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Abstract
Improving detection and follow-up of recommendations made in radiology reports is a critical unmet need. The long and 
unstructured nature of radiology reports limits the ability of clinicians to assimilate the full report and identify all the per-
tinent information for prioritizing the critical cases. We developed an automated NLP pipeline using a transformer-based 
ClinicalBERT++ model which was fine-tuned on 3 M radiology reports and compared against the traditional BERT model. 
We validated the models on both internal hold-out ED cases from EUH as well as external cases from Mayo Clinic. We 
also evaluated the model by combining different sections of the radiology reports. On the internal test set of 3819 reports, 
the ClinicalBERT++ model achieved 0.96 f1-score while the BERT also achieved the same performance using the reason 
for exam and impression sections. However, ClinicalBERT++ outperformed BERT on the external test dataset of 2039 
reports and achieved the highest performance for classifying critical finding reports (0.81 precision and 0.54 recall). The 
ClinicalBERT++ model has been successfully applied to large-scale radiology reports from 5 different sites. Automated 
NLP system that can analyze free-text radiology reports, along with the reason for the exam, to identify critical radiology 
findings and recommendations could enable automated alert notifications to clinicians about the need for clinical follow-up. 
The clinical significance of our proposed model is that it could be used as an additional layer of safeguard to clinical practice 
and reduce the chance of important findings reported in a radiology report is not overlooked by clinicians as well as provide 
a way to retrospectively track large hospital databases for evaluating the documentation of the critical findings.

Introduction

Radiology reports not only document the radiologist’s obser-
vations and diagnosis of disease observed on images, but 
importantly, they also convey a description of critical and 
incidental findings, as well as recommendations for follow-
up of those findings [1]. A critical finding is defined as a 
finding in imaging exam that requires immediate or urgent 
communication with the provider (person who placed the 
order) since these findings reflect conditions that are life-
threatening (e.g., tension pneumothorax) or conditions that 

require an immediate change in the patient management 
(e.g., retained surgical objects) [2]. It is critical for the phy-
sicians to be aware of and keep track of these findings in 
order to render timely medical care. However, in the cur-
rent high-volume environment of clinical care with rising 
physician burn-out, there can be a tendency for clinicians 
to focus on the urgent current clinical issues first and non-
urgent follow-up on other tangential issues later [3]. Con-
sequently, important incidental findings are often not fol-
lowed up by the physicians. In fact, one study found that in 
51% of cases, physicians failed to obtain the recommended 
follow-up exams. Moreover, litigation with settlements of 
up to $2.5 M from physicians and hospitals related to the 
lack of following recommendations for critical or incidental 
findings have been reported [4].

Identifying and tracking critical findings in radiology 
reports provides an efficient way for the automated genera-
tion of alerts for recommendations of further follow-up. Theo-
retically, extraction of the radiological findings should be a 
straightforward task since the American College of Radiology  
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(ACR) outlines a structured format of the radiology report 
for the communication of diagnostic imaging findings which 
states that imaging findings are contained in the body of the 
report, while specific diagnosis should be given in the separate  
“impression.” However, despite these guidelines, radiology 
reporting still includes extensive variations—starting from the 
usage of varying terms for describing findings—to the section 
within which the findings are documented. Thus, given the 
linguistic and structural complexity of the radiologic docu-
mentation, identification of critical findings becomes a chal-
lenging problem and thus, often, the critical imaging findings 
are missed in this universal form of communication between 
radiologists and referring physicians. Although, it could be 
well suited for an informatics solution via computerized text 
analysis which can incorporate semantic language space to 
track the synonyms and acronyms of the findings and allow 
the combinations of multiple sections of the radiology reports. 
Such systems not only allow to improve the communication 
between the care team but also provide a way to retrospec-
tively track large hospital databases for evaluating the docu-
mentation of the critical findings and identifying “missed” 
cases which can ultimately contribute to healthcare quality 
assessment and epidemiological studies.

Prior work in this area has used simplistic rule-based 
methods that do not perform sufficiently accurately [5] and 
often failed to present the generalization of the data from 
centers other than those used to develop the system [6–8]. 
A major limitation of natural language processing (NLP) 
methods developed to date is limited generalizability; their 
performance varies depending on the data used to train the 
models, and they often do not perform well on data other 
than those used to train the model [8]. To address the poten-
tial limitation of generalizability, one needs to collect radi-
ology reports from multiple different sites to obtain dataset 
that is more representative of the populations on which the 
model will be applied and report the performance on both 

internal and external datasets. However, there are major bar-
riers to sharing data among hospitals due to privacy restric-
tions which limits the evaluation of the generalizability of 
the existing NLP systems.

Our objective is to develop an automated NLP system 
that can analyze free-text radiology reports, along with 
the reason for the exam, to identify critical findings from 
large-scale hospital databases and raise alerts for the missed 
cases. Such model needs to be trained and validated with a 
large-scale multi-modal dataset to capture different types 
of critical findings (e.g., neurologic—hemorrhage, GU—
Ectopic pregnancy, cardiac—acute myocardial infraction) 
from radiologic reporting of various modalities (MR, CT, 
Ultrasound). In this study, we proposed a transformer based 
[9] ClinicalBERT++ model by fine-tuning the Clinical-
BERT model on 3 M radiology reports and validated the 
performance using both internal cases from Emory Uni-
versity Hospital (EUH) and external ED cases from Mayo 
Clinic. We performed a detailed evaluation of the model 
using different settings and presented error analysis for 
model explainability using interactive model visualization 
of LIME.

Methods

Figure 1 presents the overall pipeline and subsections below 
and describes each processing block.

Dataset

Ethical review was obtained from the Emory Institutional 
Review Board (IRB) with permission to extract radiology 
reports for patients who had an emergency room visit in 
2019 at Emory University Hospital (EUH). Retrospective 

Fig. 1   The NLP Pipeline for 
developing the system and 
validation strategy. Showing 
both the internal and external 
validation strategy
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manual labeling of 138,446 radiology reports was performed 
by 5 radiology residents (1–3 years of experience) under the 
supervision of attendings (5–10 years). An annotation key 
(see Appendix) developed by ACR’s Actionable Reporting 
Work Group was used to analyze the reports. Among the 
5 radiology residents, the agreement score (Fleiss kappa) 
was 0.81 on 100 common cases which shows that there is a 
substantial agreement between the annotators. In addition 
to the internal dataset, we also obtained the approval from 
Mayo Clinic IRB and retrieved the radiology reports from 
patients who had an emergency room visit in 2019. We used 
the Mayo Clinic data only for external validation and manu-
ally collected labels for randomly selected 2039 cases from 
reading of two attendings (Cohen kappa 0.76). Similar to 
EUH, the reports were annotated retrospectively by analyz-
ing the radiology report text. Figure 2 shows the distribution 
of data in each category of EUH and Mayo Clinic reports, 
including the acquisition modalities.

Report Pre‑Processing

We extended our NLP methods to parse the clinical his-
tory, imaging protocol, findings, and impression sections of 
the radiology reports using section segmentation based on 
the header. In order to generalize the section segmentation 
across multiple institutions, we extracted all the variations of 
the headers using a similar word list generated by the Word-
2Vec language model [10] trained on 3 M radiology reports 
from EUH. Such non-contextual language model generates 
a similar word list only by reflecting co-occurrence statistics 
which is sufficient for capturing header variations between 
reports given that such words appear in similar contexts. 
We computed the similar word list for each header by inter-
secting the list of other headers. For example, generated 
similar wordlists for the “clinical history” section include 

“indications,” “history,” “patient history,” “reason for exam,” 
and “reason for order.” After the section segmentation, we 
used the terms and their synonyms from the RadLex ontol-
ogy [11] to normalize words across modalities by mapping 
to the root terms. All the communication statements between 
the radiology and care team were removed from the radiol-
ogy reports before parsing to reduce the information leakage 
in the model training.

Model Training and Validation

After the section segmentation, we developed and tested 
classifier models by combining different sections of the radi-
ology reports. The EUH data were split randomly in training 
validation and test sets in a 60:20:20 ratio and the majority 
class (non-acute) was down-sampled for training. We used 
Mayo Clinic data for external validation only. For classifying 
the reports, we adopted two distinct transformer models—
BERT and ClinicalBERT++. BERT [12] architecture uses bi-
directional transformers and generates contextualized word 
representations by training a masked language model. It has 
been proven to be one of the most powerful natural language 
processing models to date and had improved the state-of-
art performance on at least 11 tasks when it was published. 
BERT is pre-trained on two unsupervised learning tasks of  
English news text, masked language model, and next sen-
tence prediction. In contrast, ClinicalBERT [13], was ini-
tially trained on PubMed abstracts (PubMed),  Central 
full-text articles (PMC), and all MIMIC notes (implemen-
tation available on 2) and expected to capture the clinical 
language space. In order to capture the radiology language 
space, we use masked language modeling tasks to fine-tune 
pre-trained ClinicalBERT model using masked language 
model on 3 M radiology reports (clinical history, finding, 
and impression section) from EUH and developed a new 

Fig. 2   Distribution of data—EUH (training and internal test) and Mayo Clinic (external test)—based on the categories (left) and based on the 
modalities (right)



108	 Journal of Digital Imaging (2023) 36:105–113

1 3

version so the model would learn specific domain knowl-
edge regarding radiology. The models were fine-tuned on a 
high-performance computing cluster with PyTorch, Pandas, 
and Numpy libraries with modified source code from Hug-
gingFace Transformers. Models were trained on NVIDIA 
Tesla V100 GPUs with 32 GB of memory.

After fine-tuning the language space, the ClinicalBERT++ 
model was trained for the critical finding classification task. 
Hyperparameter configurations were finalized by grid search 
on the validation data, with a batch size of 20 for smaller 
models, 10 epochs, dropout of 0.1, weight decay of 0.1, and 
the AdamW optimizer (ε = 10–8, β1 = 0.9, β2 = 0.999). Dur-
ing the evaluation, beam search with 10 beams and forbid 
trigram repetition was used. The model was then applied 
to a cohort of reports generated in the care of patients in 
the Emergency Department for each of the 5 hospitals. A 
report acuity score was assigned as the proportion of reports 
classified as acute and critical to those that were flagged as 
normal. After the training completion, we externally tested 
the model on the Mayo Clinic data without any alteration. 
The Mayo Clinic reports were also pre-processed using the 
same codebase developed for EUH.

Results

Figure 3 presents the word distribution statistics across EUH 
and Mayo Clinic for each class label where tags are top 200 
frequent single words or bigrams, and the frequency of each 
tag appearance is shown with font size. As seen from the 
representation, common critical findings in EUH are usu-
ally trauma related while in Mayo, there are rare trauma-
related words that appear in the frequent word list. Given the 
differences in practice setting types (e.g., trauma center vs. 

oncology center), the generalization is even more challeng-
ing and resultant a simultaneous effect in language space. 
However, we purposefully fine-tuned the ClinicalBERT 
weights on the 3 M generic radiology reports to account for 
such variations.

Table  1 shows the performance of both BERT and 
ClinicalBERT++ on the hold-out internal test set from EUH 
and the external set from Mayo Clinic using only the finding 
or the impression section. The ClinicalBERT++ performed 
optimally using the impression section rather than findings. 
This could be due to the summarized information repre-
sentation in the impression section and the fact that trans-
former models are sensitive to text length as the model will 
consume a maximum of 512 tokens and truncate anything 
beyond the length. ClinicalBERT++ model achieved 0.87 
overall f1-score and 0.73 f1-score for the Critical finding 
category. However, the BERT model on the internal hold-out 
test data outperformed ClinicalBERT++ with 0.95 overall 
f1-score and 0.82 f1-score for the Critical finding. On the 
other hand, it failed to retain the similar performance on the 
for critical finding reports from the external test data and 
achieved only 0.44 f1-score while ClinicalBERT++ achieved 
0.65 f1-score. The overall weighted f1-score stays similar 
between internal and external test datasets.

In order to reduce the false positive and negative for criti-
cal findings, we combined the reason for the exam along 
with the impression section and evaluated both the models  
in Table 2. Given the chance to analyze the reason for 
ordering the exam, the performance of both the models 
improved up to 0.96 overall f1-score on the same internal 
test data in this setting. ClinicalBERT++ outperformed 
BERT on the external test dataset and achieved the highest  
performance for classifying critical finding reports (0.81 pre-
cision and 0.54 recall) when the BERT model achieved 0.23 

Fig. 3   Word-cloud representa-
tion of EUH and Mayo data-
set—stratified by class labels
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precision and 0.33 recall. This drop in the performance is 
primarily due to the linguistic variations between the internal 
and external datasets as well as the class-imbalanced during 
the model training. However, due to the representation of the 
realistic performance, we did not try to artificially balance 
the dataset. The model primarily contains the false negative 
cases and only 15% false positive for critical finding.

For ClinicalBERT++, we explored the reason for the 
false negative cases for critical findings using LIME [14] 

which can generate model-agnostic visual explanations of 
machine learning models by weighting the importance of 
each word. Figures 3 and 4 show false negative examples of 
the ClinicalBERT++ model using combined text from clini-
cal history and impression section where the weights are 
represented as class-wise colormap. Figure 4 represents a 
case from the external Mayo Clinic dataset where the model 
incorrectly predicted a critical case as non-acute. The model 
correctly identified bowel “perforation” as a highly weighted 

Table 1   Performance of the 
models using only finding 
or only impression section. 
Bold text represents optimal 
performance on the specific 
dataset

Labels Model Finding section Impression section Support

Precision Recall F1-score Precision Recall F1-score

Internal hold-out test set
Acute BERT 0.93 0.95 0.94 0.91 0.72 0.80 1436
Critical 0.82 0.82 0.82 0.76 0.67 0.71 136
Non-acute 0.98 0.96 0.97 0.84 0.96 0.90 2247
Overall (weighted) 0.95 0.95 0.95 0.87 0.86 0.86 3819
Acute ClinicalBERT++ 0.91 0.72 0.80 0.92 0.75 0.83 1436
Critical 0.76 0.67 0.71 0.78 0.68 0.73 136
Non-acute 0.84 0.96 0.90 0.86 0.96 0.91 2247
Overall (weighted) 0.87 0.86 0.86 0.88 0.87 0.87 3819
External test
Acute BERT 0.06 0.15 0.09 0.79 0.81 0.80 325
Critical 0.20 0.33 0.25 0.67 0.33 0.44 24
Non-acute 0.76 0.53 0.63 0.96 0.96 0.96 1690
Overall (weighted) 0.64 0.47 0.54 0.93 0.93 0.93 2039
Acute ClinicalBERT++ 0.06 0.16 0.09 0.64 0.55 0.60 325
Critical 0.26 0.38 0.31 0.81 0.54 0.65 24
Non-acute 0.77 0.55 0.64 0.92 0.94 0.93 1690
Overall (weighted) 0.65 0.49 0.55 0.87 0.88 0.87 2039

Table 2   Performance of the 
models using both clinical 
history and impression section. 
Bold text represents optimal 
performance on the specific 
dataset. Shows the p-value for 
model comparison

Labels Model History and impression section Support

Precision Recall F1-score p-value

Acute BERT 0.94 0.95 0.95 p > 0.5 1436
Critical 0.82 0.86 0.83 136
Non-acute 0.97 0.97 0.97 2247
Overall (weighted) 0.96 0.96 0.96 3819
Acute ClinicalBERT++ 0.93 0.96 0.95 ref 1436
Critical 0.92 0.84 0.88 136
Non-acute 0.98 0.96 0.97 2247
Overall (weighted) 0.96 0.96 0.96 3819

External test
Acute BERT 0.31 0.89 0.45 p < 0.01 325
Critical 0.23 0.33 0.27 24
Non-acute 0.97 0.61 0.75 1690
Overall (weighted) 0.85 0.65 0.69 2039
Acute ClinicalBERT++ 0.64 0.55 0.60 ref 325
Critical 0.81 0.54 0.65 24
Non-acute 0.92 0.94 0.93 1690
Overall (weighted) 0.87 0.88 0.87 2039
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word for the report to be critical but given the pancreas 
transplant history, the model assigned more weight to the 
non-acute words, like “inflammation.”

Figure 5 represents another case where the model is pre-
dicted as acute while the case is actually critical. Similar to 

the previous example, “ischemia” is identified as an impor-
tant word for classifying as critical but “pneumatosis” and 
“bowel” issues pull the classification decision towards acute. 
Based on these explanations, we can note the fact that the 
current model has a tendency to classify critical findings 

Fig. 4   A critical finding case from the external validation dataset 
classified by the model as non-acute—(left) we highlight the imaging 
finding and (right) we present the LIME text highlight for both the 

wrongly predicted class non-acute and original class critical finding. 
Darker color represents higher weights. Dates are blacked out for pre-
serving patient privacy

Fig. 5   A critical finding case from the external validation data-
set classified by the model as Acute—(left) we highlight the imag-
ing finding and (right) we present the LIME text highlight for both 

the wrongly predicted class acute and original class critical finding. 
Darker color represents higher weights
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as acute of reports mention multiple findings within close 
vicinity of the critical finding texts.

Summary on Running with Multiple Centers

To understand the scalability of the ClinicalBERT++ model, 
we applied the trained model to all the ED cases from four 
different hospital systems in the Emory system. Hospital 
1 is a designated Safety Net Hospital (SNH) and Level 1 
Trauma Center, hospital 2 is on the same campus as the 
School of Medicine, the undergraduate and other graduate 
schools, hospital 3 is in the urban center, and hospitals 4 
and 5 are community-based hospitals in the more suburban 
areas of the city. Hospitals 1–3 are the primary teaching hos-
pitals. Hospital 1 has the largest number of radiology exams 
performed in the emergency room (n = 166,789) compared 
to hospitals 2–5 (Table 3). We found that report acuity did 
vary from site to site and hospital 1 which is a SNH, had 
a statistically significant higher proportion of Critical and 
Acute reports (28.9%), compared to all the other hospitals. 
Hospital 1 is also the only level 1 trauma center in the sys-
tem so the finding of the highest report acuity is consistent 
with the expectation.

*Acute and critical cases/total reports in hospital 1 were 
compared to the proportion in each of the other hospitals.

Discussion

Radiologic findings often guide the next steps for patients, 
whether it be transferring to an operating room or an inten-
sive care unit, placement in a floor bed, or discharge. Acu-
ity identified in the radiology reports can also be leveraged 
as a triage process for patients immediately within their 
care pathway. However, a large portion of the radiology 

reports exists in an unstructured format making it difficult 
to extract insights rapidly across multiple reports from mul-
tiple modalities despite expanding use of imaging for diag-
nosis and patient triage. However, there are various open-
source libraries and NLP tools available that facilitate the 
automated extraction of information from the unstructured 
and semi-structured reports to the benefit of the data min-
ing of radiology. Such research endeavors can also facilitate 
epidemiological studies involving large amounts of human 
language.

We develop an automated NLP system that can rapidly parse 
a large set of free-text radiology reports from multiple domains 
to identify critical and acute radiology findings to enable and 
alert notifications to clinicians about the need for clinical fol-
low-up as well as generate a curated large-scale database with 
critical and acute finding labels. Most of the existing systems 
are rule-based and thus, are non-trivial to generalize outside 
the organization of training due to variations in the language 
and templates. Our experimentation showed that adding the 
clinical history section allow the model to understand the con-
text of the study and such case context improved the model 
performance for determining the critical vs acute classification. 
We believe the model is simulating clinical practice by learn-
ing how humans contextualize results in determining the report 
label. For example, pneumoperitoneum in the post-operative 
period without clinical history or reason for exam information 
may be misclassified as a critical finding. Such flagging may 
inadvertently create additional work for the radiologists having 
to correct it, or worse if not corrected, could potentially have 
downstream consequences as a result. With the context of a 
recent surgery, the NLP accurately classifies the pneumoperi-
toneum as an expected finding.

Our approach addresses the two major limitations of effi-
ciency in multiple radiology domains and generalizability 
that have hindered the prior approaches to this problem, as 
our system adopted transformer architecture fine-tuned with  
a large number of radiology cases to create a radiology-
specific language space. It learnt to recognize and unify 
the diverse ways that the same concepts are expressed in  
narrative reports and provided high accuracy for detecting 
critical findings from different types of radiology reports 
performed in ED. We compared ClinicalBERT++ model 
against the state-of-the-art BERT model which was pri-
marily trained on news articles and achieved performance 
improvement for the critical finding class. The proposed 
NLP model presents high accuracy for classifying acute, 
non-acute, and critical classes across multiple sites, even 
when the language space is significantly different (Fig. 2). 
The NLP model has been successfully applied to large- 
scale radiology reports from 5 different sites. Even though 
the ground truth labels were not available for those cases to 
measure the performance, the findings are consistent with 
the human expectation.

Table 3   Number of acute, non-acute, and critical cases (% of cases) 
in 5 distinct hospitals—annotated by the ClinicalBERT++ model

Total 
radiology 
reports

Critical Acute Non-acute *p-value

Hospital 1 166,789 2,635 45,573 118,581 ***
(1.58%) (27.32%) (71.10%)

Hospital 2 65,035 835 9,263 54,937 p < 0.0001
(1.28%) (14.24%) (84.47%)

Hospital 3 44,703 512 6,475 37,716 p < 0.0001
(1.15%) (14.48%) (84.37%)

Hospital 4 32,684 408 4,609 27,667 p < 0.0001
(1.25%) (14.10%) (84.65%)

Hospital 5 17,345 218 2,415 14,712 p < 0.0001
(1.26%) (13.92%) (84.82%)
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The model failed for cases where multiple findings are 
represented in a non-structured way within the radiology 
impression section (Figs. 4 and 5). Even though the trans-
former model trained in unsupervised way using a large 
dataset can handle significant variations in terminology, the  
structural variations of reporting (e.g., multiple findings in 
the same sentence) still affect the model performance. In  
order to obtain optimal performance, standardized radi-
ology reporting may play a critical role. To address the  
challenge of generalizability, future work will use feder-
ated learning to leverage reports from multiple institutions 
thereby facilitating training on more representative diverse 
data. A robust automated system that can incorporate NLP 
models can provide safeguards to clinical practice and 
reduce the chance of important observations being over-
looked by clinicians. Rather than the automated insertion 
of the model finding in the reporting, we hypothesized that 
our system could ultimately be integrated into the radiol-
ogy workflow as an alerting system from both physicians  
and patients for appropriate follow-up by interfacing it to 
the HL7 feed.

The ClinicalBERT++ model will be freely available  
with open-source licensing in for community development.  
Such radiology-specific language models trained on large-
scale multi-modal data could play an important role in 
developing specific NLP solutions for different radiology 
use cases. The clinical significance of the proposed model 
is that it could be used as an additional automated layer 
of safeguard to clinical practice and reduce the chance of 
important findings reported in a radiology report not be 
overlooked by clinicians.
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