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Abstract
The objective of the study was to determine if the pathology depicted on a mammogram is either benign or malignant (ductal 
or non-ductal carcinoma) using deep learning and artificial intelligence techniques. A total of 559 patients underwent breast 
ultrasound, mammography, and ultrasound-guided breast biopsy. Based on the histopathological results, the patients were 
divided into three categories: benign, ductal carcinomas, and non-ductal carcinomas. The mammograms in the cranio-
caudal view underwent pre-processing and segmentation. Given the large variability of the areola, an algorithm was used 
to remove it and the adjacent skin. Therefore, patients with breast lesions close to the skin were removed. The remaining 
breast image was resized on the Y axis to a square image and then resized to 512 × 512 pixels. A variable square of 322,622 
pixels was searched inside every image to identify the lesion. Each image was rotated with no information loss. For data 
augmentation, each image was rotated 360 times and a crop of 227 × 227 pixels was saved, resulting in a total of 201,240 
images. The reason why our images were cropped at this size is because the deep learning algorithm transfer learning used 
from AlexNet network has an input image size of 227 × 227. The mean accuracy was 95.8344% ± 6.3720% and mean AUC 
0.9910% ± 0.0366%, computed on 100 runs of the algorithm. Based on the results, the proposed solution can be used as a 
non-invasive and highly accurate computer-aided system based on deep learning that can classify breast lesions based on 
changes identified on mammograms in the cranio-caudal view.
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Key Points 
1. Deep learning computer-aided diagnosis of breast pathology 

on a digital mammogram helps clinicians classify lesions either 
benign or malignant.

2. Deep learning algorithms may also be used as an objective first 
or second reader and as a support tool to accelerate radiologists’ 
time to process examinations.

3. The patients can benefit from a more appropriate and a less 
invasive management and treatment of the breast lesions.
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Abbreviations
ACC   Accuracy
DL  Deep learning
ML  Machine learning
AI  Artificial intelligence
CNN  Convolutional neural network
MM  Mammography
MLO  Medio-lateral oblique
CC  Cranio-caudal
BI-RADS  Breast Imaging-Reporting and Data System

Introduction

According to Globocan (2018), breast cancer accounts for 
11.6% of all cancer types and is considered the leading 
cause of death in women aged 20 to 50 years [1]. Given 
the frequency of this pathology and the negative impact it 
generates on global healthcare systems, an efficient manage-
ment of breast cancer should revolve around an increased 
early detection rate when less aggressive therapeutic options 
are viable. The latest advances in imaging techniques have 
improved the sensitivity of breast cancer detection and diag-
nosis: mammography (MM), ultrasonography (US), elastog-
raphy, magnetic resonance imaging (MRI) [2–4].

Deep learning (DL) represents a broader family of machine 
learning (ML) techniques, which has gained increasing attention 
in the past years, due to its application in medical imaging. The 
aim of this technique is to increase the accuracy (ACC) of breast 
cancer screening [5]. Currently, convolutional neural networks 
(CNN) can identify the smallest lesions in breast tissue which 
are difficult to identify by the naked eye, even in breasts with 
higher density due to a large amount of fibroglandular tissue. 
Pattern recognition systems help radiologists identify cancers 

in their earliest stages, increasing life expectancy by initiating 
treatments more quickly [6]. Lately, a remarkable shift was 
made from conventional ML methods to DL algorithms, in dif-
ferent fields, with an increasing potential in medical applica-
tions. Computers can be constantly trained and exposed to vast 
amounts of data, much more than a radiologist can experience 
during his/her career [7].

Although core needle breast biopsy is the current gold 
standard used for correctly assessing the histological types 
of breast pathology, some patients may prove reluctant or 
hardly accept undergoing this minimally invasive procedure, 
seeing it as a stressful experience due to the fear of pain dur-
ing the procedure and the prolonged anxiety caused by the 
wait time for the histological reports [8].

The current aim of this study addresses this particular 
aspect by offering a viable and highly accurate computer-aided 
diagnosis tool based on DL that is capable to classify breast 
lesions on mammograms as either benign or malignant (ductal 
or non-ductal carcinoma) using the cranio-caudal (CC) view.

Materials and Methods

The local Ethics Committee approved the present study. All 
patients freely agreed to take part in the study based on an 
informed written consent.

Over the course of 4 years (January 2016–January 2020), 
a total of 559 female patients (aged between 30 and 88 years 
old) initially underwent breast US, followed by MM and breast 
biopsy. The patient inclusion criteria comprised the following: 
patient’s approval to take part in the study based on an informed 
written consent, breast tissue changes detected on MM ± breast 
US. In patients under 40 years of age, a MM was performed only 
when breast US detected suspicious lesions or when genetic 

Fig. 1  Exclusion criteria flow 
chart
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risk factors were associated. The patients were excluded from 
the study if one of the following conditions were met: patient’s 
refusal to take part in the study, recent breast trauma, breast 
lesions near the skin/areola.

The mammograms were acquired using a Siemens Mam-
momat digital mammography device in two incidences: 
medio-lateral oblique (MLO) view and CC view. The mam-
mograph exported the files as 2800 × 3506 grayscale images. 
Only the CC view was used, and only the tumoral breast was 
included in the study.

All the patients included in our study underwent an US-
guided breast biopsy using an automatic 14G biopsy gun. 
According to the histopathological results, the patients were 
divided into three categories: benign lesions (204 cases), 
ductal carcinomas (252 cases), and non-ductal carcino-
mas (103 cases), regardless of the type (papillary, lobular, 

medullary, tubular), obtaining a total of 355 cases of malig-
nant pathology. Cases containing both ductal and non-ductal 
carcinoma (mixed type) were considered ductal (Fig. 1).

Before training the DL algorithm, the images underwent 
pre-processing and segmentation stages (removing the nip-
ple, labels, and background area), as mentioned in other 
studies [6]. These alterations were performed in order to 
remove all possible artifacts that could alter the classifica-
tion. Left breast mammograms were mirrored to accurately 
compare them to the right breast mammograms. Using a 
threshold, a breast mask was generated (Fig. 2a). Since the 
breast areola has significant variability in the female popula-
tion, an algorithm was applied in order to remove it and, in 
part, the adjacent skin (Fig. 2b).

The remaining breast image was resized on the Y axis 
to a square image. Although the image that was obtained 

Fig. 2  (a) Resulted breast mask. 
(b) Areola and adjacent skin 
removal (purple)

Fig. 3  (a) Original mammogram. (b) Resized mammogram on the Y axis. (c) Localized tumor
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after this operation appears unnatural, the ratios between 
different grayscale patterns remained similar (Fig. 3a, b). 
Images were resized to 512 × 512 pixels. A variable square 
of 322,622 pixels was searched inside each image to identify 
the most intense average, thus, localizing a high-probability 
tumor site (Fig. 3c). At this point, each image can be rotated 
with no information loss, given the fact that ratios between 
different grayscale aspects were preserved. By applying the 
rotation, the Thatcher effect can be removed from the learn-
ing paradigm [9].

Taking into consideration all the above combined with 
the need for data augmentation, each image was rotated 360 
times and a crop of 227 × 227 pixels was saved, resulting in a 
total of 201,240 images. The DL algorithm transfer learning 
was used from AlexNet network [10]. AlexNet is a CNN that 
is trained on more than a million images from the ImageNet 
database (available for free on http:// www. image- net. org). 
The network is 8 computing layers deep (Fig. 4) and can 
classify images into 1000 object categories. The network 
is linear, having multiple convolutional kernels—filters 
that extract image features. In each convolutional layer, the 
kernels have the same size. It has five convolutional layers 
with different filter sizes: convolutional layer no. 1 has 96 
filters of 11 × 11 × 3 convolutions with [4 4] stride and no 
padding, convolutional layer no. 2 has two groups of 128 
filters of 5 × 5 × 48 convolutions with [1 1] stride and [2 2 
2 2] padding, convolutional layer no. 3 has 384 filters of 
3 × 3 × 256 convolutions with [1 1] stride and [1 1 1 1] pad-
ding, convolutional layer no. 4 has 2 groups of 192 filters of 
3 × 3 × 192 convolutions with [1 1] stride and [1 1 1 1] pad-
ding, and, convolutional layer no. 5 has 2 groups of 128 fil-
ters of 3 × 3 × 192 convolutions with [4 4] stride and [1 1 1 1] 
padding. Additional ReLU, normalization, and max pooling 
layers are inserted between the first, second, and third convo-
lutional layers, while layers 3, 4, and 5 are followed only by 
ReLU layers. The rest of the network consists of three fully 
connected layers, interconnected with ReLU and drop layers 
that end up in a softmax layer before the classification layer. 
The different configurations of the non-convolutional layers 
can be read in the original paper [10]. The network has an 
input image size of 227 × 227 which is the reason why our 
images were cropped to this size. A sample of the training 
sequence is presented in Fig. 5.

In order to achieve a suitable statistical power (two-type 
of null hypothesis with default statistical power goal P ≥ 95% 
and type I error with 0.05 level of significance), we had to 
run the network 100 times [11]. We have used the standard 
tenfold cross-validation, each time the training, validation, 
and test images were randomly selected and presented in 
a different order. At each network run, a constant 80, 10, 
and 10 percentages were used for training, validation, and 
testing, respectively. The number of epochs was empirically 

Fig. 4  Layers of AlexNet 
network
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set to 4, but the training sessions usually ended before the 
second or third epoch when the validation criterion was met.

We reported the testing performance for the classifica-
tion tasks using the AUC and ACC. The resulted mean and 
standard deviation values are presented.

In order to assess the performance of the model, we have 
compared its accuracy with the ones of two radiologists. We 
used the tenfold cross-validation, each time leaving one sub-
set out for testing purposes. We ran the program 30 times, 
resulting in 30 test sample data. The two radiologists labeled 
the 30 test sample data also. We were interested in perform-
ing a statistical analysis of the accuracies obtained on each 
test sample by the three competitors. The performances in 
terms of mean accuracy (ACC) and standard deviation (SD) 
are presented in Table 1.

The algorithm and the statistical evaluation were carried 
out in MATLAB (MathWorks USA, www. mathw orks. com/ 
produ cts/ matlab. html).

Results

A new computer application capable of histological breast 
tumor classification from MM was created.

The mean and standard deviation for the ACC was 
95.8344% ± 6.3720% and for AUC was 0.9910% ± 0.0366%, 

computed on 100 runs of the algorithm. The ROC curve 
and the confusion matrix from the same run are presented 
in Fig. 6 and Table 2.

The evaluation of different machine learning algorithms 
in fair terms needs a standard methodology. A set of bench-
marking rules is crucial to improve the quality of our results. 
Therefore, a statistical assessment is imperative. Hence, the 
algorithm has been executed in 100 different computer runs, 
obtaining a statistical power that equals 99% with type I 
error α = 0.05 for the statistical test that have used. Conse-
quently, the algorithm has been run 100 times in a complete 
cross-validation cycle using the tenfold cross-validation 
method. In Fig. 7, we have the box and whisker plot on ACC.

We can see from Fig. 7 that the model is not very stable, 
since the SD is 6.37. Thus, we can state that the machine 
learning model cannot offer omnibus robustness.

Next, we have studied the normality of the performance 
results using the Kolmogorov–Smirnov and Lilliefors 
test and the Shapiro–Wilk test. We have used the first test 
because we can compute the mean and SD from the actual 
data, and the second because it has better power properties. 
It is worth to mention that in this case the distribution of data 
is nearly Gaussian, whatever the test results and the distribu-
tion of the values, since the sample size corresponds to 100 
computer runs. As the sample size increases above 30, the 
central limit theorem states that the distribution becomes 
normal.

From Table 3, we can see that the p-level given by the 
Kolmogorov–Smirnov and Lilliefors test is < 0.1, mean-
ing that indeed the sample size is normally distributed, but 
the p-level given by the Shapiro–Wilk test is < 0.05; hence, 
there are significant differences between the sample’s distri-
bution and the Gaussian distribution. Fortunately, as stated 

Fig. 5  Example of training sequence

Table 1  Performances of model vs. radiologist 1 vs. radiologist 2

Mean ACC SD

Model 99.28 2.24
Radiologist 1 78.03 12.12
Radiologist 2 72.85 13.50
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above, we can presume the normality due to the central limit 
theorem.

We have also computed the skewness = 5.16, and kurto-
sis = 28.23, that prove once again that it is crucial to run the 
model 100 times in order to obtain reliable results.

From Table 1, we can see that the model outperforms the 
two radiologists, in terms of accuracy, and it also is more 
robust, the SD being 2.24.

Since the statistical tests used in the benchmarking pro-
cess are based on the assumption that the sample data is gov-
erned by the normal distribution, first we applied normality 
tests to see whether the accuracies are normally distributed 

or not. Note that we are testing the distribution of data 
regarding the performances, not the actual data that the 
algorithm has been tested on. Hence, we have applied the 
Kolmogorov–Smirnov and Lilliefors test and the Shapiro– 
Wilk W test, the results being described in Table 4.

From Table 4, we can see that the data is not normally 
distributed; only the Shapiro–Wilk W test for radiologist 2 
states that the data is Gaussian. Nevertheless, having the 
sample size of 30, due to the central limit theorem, we can 
say that the data is approximately normal.

The contrast between the model’s performance and the 
performance of the two radiologists can be statistically 
measured using the one-way ANOVA technique. The one-
way ANOVA results regarding the sum of squares (SS), 
degrees of freedom (df), mean squares (MS), F-value, and 
p-level (contrast quadratic polynomial) are presented in 
Table 5. It can be easily seen that there are significant dif-
ferences in the classification performances (p-level < 0.05), 
thus obtaining a confirmation of the model’s power.

Besides the one-way ANOVA, we have performed the 
t-test for independent variables, to verify two by two the 
performances. The results are presented in Table 6.

As shown in Table 6, there are significant differences in 
means (p-level < 0.05) between the model and the two radi-
ologists, proving once again its classification performance.

Fig. 6  Example of ROC curve

Table 2  Confusion matrix on a random run with 95.03% ACC 

Output 
classes

Benign 6043
35.3%

359
2.1%

104
0.6%

92.9%
7.1%

Ductal 159
0.9%

7259
42.4%

95
0.6%

96.6%
3.4%

Non-ductal 40
0.2%

93
0.5%

2953
17.3%

95.7%
4.3%

96.8%
3.2%

94.1%
5.9%

93.7%
6.3%

95.0%
5.0%

Benign Ductal Non-ductal
Target classes
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To conclude, all the above tests have provided the con-
firmation that there are significant statistical differences 
between the model and the two radiologists, and that the 
model indeed outperforms the two radiologists.

Discussion

Using transfer learning from AlexNet and multiple pre- 
processing steps, we have developed an algorithm capable of 
classifying mammograms into three classes—benign, ductal, 
and non-ductal carcinoma—with an average ACC around 
96 and mean AUC 0.99, taking into consideration only the 
CC view.

It is a well-known fact that MM has a high sensitivity to 
detect breast tumors, even ductal carcinoma (linear/multiple 
clusters of fine granular calcification) but the breast biopsy 

is the gold standard for diagnosis [12]. Ductal carcinoma is 
the most common form of breast cancer, representing around 
80% of all breast cancer diagnosis, as presented also in our 
study by the higher number of ductal carcinomas compared 
to non-ductal [13].

Artificial intelligence (AI) refers to all the techniques 
which determine computers to mimic human behavior, 
while ML is a subset of AI, which uses statistical meth-
ods to enable machines to improve with experience. DL 
is considered to be a subset of ML techniques, which 
provides much better results than ML with CNN [14]. DL 
has gained performance lately due to increasingly more 
efficient training methods and amounts of data [7]. An 
AI-based system matched the cancer detection ACC in 
over 28,000 breast cancer screening mammograms inter-
preted by 101 radiologists. The system recorded an AUC 

Fig. 7  Box and whisker plot on 
ACC 

Mean = 96.2979
Mean±SD = 
(90.0226, 102.5732)
Mean±1.96*SD = 
(83.9983, 108.5975)

on ACC

Table 3  Statistical assessment of the algorithm’s ACC 

Variable Kolmogorov–
Smirnov

Lilliefors p Shapiro–Wilk p-level

DL ACC 0.328 0.1 0.372 0.000

Table 4  Normality tests

K-S p-level Lilliefors p S-W W p-level

Model 0.517  < 0.01  < 0.01 0.365 0.000
Radiologist 1 0.200  < 0.05  < 0.01 0.863 0.001
Radiologist 2 0.205  < 0.15  < 0.01 0.956 0.280
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higher than over 60% of radiologists specialized in breast 
imaging. AI systems can also be used as an independent 
first or second reader in places with a shortage of radi-
ologists, or as a support tool [15].

Human interpretation creates great susceptibility to a 
subjective assessment. That is why a second reading of a 
mammogram by a computerized technique can improve 
the results [16]. Therefore, in clinical use, the sensitivity 
of the detection of breast masses can be improved with 
the help of a system which acts like a second opinion, 
in order to reduce the possibility of missing any breast 
lesion difficult to be identified through a manual process 
[17]. An increased variability in terms of lesion shape, 
texture, and size represents a challenge for radiologists, 
because a lot of small breast masses can be missed. BI-
RADS (Breast Imaging-Reporting and Data System) pro-
vides a standardized terminology for masses regarding 
shape (round/oval/irregular), margins (circumscribed/
obscured/microlobulated/indistinct/spiculated), or den-
sity (high/equal/low or fat-containing) on mammograms 
[18]. The breast density can also pose a great challenge 
for radiologists. A high breast density is associated with 
an increased risk of proliferative lesions that may be 
considered precursors of breast cancer. The variations 
in breast tissue are reflected by the breast density [17, 
19]. A high breast density can mask breast tumors, being 
a well-known fact that the sensitivity of MM is reduced 
in women with dense breasts [20]. In these cases, sup-
plemental imaging or spot compression is necessary.

Given the total number of cases was only 559, the 
algorithm must be tested on a larger dataset in order to 
ensure its stability. With a larger dataset, the non-ductal 
class can also be divided into different subclasses like 
lobular, tubular, papillary, or medullary carcinoma, 
thus offering more information to the oncologist. In 
order to be taken into consideration for clinical use, AI 
algorithms need continuous studies and large amounts 
of data to be trained in order to improve and obtain a 
better performance. AI is considered to be a real oppor-
tunity for the improvement of medical fields, especially 

for radiology. Being trained continuously with increas-
ing amounts of data, the algorithms manage to provide 
information about every abnormal finding, by extracting 
particular features which may or may not be detected by 
the naked eye. The tumor stage will still play a signifi-
cant role in the overall survival rates, adjusting therapy 
decisions and surgical options [21]. The use of AI will 
inevitably find itself implemented in medical fields and 
distrust of this new technology will not stop its adher-
ence in medical sciences.

Routine views in mammography exploration are bilat-
eral CC and MLO views [22]. Similar with the necessity 
of the lateral view of the chest X-ray that complements 
the frontal view, the two images are needed to better 
understand the position of the object(s) of interest related 
to the surrounding context. As the images represent the 
plane projection of a 3-dimensional structure (volume) 
and overlapping components are hard to individualize, 
especially when the margins are superposed or when 
a much denser (intense) object covers other objects. 
Although the MLO view is the more important projec-
tion [23, 24] as it allows visualization of most breast tis-
sue, we decided to only include the CC view in our study 
because the images are more homogenous compared to 
the MLO views which have a higher degree of variability 
as the axilla and pectoral muscles are included. Thus, 
the study has innate limitations, as the CC view cannot 
identify posterior breast lesions adjacent to the pectoral 
muscle. Nevertheless, the research does not aim tumor 
position, only tumor classification.

Conclusion

Based on the results, the proposed solution can be used as a non-
invasive and highly accurate computer-aided system based on 
DL that can classify breast lesions based on changes identified 
on mammograms in the CC view. The proposed DL algorithm 
may be used as an objective first or second reader and as a sup-
port tool to accelerate radiologist’s processing time for examina-
tion in order to reduce the morbimortality of breast cancer and 
allow a faster and more effective treatment.
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