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Abstract

In recent years, fracture image diagnosis using a convolutional neural network (CNN) has been reported. The purpose of the
present study was to evaluate the ability of CNN to diagnose distal radius fractures (DRFs) using frontal and lateral wrist
radiographs. We included 503 cases of DRF diagnosed by plain radiographs and 289 cases without fracture. We imple-
mented the CNN model using Keras and Tensorflow. Frontal and lateral views of wrist radiographs were manually cropped
and trained separately. Fine-tuning was performed using EfficientNets. The diagnostic ability of CNN was evaluated using
150 images with and without fractures from anteroposterior and lateral radiographs. The CNN model diagnosed DRF based
on three views: frontal view, lateral view, and both frontal and lateral view. We determined the sensitivity, specificity, and
accuracy of the CNN model, plotted a receiver operating characteristic (ROC) curve, and calculated the area under the ROC
curve (AUC). We further compared performances between the CNN and three hand orthopedic surgeons. EfficientNet-B2
in the frontal view and EfficientNet-B4 in the lateral view showed highest accuracy on the validation dataset, and these models
were used for combined views. The accuracy, sensitivity, and specificity of the CNN based on both anteroposterior and
lateral radiographs were 99.3, 98.7, and 100, respectively. The accuracy of the CNN was equal to or better than that of three
orthopedic surgeons. The AUC of the CNN on the combined views was 0.993. The CNN model exhibited high accuracy in
the diagnosis of distal radius fracture with a plain radiograph.
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Introduction

Distal radial fractures (DRF) comprise approximately 20%
of all fractures in the adult population [1]. Plain radiographs
remain the standard diagnostic approach for detecting DRFs
[2, 3]. DRFs are common fractures and non-orthopedic sur-
geons could be the primary physician to assess fractures in
an outpatient clinic or emergency room, where the fracture
may be overlooked. Missed fractures can lead to delay in
treatment, malunion, and osteoarthritis. Therefore, a more
accurate and efficient fracture detection method is of interest.

In recent years, a deep learning technique called convo-
lutional neural networks (CNNs) has received much atten-
tion across various areas including diagnostic imaging in
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medicine. There are increasing numbers of studies that
utilize CNNs in medical image analysis in certain fields,
including dermatology for skin lesion identification [4],
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ophthalmology for the detection of diabetic retinopathy
[5], and in radiology for interpreting chest X-ray images for
tuberculosis [6]. However, there remain few studies using
CNNss in the field of trauma and orthopedics. To date, there
are studies using CNNs for radiographic diagnosis of hip
fractures [7-10], distal radius fractures [11-14], proximal
humeral fractures [15], ankle fractures [16] and hand, wrist,
and ankle fractures [17].

The purpose of the present study was to evaluate the per-
formance of CNNs in detecting DRFs on plain radiographs.
We investigated the usefulness of multiple views for detect-
ing DRFs from anteroposterior (AP) and lateral plain wrist
radiographs using deep CNNs. We also compared the diag-
nostic capability of CNNs with that of orthopedic surgeons.

Materials and Methods
Patients

This study was performed in line with the principles of
the Declaration of Helsinki. This study was approved by
the institutional review committees of the four institutions
involved. The requirement for consent was waived because
the study was a retrospective analysis (IRB No. 3329). Our
retrospective study included all consecutive patients with
DRF who were surgically or conservatively treated. The
patient’s data was taken from those attending Tonosho Hos-
pital between November 2012 and May 2019, Asahi Gen-
eral Hospital between January 2013 and June 2019, Chiba

1971 images (961 patients)

338 images (169 patients) excluded
304 images with a plaster cast
24 images with a metal implant in the radius
4 images with an old fracture
4 images with an intravenous catheter
2 images with screw holes after implant removal

v
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1633 images (792 Patients)
Fracture (503 Patients) AP view n =452, lateral view n =420
No fracture (289 Patients) AP view n = 453, lateral view n = 308 )
Training dataset
» Fracture AP view n =377, lateral view n = 345
L No fracture AP view n = 378, lateral view n = 233 )
Test dataset
» Fracture AP view n = 75, lateral view n =75
L No fracture AP view n =75, lateral view n =75 )

Fig. 1 Data flow diagram from images to model training. AP, anter-
oposterior
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University Hospital between April 2014 and January 2020,
and the Oyumino Central Hospital between March 2014 and
January 2019. Fractures were diagnosed mainly using radio-
graphs. If the fracture was unclear, we also reviewed the
clinical course and computed tomography. Diagnoses were
confirmed by two board certified orthopedic surgeons. There
were 961 patients with wrist radiographs. We excluded a
total of 169 patients: 152 with a plaster cast, 12 with a metal
implant in the radius, two with an old fracture, two with
an intravenous catheter, and one who had screw holes after
implant removal. Ultimately, we included 503 patients with
DRF and 289 patients without fracture (Fig. 1). The wrist
radiographs without fracture were taken from patients with
carpal tunnel syndrome or suspected fractures that were
diagnosed as sprains. Except for patients in the valida-
tion dataset, patients do not always have both AP and lateral
views. No multiple images more than one AP and one lateral
view were obtained from a single patient.

Radiograph Dataset/Image Preprocessing for Deep
Learning

We identified 905 AP wrist radiographs (452 with DRF and
453 without fracture) and 728 lateral wrist radiographs (420
with DRF and 308 without fracture) (Fig. 1). The radio-
graphic images stored in the Digital Imaging and Commu-
nications in Medicine (DICOM) server were extracted from
the Picture Archiving and Communication System (PACS)
in Joint Photographic Experts Group (JPEG) format. The
compression level of the jpeg image was set to 100.

The matrix sizes of the identified the region of interest
(ROIs) ranged from 1024 to 2505 pixels in width and from
1024 to 3015 pixels in height, respectively. An orthopedic
surgeon (TS, 6 years of experience) cropped the smallest
region, including the carpometacarpal joint and distal 1/5
of the forearm, on both AP and lateral wrist radiographs.
The images were manually cropped into a square in which
the distal radius was centered (Fig. 2). Images were pre-
processed using Preview (Apple, Cupertino, CA) to generate
images for CNN training. For the validation dataset, we held
out each of 75 images with and without fractures from AP
and lateral radiographs. On AP radiographs, 377 fracture
views and 378 views without fracture were used for training.
On lateral radiographs, 345 fracture views and 233 views
without fracture were used for training (Fig. 1). Training was
performed using AP and lateral views separately.

Model Construction for CNN

We used Python programming language, version 3.6.7
(https://www.python.org) to implement the classification
model as CNN with Keras, version 2.2.4 and Tensorflow,
version 1.14.0 (https://www.tensorflow.org) as frameworks.


https://www.python.org
https://www.tensorflow.org

Journal of Digital Imaging (2022) 35:39-46

M

Fig.2 Image preprocessing for the convolutional neural network
model training and validation. We cropped the image to a minimum
region that included the carpometacarpal joint and distal 1/5 forearm
on both the anteroposterior (a) and lateral (b) wrist radiographs

We used four different models from the family of Efficient-
Nets [18], which had been already trained using images with
ImageNet. EfficientNets is a family of image classification
models developed based on AutoML and compound scal-
ing. A simple, yet highly effective composite scaling method
is proposed to scale up mobile-sized baseline networks to
improve performance while maintaining efficiency. It has
fewer model parameters and is more accurate and efficient
than existing convolutional networks. Pretrained on Ima-
geNet, an EfficientNet-B2, B3, B4, and B5 convolutional
neural network with a single fully connected 2-class clas-
sification layer was used. The input images were scaled to
260260 pixels for EfficientNet-B2, 300 x 300 for Efficient-
Net-B3, 380 380 for EfficientNet-B4, and 456 X 456 for
EfficientNet-BS. Then we applied transfer learning to the
model using the dataset of radiographs of DRF and wrists
without fracture. The network was trained for at a learning
rate of 0.1 in 100 epochs. If there was no improvement, the
learning rate decreased. Model training convergence was
monitored using cross-entropy loss. Image augmentation
was conducted using ImageDataGenerator (https://keras.
io/preprocessing/image/) by a rotation angle range of 20°,
width shift range of 0.2, height shift range of 0.2, brightness
range of 0.3—1.0, and a horizontal flip in 50%. Furthermore,
we constructed separate models for AP and lateral radio-
graphic views. Training and validation of the CNN were
performed using a computer with a GeForce RTX 2060

graphics processing unit (Nvidia, Santa Clara, CA), a Core
17-9750 central processing unit (Intel, Santa Clara, CA), and
16 GB of random access memory.

Performance Evaluation

We evaluated the diagnostic ability of the trained CNN
model using a validation dataset. This validation dataset was
prepared separately from the training dataset.

The diagnosis of DRF was made for each view: (1) AP
wrist radiographs alone, (2) lateral wrist radiographs alone,
and (3) both AP and lateral wrist radiographs. We evaluated
the CNN performance in these three radiographic views.
When diagnosing the fracture based on both AP and lateral
views, the best performing model for each view was selected
and a definitive diagnosis was made based on the averaged
probability of the diagnosis in AP and lateral radiographs.
This allowed for a comprehensive diagnosis based on both
AP and lateral radiographs rather than a single view, closely
mimicking the way in which a clinician makes a diagnosis.
We made the final decision based on the optimal cutoff point
for the DRF probability score.

Image Assessment by Orthopedic Surgeons

Three hand orthopedic surgeons (7, 8, and 10 years of expe-
rience as orthopedic surgeon, respectively) interpreted the
AP and lateral wrist radiographs. The radiographs were the
same validation dataset as used for evaluation of the CNN.
They reviewed jpeg-format images at the same resolution
as the original DICOM images, using the same area as used
for CNN training. This was to ensure consistent conditions
between the CNN and clinicians. However, these conditions
differ from those used in actual clinical settings. At the time
of interpretation, the surgeons were blinded to the mecha-
nism of injury and patient age.

Statistical Methods

We conducted all statistical analyses using JMP (version
12.0.1; SAS Institute, Cary, NC, USA). Continuous vari-
ables were described as means and standard deviations (SD),
and categorical variables as frequencies and percentages.
A Student ¢ test was used to compare continuous variables
and a Pearson chi-square test was used to compare categori-
cal variables between the groups. We considered P <0.05
to be significant in two-sided tests of statistical inference.
Based on the predictions, we calculated the percentages of
true positives, true negatives, false positives, and false nega-
tives. A receiver operating characteristic (ROC) curve and
the corresponding area under the curve (AUC) were used to
evaluate the performance of the CNN. Then we calculated
the sensitivity, specificity, and accuracy for the CNN and the
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Table 1 The demographic data of the wrist radiograph dataset

Distal radius fracture Non-fracture P-value

n (patients) 503 289
Age, mean (SD) 63.7+16.4 67.6+18.1 0.0026
Sex (M/F) 128/375 109/180 0.0004

three hand orthopedic surgeons. Sensitivity, specificity, and
accuracy were determined from optimal thresholds using
the highest Youden index (sensitivity + 1, specificity —1) in
ROC analysis. The sensitivity, specificity, and accuracy of
the diagnostic ability between CNN and the hand orthopedic
surgeons were compared using a McNemar test.

Results
Demographic Data of the Included Patients

The demographic data of the patients in the wrist radio-
graph dataset are shown in Table 1. In total, we included
503 patients with DRF and 289 patients without fracture.
We enrolled 256 with DRF and 205 without fracture
from Asahi General Hospital, and 189 DRF patients only
from Oyumino Central Hospital, 33 patients with DRF
and 59 without fracture from Tonosho Hospital, and 25
patients with DRF and 25 without fracture from Chiba
University Hospital. The proportion of women in the
DRF group was significantly higher, as consistent with
a previous study [12]. The mean age of the patients was
significantly higher in the DRF group. We identified 905
AP wrist radiographs (452 with DRF and 453 without

Table2 The accuracy, sensitivity, and specificity of the CNN mod-
els. Ensemble model consists of two models that produced the best
outputs together, which in this case was the EfficientNet B2 for AP

fracture) and 728 lateral wrist radiographs (420 with DRF
and 308 without fracture).

Performance of the CNN Compared to the Hand
Orthopedic Surgeons

The diagnostic performance of the four CNN models on
AP and lateral views is shown in Table 2. EfficientNet-B2
in the AP view and EfficientNet-B4 in the lateral view
showed the best AUC, respectively. The diagnostic capa-
bility of DRF in AP view by EfficientNet-B2, lateral view
by EfficientNet-B4, and both views by an ensemble of
both models, exhibited excellent diagnostic performance
with an AUC of 0.995 (95% C10.971-0.999), 0.993 (95%
CI 0.955-0.999) and 0.993 (95% CI 0.949-0.999) The
ROC curve of the ensemble model probability compared
with three hand orthopedic surgeons is shown in Fig. 3.
Table 3 shows the sensitivity, specificity, and accuracy of
the CNN model and the three hand orthopedic surgeons
on the two views at the optimal cutoff point. The CNN
model showed a high performance of 99.3% accuracy,
98.7% sensitivity, and 100% specificity on the two views.
The accuracy of the CNN was equal to or better than that
of the three hand orthopedic surgeons. The sensitivity and
specificity of the CNN tended to be superior to that of the
three hand orthopedic surgeons, although most compari-
sons were not significantly different.

For reference, we show representative wrist radio-
graphs from two patients that CNN correctly diagnosed,
but orthopedic surgeons misdiagnosed, and radiographs

and the EfficientNet B4 for lateral radiographs. Data in parentheses
are the 95% confidence interval. CNN, convolutional neural network;
AP, anteroposterior

Model Views Accuracy Sensitivity Specificity AUC 95% CI
EfficientNet B2 AP 98.7 (95.3-99.6) 98.7 (92.8-99.8) 98.7 (92.8-99.8) 0.995 0.971-0.999
Lateral 93.3 (88.2-96.3) 92.0 (83.6-96.3) 94.7 (87.1-97.9) 0.976 0.940-0.990
EfficientNet B3 AP 96.7 (92.4-98.6) 93.3 (85.3-97.1) 100 (95.1-100) 0.993 0.980-0.998
Lateral 93.3 (88.2-96.3) 94.7 (87.1-97.9) 92.0 (83.6-96.3) 0.982 0.958-0.992
EfficientNet B4 AP 96.7 (92.4-98.6) 97.3 (90.8-99.3) 96.0 (88.9-98.6) 0.989 0.961-0.997
Lateral 98.7 (95.3-99.6) 98.7 (92.8-99.8) 98.7 (92.8-99.8) 0.993 0.955-0.999
EfficientNet B5 AP 98.7 (95.3-99.6) 98.7 (92.8-99.8) 98.7 (92.8-99.8) 0.995 0.968-0.999
Lateral 96.0 (91.5-98.2) 97.3 (90.8-99.3) 94.7 (87.1-97.9) 0.987 0.954-0.997
Ensemble AP + Lateral 99.3 (96.3-99.9) 98.7 (92.8-99.8) 100 (95.1-100) 0.993 0.949-0.999
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misdiagnosed by both CNN and the hand orthopedic sur-
geons (Fig. 4).

Discussion

The present study demonstrated the high performance
of deep learning CNNs to distinguish DRF from normal
wrists. The CNN model exhibited better accuracy than that
of orthopedic hand orthopedic surgeons.

For the detection of DRF in plain radiographs, the CNN
model showed excellent performance with an accuracy
of 99.3% and sensitivity of 98.7%, specificity of 100%,
and AUC of 0.993 based on both AP and lateral views.
The accuracy of the CNN was better than that of the hand
orthopedic surgeons. We used 755 front wrist X-rays and
578 lateral wrist radiographs for training, and 150 front
and lateral wrist radiographs for verification. Automated
detection of the DRFs on plain radiographs has been
reported in several articles. Three studies applied CNN to
classify DRF and without fracture. Olczak et al. evaluated
openly available deep learning networks, achieving 83%
accuracy in fracture detection in hand, wrist, and ankle
radiographs [17]. Kim and MacKinnon reported that the
CNN using Inception-v3 based on 1389 lateral wrist radio-
graphs exhibited an accuracy of 89% and an AUC of 0.954
[11]. Bliithgen et al. used a closed-source framework of
CNN based on 624 combined AP and lateral wrist radio-
graphs to identify DRFs in AP X-ray images achieving a
sensitivity of 78%, specificity of 82%, and AUC of 0.89
[14]. These diagnostic parameters were comparable to
those of radiologists. By contrast, there are studies that
used Faster R-CNN to detect and locate DRFs. Yahalomi
et al. described object detection by CNN based on 95 AP
wrist radiographs to detect wrist fractures in AP X-ray
images achieving an accuracy of 96% and a mean average
precision (mAP) of 0.87 [13]. However, they did not
investigate the difference between the performance of
the CNN and that of experts. Thian et al. used the Faster
R-CNN based on 7356 AP and lateral wrist radiographs
to identify and locate distal radius fractures achieving a
sensitivity of 98.1%, specificity of 72.9%, and AUC of
0.895 [19]. Gan et al. used R-CNN to extract the distal
part of radius and used Inception-v4 to distinguish DRF
and wrists without fracture based on 2040 AP radiographs
with an accuracy of 93% and an AUC of 0.96 [12]. These
diagnostic performances were better than those of radi-
ologists and similar to those of orthopedic surgeons. The
object detection network is more informative compared

to classification networks as it provides location of the
fracture. Although the object detection network requires
a larger annotated training dataset to guarantee its perfor-
mance, using a larger dataset is time consuming, as when
detecting a minimally displaced fracture. Comparing the
performance of experts with the CNN is desirable as a
reference to estimate the difficulties in using the validation
dataset. In the present study, we achieved a comparable
or better diagnostic capability using the CNN than that
achieved by hand orthopedic surgeons, based on a mod-
estly sized dataset.

The present study has also shown the importance of using
radiographs taken from two directions when diagnosing
fracture using the CNN model. Acquiring two radiographs
taken orthogonally makes it easier to assess the relative posi-
tion of two fractured bones [20]. On occasion, fractures are
diagnosed using only a single view, and as a consequence
the reviewer may misdiagnose DRF as without fracture in
the absence of the additional view. The diagnostic sensitivity
and specificity of DRF were improved by ensemble decision
making. We used a CNN model trained on radiographs taken
from two directions. The use of radiograph images taken
from two directions for training also served to reduce the
number of images required for diagnostic accuracy equal
to or better than that for previously reported CNN models.
However, to our knowledge, there are only a few reports of
the accuracy of CNN fracture diagnosis using radiograph
images obtained from multiple directions [14, 16, 19].

There are several limitations to our study. First, the
present study was based on a binary classification: DRF
or wrist without fracture. The CNN could not localize the
pathological region. For less experienced clinicians, it is
difficult to trust broad classification labels of such “black-
box” models, although there is Grad-CAM [21], which is a
heatmap visualization for a given class label. Second, our
dataset of 1633 radiographs is considered small. To solve
this problem, we used fine-tuning and data augmentation.
As a result, we achieved a high accuracy of 99% despite
the small sample size. Third, assessment of the diagnostic
performance of the deep learning models was based on only
adult wrist radiographs. Pediatric wrist radiographs have
growth plates that can mimic the appearance of a fracture.
We did not have enough pediatric radiographs without frac-
ture to evaluate performance for pediatric DRF. Fourth, it
was disadvantageous for hand orthopedic surgeons to make
a judgment based on a small cropped image, especially with-
out information that would be available in clinical settings.
The diagnostic accuracy of the surgeons would improve if
they were provided clinical information, such as the loca-
tion of pain.
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Fig.3 Receiver operating characteristic curves of the convolutional 3 are also shown as the black circle, dark gray circle, and light gray
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radiographs. Performances of the hand orthopedic surgeons 1, 2, and
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Table 3 Comparison of accuracy, sensitivity, and specificity between the ensemble CNN model and the three hand orthopedic surgeons based on
frontal and lateral wrist radiographs. Data in parentheses are the 95% confidence interval. CNN, convolutional neural network

Accuracy P value (compared Sensitivity P value (compared Specificity P value
with CNN) with CNN) (compared with

CNN)

CNN 99.3 (96.3-99.9) - 98.7 (92.8-99.8) - 100 (95.1-100) -

(ensemble)

Hand orthopedic surgeon

1 97.3 (93.3-99.0) 0.083 96.0 (88.9-98.6) 0.083 98.7 (92.8-99.8) 0.317

2 94.7 (89.8-97.2) 0.008 96.0 (88.9-98.6) 0.083 93.3 (85.3-97.1) 0.025

3 96.7 (92.4-98.6) 0.046 96.0 (88.9-98.6) 0.083 97.3 (90.8-99.3) 0.157

Fig.4 Representative X-ray
images of wrist fractures.

The AP (a) and lateral (b)
radiographs of a distal radius
fracture, which 2 of the 3 hand
orthopedic surgeons misdi-
agnosed as without fracture,
while the CNN diagnosed the
fracture correctly. The AP (c)
and lateral (d) radiographs of a
distal radius fracture, which 2 of
the 3 hand orthopedic surgeons
diagnosed correctly and the
CNN misdiagnosed as without
fracture. The fracture is clear on
oblique view (e), although this
view is only for the reference
and not used for validation. AP,
anteroposterior; CNN, convolu-
tional neural network
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comparable or better diagnostic capabilities than hand ortho-
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