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Abstract
A correct protocol assignment is critical to high-quality imaging examinations, and its automation can be amenable to natural  
language processing (NLP). Assigning protocols for abdominal imaging CT scans is particularly challenging given the mul-
tiple organ specific indications and parameters. We compared conventional machine learning, deep learning, and automated 
machine learning builder workflows for this multiclass text classification task. A total of 94,501 CT studies performed over 
4 years and their assigned protocols were obtained. Text data associated with each study including the ordering provider 
generated free text study indication and ICD codes were used for NLP analysis and protocol class prediction. The data was 
classified into one of 11 abdominal CT protocol classes before and after augmentations used to account for imbalances in 
the class sample sizes. Four machine learning (ML) algorithms, one deep learning algorithm, and an automated machine 
learning (AutoML) builder were used for the multilabel classification task: Random Forest (RF), Tree Ensemble (TE), Gra- 
dient Boosted Tree (GBT), multi-layer perceptron (MLP), Universal Language Model Fine-tuning (ULMFiT), and Google’s AutoML  
builder (Alphabet, Inc., Mountain View, CA), respectively. On the unbalanced dataset, the manually coded algorithms all 
performed similarly with F1 scores of 0.811 for RF, 0.813 for TE, 0.813 for GBT, 0.828 for MLP, and 0.847 for ULMFiT. 
The AutoML builder performed better with a F1 score of 0.854. On the balanced dataset, the tree ensemble machine learn-
ing algorithm performed the best with an F1 score of 0.803 and a Cohen’s kappa of 0.612. AutoML methods took a longer 
time for completion of NLP model training and evaluation, 4 h and 45 min compared to an average of 51 min for manual 
methods. Machine learning and natural language processing can be used for the complex multiclass classification task of 
abdominal imaging CT scan protocol assignment.
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Abbreviations
AI	� Artificial intelligence
ML	� Machine learning
NLP	� Natural language processing
RF	� Random forest
TE	� Tree ensemble
GBT	� Gradient boosted tree
MLP	� Multi-layer perceptron
ULMFiT	� Universal language model fine-tuning
AutoML	� Automated machine learning

Introduction

Radiology utilization trends in the inpatient and outpatient 
settings are proliferating with the most substantial increase 
seen in CT scan volumes [1, 2]. Radiologists spend time 
reviewing study indications and the patient’s clinical history 
to assign appropriate protocols for each scan. An accurate 
protocol is critical to ensure imaging is performed on the 
correct body part, contrast is appropriately administered, 
and scanner parameters are tailored to the patient’s specific 
need [3]. Although some imaging indications are complex 
and benefit from active radiologist involvement, automating 
the protocol assignment of routine examinations may allow 
a radiologist to spend more time on other interpretive and 
non-interpretive tasks [4, 5].

Applying machine learning (ML) techniques in natural 
language processing (NLP) may alleviate the radiologist’s 
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workload by automating the protocol assignment of rou-
tine imaging examinations [6]. Prior research has begun 
to investigate natural language processing for imaging 
protocol assignments. For instance, Lee et al. established 
that machine learning can be used to differentiate muscu-
loskeletal MRI orders as “routine” or “tumor” examination 
using the patient’s age, gender, referring department, and 
indication [7]. Similarly, another study applied NLP towards 
musculoskeletal protocol classification to predict whether 
intravenous contrast was necessary for an MRI scan based on 
the clinical indication [8, 9]. However, compared with these 
binary classification tasks, protocolling often requires choos-
ing between more than two possible options. In abdominal 
imaging, the complexity of indications and parameters for 
the multiple possible organ-specific pathologies requires 
selecting from many CT protocol choices.

Rapid developments in machine learning over the last 
decade prompted by hardware and software advancements 
have led to many algorithms and models to choose from. As 
the field has developed from experimental to producing top 
results in the real world, there has been a push to simplify 
and aid in implementing machine learning for the industry. 
Conventionally, ML tools range in complexity. Researchers 
can choose to build models entirely in code using program-
ming languages such as Python with open-source libraries 
such as TensorFlow or PyTorch [10]. Alternatively, tools 
such as KNIME (Knime AG, Zurich, Switzerland) offer a 
drag-and-drop graphical interface [11]. These tools typically 
run on user-owned computer hardware.

The advent of cloud-based, automatic ML tools has 
decreased the barrier to entry for ML by automating the 
model selection and parameter-tuning as well as obviating 
the need for powerful on-premise hardware. Although these 
features can make ML more accessible to the radiologist, 
a paucity of literature directly compares automated ML 
approaches against conventional methods within medical 
imaging.

Therefore, we applied natural language processing to ana-
lyze radiology study indication text data for the multiclass 
classification task of abdominal CT protocol assignment. We 
also assessed the accuracy, ease-of-use, and time needed to 
build and run manually designed machine learning models 
compared to automated machine learning builders.

Materials and Methods

Gathering and Preprocessing the Protocol Data

The study was approved by the authors’ Institutional 
Review Board. From the radiology information system 
(RIS) (Syngo Workflow, Siemens Healthineers, Germany), 
abdominal imaging CT studies performed between 2016 

and 2019 at our institution were identified. All study and 
final assigned protocol data were exported in a tabular 
format and initially cleaned and normalized using Excel 
(Microsoft, Redmond, Washington, USA). Pertinent text 
data such as the referring provider’s free text indication 
data-why the study was requested to be performed-and 
the associated ICD diagnosis code were concatenated 
into a single string column. All personal identifiers were 
stripped. As the automatic builder tool does not support 
the use of both structured and unstructured data elements 
for NLP, the date of the study, patient age, gender, and 
others were also removed to maintain comparability of the 
ML models’ performance. Duplicate studies with identical 
text columns were removed Table 1.

Thirty-three abdominal imaging CT protocols were 
grouped into 11 organ-specific protocol classes that matched 
the grouping presented on RIS. For example, all “CT Abdo-
men and Pelvis” protocols, including those with or without 
iv and oral contrast, were included under the “Abdomen 
and Pelvis” protocol class. Similarly, all “CT Liver” proto-
cols including three and four-phase studies were included 
under the “Liver” protocol class. A complete list of protocol 
classes and the protocols they include are listed in Table 2. 
The final protocol performed for the study and assigned by 
the radiologist was used as the ground truth. The protocol 
class names were organized and substituted for an integer 
value based on a standardized key. Using this two-column 
format of the integer value of the assigned protocol class 
followed by the associated text information, the data was 
processed by each of the workflows separately.

To address data imbalance, a combination of undersam-
pling, augmentation, and oversampling was used depend-
ing on the protocol class [12]. Random undersampling was 
applied to the largest class (Abdomen and Pelvis) to 20,000 
samples. Text-based data augmentation and random over-
sampling was used in all other classes within the training 
data set to achieve data balance with 20,000 samples in all 
classes. All augmentations and sampling were performed 
only on the training set with the validation set remaining 
unmodified. Augmentation techniques used included back 
translation by translating the protocol indication text data 
to French and translating the output back to English to 
create minor modifications without loss of meaning [13]. 
Additional augmentations included replacing words with 
synonyms, randomly swapping words within a sample, and 
randomly deleting a word from a sample. The data was then 
processed by the manual workflows including through the 
four machine learning algorithms and the universal language 
model based deep learning algorithm. The data augmenta-
tion step is considered part of the data pre-processing steps 
for manual machine learning workflows. Therefore, only the 
original training dataset was submitted to the commercial 
automated machine learning builder.
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Manual Machine Learning Model Workflow

The free, open-source data analytics platform, KNIME, 
was used to preprocess further and evaluate the data using 
common NLP operations such as erasing punctuation, fil-
tering stop words, and Porter stemming. The data was then 
converted to a two NGram bag-of-words model before 

vectorized using the inverse document frequency. Then, this 
preprocessed data was randomized and divided into training  
and testing sets before being input into four machine learn-
ing algorithms separately: random forest (RF), tree ensem-
ble (TE), gradient boosted trees (GBT), and multi-layer per-
ceptron (MLP) Table 3 [14, 15]. Random forest and tree 
ensemble algorithms were selected as examples of machine 

Table 1   Protocol dataset 
metrics

Unbalanced dataset Balanced dataset

Samples (n) 94,501 229,450
Median words per sample 12.0 12.0
Protocol classes 11 11
  Samples per Class (n) (%) (n) (%)
   Renal Stone 4145 4.39 20,000 9.1
   Abdomen and Pelvis 66,448 70.3 20,000 9.1
   Abdomen 4471 4.73 20,000 9.1
   Pelvis 971 1.03 20,000 9.1
   Kidney 2417 2.56 20,000 9.1
   Urogram 5352 5.66 20,000 9.1
   Cystogram 139 0.15 20,000 9.1
   Pancreas 2086 2.21 20,000 9.1
   Enterography 3733 3.95 20,000 9.1
   Liver 3746 3.96 20,000 9.1
   Adrenal 993 1.05 20,000 9.1
  Training set samples (n) (%) (n) (%)
   Machine learning and deep learning models 85,051 90.0 220,000 96.0
   Automated deep learning builder 72,094 80.0 –––- –––
  Validation Set Samples (n) (%) (n) (%)
   Machine learning and deep learning models –––- ––– –––- –––
   Automated deep learning builder 9012 10.0 –––- –––
  Test set samples (n) (%) (n) (%)
   Machine learning and deep learning models 9450 10.0 9450 4.0
   Automated deep learning builder 9012 10.0 –––- –––

Table 2   Abdominal CT protocol classes

# Protocol name Protocol description(s)

1 Renal stone Acute flank pain/Renal stone protocol
2 Abdomen and pelvis With IV and oral contrast; with IV, oral and rectal contrast; with IV and without oral contrast; without IV and with 

oral contrast; without iv and without oral contrast
3 Abdomen With IV and oral contrast, with IV and without oral contrast, without IV and with oral contrast, without iv and 

without oral contrast
4 Pelvis With IV and oral contrast; with IV, oral, and rectal contrast; without IV, with oral and rectal contrast
5 Kidney Triple phase kidneys with pelvis, Triple phase kidneys without pelvis
6 Urogram Triple phase urogram, Urogram with split bolus
7 Cystogram Cystogram with IV contrast, Cystogram without IV contrast
8 Pancreas Pancreas protocol with pelvis, Pancreas protocol without pelvis
9 Enterography 1-Phase Enterography, 2-Phase Enterography
10 Liver 2-Phase Liver protocol, 2-Phase Liver protocol with pelvis, 3-Phase Liver protocol, 3-Phase Liver protocol with 

pelvis, 4-Phase Liver protocol, 4-Phase Liver protocol with pelvis
11 Adrenal Adrenal protocol with contrast, Adrenal protocol without contrast, Adrenalectomy protocol
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learning algorithms commonly used for classification tasks. 
Gradient boosted trees and mult-layer perceptrons were 
selected as algorithms sometimes shown to outperform 
random forests in ML tasks. The outputs of each algorithm 
were visualized as a confusion matrix and compared using 
precision, recall, and F1 scores. Class specific F1 scores and 
Cohen’s kappa were also calculated. The execution time of 
the text processing and each model’s training and inference 
time was recorded.

Additionally, a deep-learning language model workflow 
was also deployed. The deidentified two-column data was 
processed using Python within a Jupyter Notebook instance. 
The primary libraries used included SpaCY for text preproc-
essing and the Fast. AI deep learning library for training 
and fine-tuning of a language model for the classification 
task. Similar to the KNIME workflow, the data processing 
included shuffling the data for randomness, dividing it into 
training, testing, and validation datasets, and removing any 

data with empty columns. Using a previously described 
ULMFiT technique and AWD-LSTM model, a pre-trained 
general language model was loaded containing approxi-
mately 103 million words obtained from the 28,595 Wiki-
pedia articles in the Wikitext-103 corpus [16–18]. Further 
fine-tuning of the language model was performed on the 
entirety of the CT protocol dataset, which trained the model 
to predict the next word of the dataset. After fine-tuning, 
the pre-trained weights and biases of the model were used 
to aide in the performance of the original task of classify-
ing the given text field into one of the 11 abdominal CT 
protocol classes. An AWD-LSTM was again used for the 
classification task, and training was performed until the 
validation loss was minimized. FastAI automatically incor-
porated multiple state-of-the-art paradigms for efficient and 
effective training, including an optimal learning rate finder, 
variable learning rates throughout training, and dropout. The 
results, including loss values, F1 scores, and Cohen’s kappa, 
were obtained, and a confusion matrix was created for visual 
analysis. Execution time, including processing, training, and 
validation, was evaluated using Python’s standard library.

Automated Machine Learning Builder Workflow

We imported the same two-column text data to Google’s 
AutoML automated commercial builder platform (Alpha-
bet, Inc., Mountain View, CA) to create an NLP classifi-
cation model. The 11 classes and individual samples were 
presented for a brief, final edit, including moving a sample 
to a different class or deleting a sample. After reviewing, the 
training and inference of the dataset were initiated through 
a single button click. Several hours later, a second notifica-
tion was received by e-mail that the process was complete. 
Results, including precision, accuracy, and F1 score, were 
available to view as well as a confusion matrix and a live 
interface for testing the model on new text data if desired. 
Finally, data processing time and model training time was 
calculated for comparison.

Results

After processing the entries, including removing new and 
duplicate orders, 94,501 abdominal CT studies performed 
between 12/30/2015 and 09/15/2019 were included for eval-
uation in the unbalanced dataset (Table 1). The automated 
ML builder required more stringent removal of duplicates, 
including those across various labels resulting in 90,118 
entries for evaluation. The balanced dataset created using 
modifications such as oversampling and data augmentation 
had 229,450 total samples.

Total analysis of all studies performed demonstrated that 
the most common words included in the text data included 

Table 3   Key model parameters

* Parameters for automated deep learning builders are not accessible

Name Value

Random forest
  Number of models 64
  Split criterion Gini Index

Tree ensemble
  Split crterion Gini Index

Gradient boosted trees
  Tree depth limit 4
  Number of models 100
  Learning rate 0.1

Multi-layer perceptron
  Algorithm name RProp
  Activation function Logistic
  Number of hidden layers 1
  Number of hidden neurons per layer 10
  Maximum number of iterations 100

Universal language model fine-tuning
  Learning parameters
   Loss function Categorical 

Cross Entropy
   Optimizer Adam
  Training parameters
   Architecture AWD-LSTM
   Learning rate 2E-2
   Epochs 10
   Batch size 128
   Dropout rate 0.1

Automated deep learning builder
   Architecture *N/A
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“multiple diagnoses,” “pain,” and “neoplasm” with greater 
than 15,000 instances each (Fig. 1). The mean words per 
sample were 14, which remained similar across all protocol 
classes (Fig. 2).

On the unbalanced dataset, the highest F1 score was 
achieved by the automated ML builder at 0.854, with a  
recall of 83.9% and 87.0% at a confidence threshold of 0.5  

Table 4. The manually coded language model-based deep 
learning algorithm, ULMFiT, achieved an F1 score of 0.847 
and a Cohen’s kappa score of 0.679. The four machine 
learning algorithms performed similarly with an F1 score 
of 0.811 for the random forest, 0.813 for the tree ensemble, 
0.813 for the gradient boosted trees, and 0.828 for the multi-
layer perceptron.

Fig. 1   Frequency distribution of 
words in indication text data

Fig. 2   Mean words per sample 
by protocol category
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On the balanced dataset with 20,000 samples for all 
classes, the tree ensemble machine learning algorithm per-
formed the best with an F1 score of 0.803 and a Cohen’s 
kappa of 0.612. The random forest performed second best 
with a F1 score of 0.799 and Cohen’s kappa of 0.604. The 
ULMFiT deep learning algorithm achieved an F1 score of 
0.765 and a Cohen’s kappa score of 0.584. Class specific 
F1 scores for both unbalanced and balanced datasets are 
included in the supplemental data.

The top protocol classes that were most often classified 
correctly included the “Abdomen and Pelvis” class and the 
“Adrenal” protocol class. The top misclassified protocol 
classes were “Abdomen” only, “Cystogram”, and “Pelvis” 
only classes, most often labeled as the “Abdomen and Pel-
vis” protocol class. Examples of the universal language 
model’s most incorrect predictions in the validation set 
are listed in Table 6 by identifying the largest loss values 
and probability estimates - a surrogate for the algorithm’s 
confidence in protocol classification. Complete confusion 
matrices for the manually coded deep learning model and 

the automated ML builder are displayed in Figs. 3, 4, and 
5.

Objective measurements of each workflow’s text pro-
cessing and model training and evaluation time are listed in 
Table 5, along with the authors’ subjective assessment of the 
difficulty of producing the complete workflow end-to-end 
and hardware cost for the project. Although the automated 
ML builder achieved a slightly higher F1 score, the text pro-
cessing time and model training time were 77 and 29 times 
longer than for the ULMFiT model, respectively.

Discussion

Approach to Protocol Assignment

Assigning an imaging protocol (i.e., “protocoling”) is a key 
part of the radiology workflow but a difficult problem to 
optimize for the informatics specialist [19]. At many insti-
tutions and practices, protocoling imaging examinations is 

Fig. 3   Unbalanced dataset and universal language model (ULMFiT) confusion matrix
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a human-driven process. Our work suggests that NLP can 
be valuable in assisting the human expert in this task. How-
ever, existing work in protocol assignment using NLP have 
been limited in the number of protocol classes addressed. 
For instance, Trivedi et al. used 1520 studies to train and test 
a binary classification algorithm separating MRI examina-
tions requiring versus those not requiring gadolinium-based 
intravenous contrast [8]. Lee et al. performed an analysis 
using 6276 studies to train and test a binary classification 
algorithm assigning “routine” versus “tumor” protocol 
classes [7].

Limiting the number of protocol classes and including 
only commonly used imaging protocols avoids some of 
the challenges seen in real life. Many protocols in radiol-
ogy exist to address uncommon indications, leading to data 
imbalance problems. When multiple protocols are consid-
ered simultaneously, a model’s performance must also be 
considered at a class-specific level. Our work adds to the 
existing literature in three ways. First, we leveraged a larger 
dataset of 94,510 abdominal imaging studies and increased 

the number of simultaneously evaluated protocol classes 
addressing the problem as a multiclass classification task 
instead of a binary one. Additionally, our work also high-
lights the challenges - and possible solutions - to data imbal-
ance and class-specific performance that must be addressed 
in text classification. Finally, the present work compares dif-
ferent machine learning approaches to show their respective 
trade-offs.

Data imbalance is a critical problem for multiclass clas-
sification problems in NLP and ML. In the present study, 
some of the classes such as CT cystogram are underutilized 
relative to routine CT of the abdomen and pelvis by several 
orders of magnitude as the dataset included all exams per-
formed between two timepoints. Anecdotally, the present 
dataset is representative of a typical radiology practice in 
that a small number of protocols represent the vast majority 
of examinations performed. The largest class is more than 
one-100- fold more abundant than the smallest class and also 
substantially larger than other minority classes by approxi-
mately one order of magnitude.

Fig. 4   Unbalanced dataset and automated deep learning builder confusion matrix
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Managing Class‑Imbalanced Datasets

Data imbalance machine learning problems in radiology are 
primarily studied using pixel-based data [20]. In radiology 
text processing and NLP, data imbalance has been high-
lighted as a source of problem [12]. However, to the authors’ 
knowledge, the present study is one of the first that dis-
cusses the effectiveness of mitigation strategies in radiology 

including model performance with and without data rebal-
ancing efforts. In the present study, several strategies were 
employed, including random undersampling of the major-
ity class, random oversampling of the minority classes, and 
using data augmentation techniques such as random word 
modifications and back translation to generate similar text 
indication data [12, 13]. Aggressive oversampling can pro-
duce an overfitted model that generalizes poorly to unseen 

Fig. 5   Balanced dataset and universal language model (ULMFiT) confusion matrix

Table 4   Model results 
comparison

Unbalanced dataset Balanced dataset

Model name F1 score Cohen’s Kappa F1 scoreF1 score Cohen’s Kappa

Random forest, Knime 0.811 0.537 0.799 0.604
Tree ensemble, Knime 0.813 0.542 0.803 0.612
Gradient boosted trees, Knime 0.813 0.556 0.746 0.551
Multi-layer perceptron, Knime 0.828 0.601 0.678 0.482
Universal language model, Python 0.847 0.679 0.765 0.584
Automated machine learning builder 0.854 0.678 - -
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data, whereas overly aggressive undersampling reduces the 
complexity that could be captured in a larger dataset. Our 
results agree with the published literature that data augmen-
tation techniques such as back translation can be effective for 
high-dimensional imbalanced dataset [13]. Our experience 
using cross-class performance measures including Cohen’s 
kappa and label-specific performance measures suggest that 
a combined augmentation/oversampling and undersampling 
approach yielded a slightly worse performance by overall F1 
metrics but, in return, achieved substantially improved per-
formance for minority classes. Nevertheless, our data shows 
that augmentation aids but does not eliminate problems for 
protocols with very few native samples; for instance, accu-
rately identifying the “Cystogram” class remained a chal-
lenge for all models.

Comparing Machine Learning Approaches

Overall performances by the manually coded machine learn-
ing and deep learning techniques were comparable to the 
automated machine learning builder with the best perfor-
mance by the ULMFiT and automated ML models on the 

unbalanced dataset and the tree ensemble and random forest 
models on the balanced dataset. All models and methods 
demonstrated similar, predictable classification errors with 
the most difficulty classifying the protocols with the least 
samples, as detailed in the previous section.

The decision of which technique to use depends on mul-
tiple factors, including the informatics specialist’s NLP 
knowledge, desire for customization, and resources such 
as hardware and time. Manually coded methods allow for 
flexibility in model development, improvement, and scal-
ing both pre- and post-production. With the support of 
graphical drag-and-drop software or common NLP cod-
ing libraries, these methods are becoming quicker and 
more intuitive for all users. In contrast, automated ML 
builders provide an accessible interface and perform much 
of the data engineering such as the NLP preprocessing, 
feature selection, dimensionality reduction, training, and 
cross-validation of the model. However, these simplifica-
tions come at the cost of customizability and transparency 
with limited control of all aspects of the NLP pipeline. 
The cost profile of these approaches also differ. Whereas 
manually coded methods require informaticists to deploy 

Table 5   Model production time and difficulty

Model Name Text preprocessing 
time

Model training and  
evaluation time

Inference time User expertise Hardware

Random forest, Knime 39 min 16 min Negligible  +  +  Owned/local
Tree ensemble, Knime 39 min 30 min Negligible  +  +  Owned/local
Gradient boosted trees, Knime 39 min 2 h 57 min Negligible  +  +  Owned/local
Multi-layer perceptron, Knime 39 min 22 min Negligible  +  +  Owned/local
Universal language model, Python 21 s 10 min Negligible  +  +  +  +  Owned/local
Automated machine learning 

builder
27 min 4 h 45 min Negligible  +  Leased/cloud

Table 6   Top 10 incorrect predictions by universal language model (ULMFiT)

Protocol indication text Target Predicted

“Placenta accreta, third trimester Other (specify in question below) Intentional surgical cystotomy for 
placenta accreta Placenta accreta, third trimester”

7, Cystogram 2, Abdomen & Pelvis

“Abdominal mass, unspecified abdominal location Mass or lump, abdomen pelvis pelvic mass” 4, Pelvis 2, Abdomen & Pelvis
“multiple diagnoses previous differentiate left UPJ obstruction versus left parapelvic renal cyst hematuria” 7, Cystogram 6, Urogram
“Other (specify in question below) r/o bleed post IR procedure” 8, Pancreas 2, Abdomen & Pelvis
“Constipation, unspecified Other (specify in question below) abdominal distention and constipation” 4, Pelvis 2, Abdomen & Pelvis
“Secondary malignant neoplasm of bone Pt with unknown primary (poorly undifferentiated carcinoma) 

with metastasis to bone. Please evaluate for staging and possible identification of primary. Pelvic Pain 
CT A/P 8/17/16”

4, Pelvis 2, Abdomen & Pelvis

“Other (specify in question below) Abdominal pain. History of small bowel obstruction” 4, Pelvis 2, Abdomen & Pelvis
“Pt s/p ERCP, narrowed CBD visualized, wonder if any intra-pancreatic mass compression on BD 

Obstruction of bile duct, Pt s/p ERCP, narrowed CBD visualized, wonder if any intra-pancreatic mass 
comp”

8, Pancreas 2, Abdomen & Pelvis

“H/O PROSTATECTOMY. NOW WITH SUSPECTED FLUID-FILLED LYMPH NODES” 4, Pelvis 2, Abdomen & Pelvis
“Benign carcinoid tumor, unspecified site Elevated Chromogranin!, evaluate for Possible Pancreatic NET 

Benign neuroendocrine tumors Benign carcinoid tumor, unspecified site”
10, Liver 8, Pancreas
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the software suites on self-sourced server hardware, the 
automatic builder couples the cost of the hardware and 
software and operates entirely on the cloud.

It also should be noted that augmentation strategies 
such as back translation and oversampling are only pos-
sible with either the fully manual or the drag-and-drop 
methods. The automatic ML builder provided no mean-
ingful tool to address class-imbalanced datasets, with 
the documentation recommending that including more 
training data for the minority class is the best solution. 
While acquiring more training data is theoretically the 
best solution, it is not always possible or practical. There-
fore, despite achieving an overall high performance, the 
automatic ML model demonstrates a bias against minor-
ity class labels; for instance, the automatic ML builder 
model appears to ignore the cystogram protocol. While 
the manually coded ULMFiT and traditional ML models 
may demonstrate comparable or even lower F1-scores, the 
effort towards rebalancing the dataset are reflected in the 
stronger label-specific performance measures. While ulti-
mate choice depends on the clinical use case, the present 
study demonstrates the need to compare across multiple 
ML approaches to understand the downstream effects of 
data imbalance.

Limitations and Future Directions

Although additional factors exist that limit the applicability 
of our work, it is one step towards tackling the real-world 
complexity of protocol assignment. Future studies would 
attempt to classify more specific protocols within each organ 
system across a broader patient population. Similarly, the 
models should be tested on broader text data and use cases 
in radiology to ensure that their general understanding of 
medical language persists. As demonstrated in Table 6, in 
some cases, the actual exam performed was perhaps less 
appropriate than the predicted protocol when using only the 
indication text. Alternatively, multiple protocols could have 
been considered appropriate, whereas the model is graded 
on the assignment of a single “correct” protocol. Determin-
ing a protocol class from the indication text data alone can 
be challenging, and the actual exam protocol may have been 
chosen only after additional chart review by the radiologist. 
Future studies could address this by creating a dedicated 
ground truth for ML model training, combining multiple 
radiologist’s class assignment using only the indication text 
compared with the algorithm’s. Additionally, we hope to 
include the clinical context such as the ordering provider’s 
name, the ordering department, and the clinical notes lead-
ing to the imaging order into future NLP models, expecting 
them to improve performance similar to how they often aid 
the human expert in the protocoling process.
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