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Abstract
Although magnetic resonance imaging (MRI) has a higher sensitivity of early breast cancer than mammography, the specific-
ity is lower. The purpose of this study was to develop a computer-aided diagnosis (CAD) scheme for distinguishing between 
benign and malignant breast masses on dynamic contrast material-enhanced MRI (DCE-MRI) by using a deep convolutional 
neural network (DCNN) with Bayesian optimization. Our database consisted of 56 DCE-MRI examinations for 56 patients, 
each of which contained five sequential phase images. It included 26 benign and 30 malignant masses. In this study, we first 
determined a baseline DCNN model from well-known DCNN models in terms of classification performance. The optimum 
architecture of the DCNN model was determined by changing the hyperparameters of the baseline DCNN model such as 
the number of layers, the filter size, and the number of filters using Bayesian optimization. As the input of the proposed 
DCNN model, rectangular regions of interest which include an entire mass were selected from each of DCE-MRI images 
by an experienced radiologist. Three-fold cross validation method was used for training and testing of the proposed DCNN 
model. The classification accuracy, the sensitivity, the specificity, the positive predictive value, and the negative predictive 
value were 92.9% (52/56), 93.3% (28/30), 92.3% (24/26), 93.3% (28/30), and 92.3% (24/26), respectively. These results were 
substantially greater than those with the conventional method based on handcrafted features and a classifier. The proposed 
DCNN model achieved high classification performance and would be useful in differential diagnoses of masses in breast 
DCE-MRI images as a diagnostic aid.
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Introduction

Breast cancer is the most common cancer in women. In the 
USA, 40,610 women died due to breast cancer in 2017 [1]. 
Early detection and treatment are very important for breast 
cancer patients since 95% of patients with early breast can-
cer can be cured completely [2]. Dynamic contrast enhanced 
magnetic resonance imaging (DCE-MRI) has become an 

established clinical imaging modality for diagnosis and 
staging of breast cancer [3, 4]. The sensitivity of breast 
DCE-MRI is higher than that of mammography, which is the 
standard screening modality. Especially in dense breast, the 
sensitivity has been improved from 33–59% with mammog-
raphy to 71–94% with DCE-MRI [5–9]. However, the speci-
ficity of DCE-MRI, which is typically between 30–70%, is 
lower than that of mammography [10–14].

A computer-aided diagnosis (CAD) scheme [15] is one 
of the solutions to improve the specificity of breast MRI. 
The CAD scheme presents the likelihood of malignancy for 
a lesion on medical image as a “second opinion” in order to 
assist radiologists’ diagnosis [15–18]. In our previous study, 
we developed the CAD scheme for distinguishing between 
benign and malignant masses on breast DCE-MRI [19]. The 
CAD scheme was based on the conventional method with 
the handcrafted features and a classifier. In the CAD scheme, 
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mass region was segmented from DCE-MRI images. Objec-
tive features were then extracted from the segmented mass 
region to distinguish between benign and malignant masses. 
Therefore, there was a problem that classification perfor-
mance was strongly dependent on the segmented mass 
region.

Recently, deep convolutional neural networks (DCNNs) 
such as AlexNet, ZFNet, VGG16, and GoogLeNet have been 
applied to classification tasks [20–23]. The DCNNs have 
shown greater classification performances than the conven-
tional methods with the handcrafted features and a classifier 
in an ImageNet Large Scale Visual Recognition Competition 
(ILSVRC) [24]. The DCNN can extract complex multi-level 
objective features from input images due to self-learning 
ability without the segmentation of target [25–27]. There-
fore, there is not a problem that the classification perfor-
mance is influenced from the segmented region. As with 
many studies [18, 28–31], the classification accuracy of our 
previous CAD scheme based on the conventional method 
might be improved by using the DCNN. The well-known 
DCNN models such as AlexNet, ZFNet, VGG16, and Goog-
LeNet were constructed for general images with RGB chan-
nels. Therefore, those models can be inadequacy in the clas-
sification task for medical images with grayscale channel.

The purpose of this study was to determine the optimum 
architecture of the DCNN models for distinguishing benign 
from malignant masses on breast DCE-MRI using Bayes-
ian optimization [32–35]. In this study, we first determined 
a baseline DCNN model from well-known DCNN models 
in term of classification performance. The optimum archi-
tecture of the DCNN model was clarified by changing the 
hyperparameters of the baseline DCNN model such as the 
number of layers, the filter size, and the number of filters 
using Bayesian optimization. The usefulness of the opti-
mized DCNN model was evaluated by comparing with con-
ventional DCNN models.

Materials and Methods

The use of the following database was approved by the Insti-
tutional Review Board at Ritsumeikan University. The data-
base was stripped of all patient identifiers.

Materials

Our database consisted of 56 DCE-MRI examinations—each 
of which contained five sequential phase images—that were 
obtained from 56 patients (mean age: 55.8 years, age range: 
20–82 years). These DCE-MRI images were acquired with a 
3.0 T MR scanner at Hokuto Hospital (Obihiro, Japan) from 
October 2009 and July 2015. The patients were excluded if 
they had undergone breast surgery in the past, size of mass 

was more than 5 cm. It included 30 malignant and 26 benign 
breast masses. Table 1 shows the patients’ clinical informa-
tion. All masses underwent 10 G vacuum-assisted biopsy 
and/or surgical specimen. After the injection of a contrast 
agent, four post-contrast series of 3D MRI scans and data 
acquisitions were sequentially performed after a duration of 
0 min, 1 min, 2 min, and 4 min. The one pre-contrast and 
the four post-contrast series generated images with a spatial 
resolution of 0.7 × 0.7 × 1.2 mm3, with a data matrix of 
512 × 512 pixels. Figure 1 shows an example of pre-contrast 
and four post-contrast DCE-MRI images. Each of five image 
scan series consisted of 150 image slices.

Determination of Baseline DCNN Model

To optimize the architecture of DCNN model for distin-
guishing between benign and malignant masses on DCE-
MRI images, we first determined a baseline DCNN model 
from AlexNet, ZFNet, VGG16, and GoogLeNet in terms of 
area under the receiver operating characteristic (ROC) curve 
[36]. Here, we briefly described those DCNN models below.

AlexNet consists of five convolutional layers, three 
max-pooling layers, and three fully connected layers 
including cross channel normalization layer, rectified 
linear unit (ReLU) function, and dropout. The convo-
lutional layer and the max-pooling layer play a role of 
feature extractor, whereas the fully connected layer plays 
a role of classifier. The first convolutional layer has 96 
filters of size 11 × 11 with a stride of four pixels and 
padding with two pixels. The second convolutional layer 
has 256 filters of size 5 × 5. The third, fourth, and fifth 
convolutional layers have 384, 384, and 256 filters with 

Table 1  Patients’ clinical information

Patients characteristics

# of patients 56
Age, mean ± SD 55.8 ± 15.3
Age, range 20–82
Age group
20–30 3
30–40 8
40–50 12
50–60 11
60–70 11
70–82 11
# of malignant masses 30
# of benign masses 26
Mass characteristics
Size of masses, mean ± SD [cm] 1.7 ± 0.6
# of masses (≦ 2 cm) 34
# of masses (2–5 cm) 22
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size of 3 × 3, respectively. The number of the units in the 
first and second fully connected layer is 4,096, whereas 
that of the units in the third fully connected layer is same 
as the number of the classes. In this study, the number 
of units in the third fully connected layer is two (Benign 
or Malignant).

ZFNet is similar architecture to AlexNet. The difference 
between ZFNet and AlexNet is only filter size and stride in 
first convolutional layer. The filter size of the first convo-
lutional layer in ZFNet is 7 × 7, whereas the stride is two 
pixels. The other parameters of ZFNet are same as AlexNet.

VGG16 consists of 13 convolutional layers with filter size 
of 3 × 3, and three fully connected layers including ReLU 
function and dropout. The configurations of fully-connected 
layers in VGG16 are the same with AlexNet.

GoogLeNet consists of 22 layers with nine inception lay-
ers and one fully connected layer. The inception layer has 
multiple convolution filters [23].

Optimization of DCNN Architecture with Bayesian 
Optimization

After the determination of baseline DCNN model with 
the highest area under the ROC curve (AUC), the hyper-
parameters such as the number of the convolutional layer, 
the number of filters, and the filter size were optimized 
in the baseline DCNN model using Bayesian optimiza-
tion with Gaussian process [32–35]. The Bayesian opti-
mization is an algorithm for optimizing hyperparameters 
in a machine learning. Table 2 shows the search range 
for each hyperparameter in the DCNN model. When the 
number of the convolutional layer was − 4, it means 
to remove the final and the fourth from the last con-
volutional layer in the baseline DCNN model. On the 

other hand, when the number of the convolutional layer 
was + 4, it means to add four convolutional layers after 
the final convolutional layer. With the number of the 
convolutional layer, the number of the max-pooling layer, 
and the number of the fully connected layer were 0, the 
configuration of the DCNN model was same as the base-
line DCNN model.

In the Bayesian optimization, four different combi-
nations of hyperparameters were first determined by 
selecting search value randomly in each hyperparam-
eter. The DCNN model with each combination was then 
trained independently. With a Gaussian process based 
on the classification errors for each DCNN model, the 
combination of hyperparameters was updated to reduce 
the classification error. By repeating this process 100 
times, the optimal combination of hyperparameters was 
founded efficiently.

Fig. 1  Example of DCE-MRI 
images with a malignant mass 
before injection of a contrast 
agent, and after a duration of 0, 
1, 2, and 4 min

Table 2  Candidate values for each hyperparameter

Hyperparameter Values

Number of convolutional layers  − 4~ + 4
Number of max-pooling layers  − 3~ + 3
Number of fully connected layers  − 2~ + 1
Filter size 3~9
Number of filters 48~576
Number of units in fully connected layer 2048~6144
Minibatch size 4~20
Dropout 0.25~0.75
Initial learning rates 0.5e−4~1.5e−4

Momentum 0.8~0.95
L2 Regularization 1e−10~1e−2
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Training and Testing of DCNN

The DCNN model was developed and evaluated using 
MATLAB 2019a on a workstation (CPU: Intel Core 
i7-7820X processor, RAM: 128 GB, and GPU: NVIDIA 
GeForce GTX 1080Ti).

A k-fold cross validation method [37] with k = 3 was 
utilized for the training and testing of the DCNN model. 
In the method, 56 patients were randomly divided into 
three groups (A, B, C) so that the number of patients was 
approximately equal. A group was used for test dataset, 
whereas the remaining two groups were used for training 
dataset. This process was repeated three times until every 
group had been used for test dataset.

The ROIs which include an entire mass were selected 
from each DCE-MRI image by an experienced radiolo-
gist (12 years of experience devoted in breast image diag-
nosis). For augmenting each training data, each ROI was 
flipped horizontally and cropped [38] randomly eight 
times. Thus, the total number of training samples was 
increased by 16 times. A stochastic gradient descent 
(SGD) was employed to minimize the loss between the 
output of the proposed DCNN model and the correspond-
ing teacher signal.

Evaluation of Classification Performance

The classification accuracy, the sensitivity, the specificity, 
the positive predictive value (PPV), and the negative predic-
tive value (NPV) [39] of the DCNN model were evaluated 
by using the ensemble average from the testing datasets over 
the threefold cross validation method. ROC analysis [36] 
was also used for evaluation of classification performance.

Results

The baseline DCNN model was first determined from 
AlexNet, ZFNet, VGG16, and GoogLeNet in terms of the 
AUC. Here, the learning rate, the mini-batch size, and the 
number of epochs were given by 0.0001, 3, and 15, respec-
tively. The AUC for ZFNet was 0.889, showing to be greater 
than those for AlexNet (0.867, P = 0.302), VGG16 (0.800, 
P = 0.050), and GoogLeNet (AUC = 0.827, P = 0.080). 
Therefore, ZFNet was determined as the baseline DCNN 
model.

The hyperparameters in the determined baseline DCNN 
model were optimized using Bayesian optimization. Tables 3 
and 4 show the optimal architecture and the parameters 

Table 3  Optimized DCNN architecture determined by Bayesian optimization

Layer Test dataset A Test dataset B Test dataset C

Input 224 × 224 × 5 224 × 224 × 5 224 × 224 × 5
Conv. + ReLu Filter size: 7 × 7 

Num. of filter: 193
Filter size: 7 × 7x 

Num. of filter: 214
Filter size: 7 × 7 

Num. of filter: 160
Normalization Size of the channel window: 5 Size of the channel window: 5 Size of the channel window: 5
Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 5 × 5 

Num. of filter: 49
Filter size: 5 × 5 

Num. of filter: 442
Filter size: Num. of filter: 148

Normalization Size of the channel window: 5 Size of the channel window: 5 Size of the channel window: 5
Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 5 × 5 

Num. of filter: 440
Filter size: 5 × 5 

Num. of filter: 533
Filter size: Num. of filter: 122

Conv. + ReLu Filter size: 5 × 5 
Num. of filter: 440

Filter size: 5 × 5 
Num. of filter: 533

Filter size: Num. of filter: 122

Conv. + ReLu Filter size: 5 × 5 
Num. of filter: 440

Filter size: 5 × 5 
Num. of filter: 533

Filter size: Num. of filter: 122

Max-pooling Filter size: 3 × 3 Filter size: 3 × 3 Filter size: 3 × 3
Conv. + ReLu Filter size: 3 × 3 

Num. of filter: 123
Filter size: 3 × 3 

Num. of filter: 96
Filter size: 3 × 3 

Num. of filter: 209
Conv. + ReLu Filter size: 3 × 3 

Num. of filter: 134
Filter size: 3 × 3 

Num. of filter: 104
Filter size: 3 × 3 

Num. of filter: 228
Conv. + ReLu Filter size: 3 × 3 

Num. of filter: 146
Filter size: 3 × 3 

Num. of filter: 113
Filter size: 3 × 3 

Num. of filter: 247
Conv. + ReLu Filter size: 3 × 3 

Num. of filter: 157
Filter size: 3 × 3 

Num. of filter: 122
Filter size: 3 × 3 

Num. of filter: 266
FC 2 2 2
Output Benign/Malignant Benign/Malignant Benign/Malignant

Journal of Digital  Imaging  (2021) 34:116–123 119

0123456789)1 3



determined by Bayesian optimization when each group was 
used for testing dataset, respectively. The average AUC of 
the determined DCNN models for three test datasets was 
0.945.

Figure  2 compares the ROC curve for the proposed 
DCNN model with those for AlexNet, ZFNet, VGG16, 
and GoogLeNet. The AUC for the proposed DCNN model 
(0.945) was significantly higher than those for the other four 
DCNN models (AlexNet: 0.867, P = 0.015; ZFNet: 0.889, 
P = 0.026; VGG16: 0.800, P = 0.002, GoogLeNet: 0.827, 
P = 0.006). Table 5 shows average classification accuracy 
among five different DCNN models. All evaluation indices 
for the proposed DCNN model was the highest among the 
five different DCNN models.

Figure 3 shows example of correctly classified cases and 
incorrectly classified cases in DCE-MRI images at 1-min 
post-contrast. The characteristics of masses incorrectly clas-
sified by the proposed DCNN model were as follows: (1) 
small masses (2 cm or lower in size), (2) malignant masses 
with regularity in shape, and (3) benign masses with irregu-
larity in shape.

Discussion

To investigate the usefulness of the proposed DCNN model, 
we compared with the classification performance with our 
previous method based on the handcrafted features and a 
classifier [19]. In the previous method, ROI which included 
an entire mass was selected manually on the DCE-MRI 
image. The mass region was determined automatically by 
applying Otsu’s method [40]. Quadratic discriminant analy-
sis (QDA) was employed to distinguish between benign and 

malignant masses. The four handcrafted features were used 
for the input of the QDA. With the previous method, the 
average classification accuracy, the sensitivity, the speci-
ficity, the PPV, and the NPV were 75.0% (42/56), 76.7% 
(23/30), 73.1% (19/26), 76.7% (23/30), and 73.1% (19/26), 
respectively. Figure 4 compares the ROC curve for the 
proposed DCNN model with that for the previous method. 
The AUC for the proposed DCNN model was significantly 
greater than that for the previous method (0.810, P = 0.01). 
These results would imply that the features extracted auto-
matically from the proposed DCNN model were more use-
ful for distinguishing between benign and malignant masses 
when compared with handcrafted features manually obtained 
in our previous method.

With the proposed DCNN model, the classification accu-
racy, sensitivity, specificity, PPV, and NPV for 34 masses 
smaller than 2  cm were 88.2% (30/34), 84.6% (11/13), 
90.5% (19/21), 84.6% (11/13), and 90.5% (19/21), whereas 

Table 4  Optimized hyperparameters relating to learning determined 
by Bayesian optimization

Test dataset A Test dataset B Test dataset C

Minibatch size 20 10 19
Initial learning rates 9.461e−05 5.631e−05 7.550e−05
Momentum 0.945 0.919 0.949
L2 regularization 1.529e−09 1.953e−10 1.087e−06

Fig. 2  Comparison of the receiver operating characteristic (ROC) 
curves between proposed DCNN model, AlexNet, ZFNet, VGG16, 
and GoogLeNet

Table 5  Comparison of 
classification accuracy among 
five different DCNN models

Index AlexNet ZFNet VGG16 GoogLeNet Proposed method

Classification 
accuracy

78.6% (44/56) 76.8% (43/56) 76.8% (43/56) 75.0% (42/56) 92.9% (52/56)

Sensitivity 76.7% (23/30) 76.7% (23/30) 83.3% (25/30) 73.3% (22/30) 93.3% (28/30)
Specificity 80.8% (21/26) 76.9% (20/26) 69.2% (18/26) 76.9% (20/26) 92.3% (24/26)
PPV 82.1% (23/28) 79.3% (23/29) 75.8% (25/33) 78.6% (22/28) 93.3% (28/30)
NPV 75.0% (21/28) 74.1% (20/27) 78.3% (18/23) 71.4% (20/28) 92.3% (24/26)
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those for 22 masses larger than 2 cm were 100% (22/22), 
100% (17/17), 100% (5/5), 100% (17/17), and 100% (5/5). 
We believe that the proposed DCNN model can reduce 
the number of unnecessary biopsies for masses larger than 
2 cm. Patients with masses smaller than 2 cm which are 
early lesions will be able to undergo follow-up at a short 
interval. The classification accuracy for those masses might 
be improved by introducing the differences in growth speed 
between benign and malignant cases into the proposed 
method[41,42]. However, further studies are required by 
use of large data sets to evaluate the computerized method 
for analysis of changes over time.

In this study, a strategy for optimizing the hyperparam-
eters in the DCNN model was proposed. It is very difficult to 
construct suitable DCNN model for classification tasks from 
scratch, because the combination of hyperparameters in the 
DCNN is infinite. In the proposed strategy, we determined 
baseline DCNN model from well-known DCNN models, 
and then optimized architecture and the other parameters of 
the baseline DCNN model for breast mass classification task 
using Bayesian optimization. With this strategy, we could 
easily construct suitable DCNN architecture according to 
tasks. In the fact, this study has shown that the proposed 
DCNN model achieved better classification accuracy than 
that of our previous method and well-known DCNN model. 
Therefore, we believe that this strategy is effective for opti-
mizing DCNN architecture and its parameters in classifica-
tion task.

There are some limitations in this study. We used only 56 
patient data in this study. Thus, we need to evaluate the strat-
egy for optimizing the hyperparameters and the proposed 
DCNN model in the further study by using larger dataset. 
Other limitation is that the proposed DCNN model used two-
dimensional (2D) ROIs as the input. In clinical practice, 
radiologists usually diagnose by considering three-dimen-
sional (3D) information on DCE-MRI. Therefore, 3D-based 
DCNN model might be more appropriate than 2D. However, 
3D-based DCNN model has a lot of parameters to train and 
requires a large number of training data. In this study with 
a small dataset, 2D-based DCNN model was employed to 
distinguish between benign and malignant masses. Finally, 
the DCNN model determined by the Bayesian optimization 
might not yield the best classification accuracy because the 
Bayesian optimization does not evaluate all combinations 
of hyperparameters. However, we believe that Bayesian 
optimization is useful for effectively determining appro-
priate hyperparameters of the DCNN model from infinite 
combinations.

Fig. 3  Example of correctly 
classified cases and incorrectly 
classified cases in DCE-MRI 
images at 1-min post-contrast

Fig. 4  Comparison of the receiver operating characteristic (ROC) 
curves between the proposed DCNN model and the previous method
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Conclusion

In this study, we developed the CAD scheme to distin-
guish benign from malignant masses on breast DCE-MRI 
images by use of the optimal DCNN model determined 
with Bayesian optimization. The proposed DCNN model 
achieved high classification accuracy for masses and 
would be useful in differential diagnoses of masses as a 
diagnostic aid.
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