponding bone regions 
but also its neighborhood regions such as cerebral cortex 
regions. As shown in Table 1, the reconstructed activity 
values of the cerebral cortex regions (frontal lobe, tempo-
ral lobe, parietal lobe, and occipital lobe) were underesti-
mated in both the DL + MLACF and the DL in comparison 
to the CT-AC. The main reason for this underestimation 
may be due to the deviation of the attenuation coefficients 

Fig. 11   Joint histograms 
of reconstructed activity 
values with DL-based AC 
(DL + MLACF) and CT-AC 
of three subjects. The dot lines 
indicate the relative error range 
of 5% and 10%. The histogram 
bin width was unified in the 
two 18F-Flutemetamol cases 
(b–c) but differs from that of 
the 18F-FDG case (a) because 
their range of activity values is 
different

Fig. 12   Axial slices of the attenuation maps and reconstructed PET images including nasal cavities obtained with DL-based AC (DL + MLACF) 
and CT-AC and their error maps
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in the CT-AC and the template attenuation coefficients we 
assigned in this study. As discussed afterwards, although 
PET quantification performance was slightly degraded 
with the addition of the MLACF in comparison between 
the DL + MLACF and the DL, and there would be room 
for improving the DL model, we believe that reasonable 
quantitative performance was obtained with the proposed 
different types of the approach of combining DL process-
ing and joint image reconstruction.

According to Fig. 8, the MLACF can compensate visu-
ally for the inaccuracy of the DL estimate of attenuation 
maps. Specifically, as indicated by the arrows in Fig. 8, 
the overestimation of the attenuation coefficients in the 
nasal cavities and mastoid cells and the underestima-
tion of the skull thickness were improved through the 
MLACF. On the other hand, as shown in Figs. 6, 7, and 
8, the attenuation coefficients in the bone regions tend to 
decrease through the MLACF, and the bone regions tend 
to be visually obscured. As mentioned above, the trained 
DL model estimates anatomical details inaccurately, and 
then we believe that the MLACF using the DL estimate as 
its initial estimate would be inherently required. However, 
in this study, we could not demonstrate quantitatively that 
the DL + MLACF outperforms the DL without MLACF 
refinement. According to Table  1, the addition of the 
MLACF resulted in a decrease in reconstructed activity 
values. At least, the decrease of the attenuation coefficients 
in the skull through the MLACF directly resulted in the 
decrease of reconstructed activity values of cerebral cortex 
regions because the regions are adjacent to the skull. In 
future studies, we should clarify the statistically quantita-
tive performance of the proposed method and try to adjust 
processing parameters including the template attenuation 
coefficients if needed.

This study has several limitations. First, the number of 
subjects in the evaluation is minimal. Therefore, further 
investigations should be conducted with a larger number 
of subjects in the 18F-FDG and 18F-Flutemetamol stud-
ies, with an emphasis on the versatility of the trained DL 
models and statistical difference between the proposed 
DL-based AC and CT-AC. In such investigations, the 
robustness of the trained DL model against variation of 
input NAC image in terms of anatomical and functional 
spatial patterns and noise level would be of major inter-
est. The noise level could fluctuate from patient to patient 
depending on administration dose, uptake time, data acqui-
sition time, etc. Second, the versatility of the excessive 
attenuation coefficient of 0.0160 mm−1 used for bone in 
the 18F-Flutemetamol cases is unknown and should be 
verified and/or optimized by using a dataset comprising 
a large number of subjects. Third, the applicability of 
the trained GM and WM models to other radiotracers is 
unknown. Although we expect that the trained DL mod-
els work to some extent with other radiotracers exhibit-
ing an activity distribution close to that of 18F-FDG and 
18F-Flutemetamol, fine-tuning of the trained DL models 
using the simulated dataset of the target radiotracers would 
be required.

Conclusion

Here, we present, to our knowledge, the first attempt to 
generate attenuation maps of the human head via Sim2Real 
DL-based tissue composition estimation from model train-
ing using only the simulated PET dataset. The proposed 
DL model trained using only the simulated dataset tended 
to estimate anatomical details inaccurately, especially in 

Table 1   The relative errors 
of mean voxel values at 
each anatomical region 
between the DL-based AC 
(the DL + MLACF and the 
DL without MLACF) and 
CT-AC (baseline). The asterisk 
indicates that the DL + MLACF 
has smaller absolute errors than 
the DL, and the bottom row 
is the count of regions with 
smaller absolute errors

Region (a) 18F-FDG (b) 18F-Flutemetamol 
(amyloid positive)

(c) 18F-Flutemetamol 
(amyloid negative)

DL + MLACF DL DL + MLACF DL DL + MLACF DL

Frontal lobe − 3.60 [%] − 2.99 [%] − 1.62 [%] − 1.05 [%] − 2.25 [%] − 1.15 [%]
Temporal lobe − 1.13 [%] − 1.00 [%] + 0.02 [%] * − 0.33 [%] + 0.33 [%] * + 0.64 [%]
Parietal lobe − 3.69 [%] − 2.91 [%] − 0.96 [%] − 0.02 [%] − 4.44 [%] − 3.55 [%]
Occipital lobe − 3.93 [%] − 3.33 [%] − 4.46 [%] − 3.03 [%] − 1.65 [%] − 1.05 [%]
Cerebellum + 0.16 [%] * + 0.45 [%] + 2.21 [%] + 1.97 [%] − 1.57 [%] − 1.00 [%]
Brain stem + 1.77 [%] * + 2.48 [%] + 0.66 [%] + 0.61 [%] − 0.95 [%] * + 1.16 [%]
Striatum + 0.69 [%] * + 1.19 [%] − 0.91 [%] − 0.73 [%] − 0.07 [%] * + 0.64 [%]
Thalamus + 0.65 [%] * + 1.55 [%] − 1.74 [%] − 1.11 [%] − 2.75 [%] − 1.40 [%]
Cingulate gyrus − 0.71 [%] + 0.22 [%] − 1.24 [%] − 0.62 [%] − 1.80 [%] − 0.32 [%]
White matter − 1.19 [%] − 0.65 [%] − 1.34 [%] − 0.96 [%] − 2.07 [%] − 0.85 [%]
Regions with 

smaller absolute 
errors

4 6 1 9 3 7
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the neck-side slices. However, it succeeded in estimating 
overall anatomical structures, and the accuracy of DL-
based AC was comparable to that of CT-AC. Although the 
number of clinical PET data and kind of radiotracers were 
limited in the evaluation, we believe that the proposed 
DL-based attenuation map generation approach combined 
with MLACF is also a promising CT-less AC approach.
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