
https://doi.org/10.1007/s10278-020-00392-4

ORIGINAL PAPER

Color Rendering in Medical Extended‑Reality Applications

Andrea Seung Kim1,2,3 · Wei‑Chung Cheng1,2,3 · Ryan Beams1,2,3 · Aldo Badano1,2,3 

Received: 19 February 2020 / Revised: 15 September 2020 / Accepted: 30 September 2020 
© Society for Imaging Informatics in Medicine 2020

Abstract
Cross-platform development of medical applications in extended-reality (XR) head-mounted displays (HMDs) often relies on 
game engines with rendering capabilities currently not standardized in the context of medical visualizations. Many aspects of 
the visualization pipeline including the characterization of color have yet to be consistently defined across rendering models 
and platforms. We examined the transfer of color properties from digital objects, through the rendering and image process-
ing steps, to the RGB values sent to the display device. Five rendering pipeline configurations within the Unity engine were 
evaluated using 24 digital color patches. In the second experiment, the same configurations were evaluated with a tissue slide 
sample image. Measurements of the change in color associated with each configuration were characterized using the CIE 
1976 color difference ( ΔE). We found that the distribution of Δ E for the first experiment ranges from zero, as in the case using 
an Unlit Shader, to 25.97, as in the case using default configurations. The default Unity configuration consistently returned 
the highest Δ E across all 24 colors and also the largest range of color differences. In the second experiment, Δ E ranged from 
7.49 to 34.18. The Unlit configuration resulted in the highest Δ E in three of four selected pixels in the tissue sample image. 
Changes in color image properties associated with texture import settings were then evaluated in a third experiment using 
the TG18-QC test pattern. Differences in pixel values were found in all nine of the investigated texture import settings. The 
findings provide an initial characterization of color transfer and a basis for future work on standardization, consistency, and 
optimization of color in medical XR applications.

Keywords  Mixed reality · Virtual reality · Medical imaging · Color transfer · Graphics rendering · Image quality

Background

Enthusiasm surrounding extended-reality (XR) technol-
ogy, including augmented reality (AR) and virtual reality 
(VR), has prompted many opportunities and use cases in 
medicine. Increasing interest in medical AR and VR appli-
cations has led to regular utilization of game engines with 
libraries accessing input functions across multiple plat-
forms for XR development[1, 2]. Game engines typically 
include rendering pipelines with numerous shading models 

and lighting implementations to be explored for optimiza-
tion across various hardware. In addition, common material 
parameters are designed to allow for efficient interpolation 
(i.e., varying levels of glossiness, metallic levels, specu-
lar color, anisotropy). While convenient for users wanting 
immediate XR visualizations of virtual scenes, these vari-
ous visualization pipelines have yet to be standardized for 
medical use (Fig. 1).

Graphics rendering algorithms are actively being 
explored and various versions today implement bidirec-
tional reflectance distribution function (BRDF) mod-
els in physically based rendering (PBR) engines. Some 
PBR shading models used in industry include Disney’s 
BRDF[3], Cook-Torrance BRDF[4], GGX[5], Blinn 
Phong[6], and Schlick models[7]. Discerning unique 
characteristics of the models from their names may be 
challenging, and various jargon terms such as main color, 
diffuse, and albedo hold distinct meanings in one graphics 
rendering engine while appearing to overlap in another. 
On a similar note, a setting for enabling high-dynamic 

 *	 Aldo Badano 
	 aldo.badano@fda.hhs.gov

1	 Division of Imaging, Diagnostics, and Software Reliability, 
FDA, 10903 New Hampshire Ave., Silver Spring, Maryland, 
USA

2	 Office of Science and Engineering Laboratories, FDA, 10903 
New Hampshire Ave., Silver Spring, Maryland, USA

3	 Center for Devices and Radiological Health, FDA, 10903 
New Hampshire Ave., Silver Spring, Maryland, USA

Journal of Digital Imaging (2021) 34:16–26

/ Published online: 17 November 20207

1 3

http://orcid.org/0000-0003-3712-6670
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-020-00392-4&domain=pdf


	

range (HDR) may not be consistently defined between a 
computer graphics engineer and a biomedical scientist. 
Considering 3D visualization approaches for diagnostic 
imaging using radiographic images including X-rays that 
require predictable color representation and compliance 
to a target luminance model (typically, the DICOM Gray-
scale Standard Display Function), true- and pseudo-color 
representations should be utilized in the rendering of such 
a virtual scene for head-mounted displays (HMDs).

The game engine Unity[10] is commonly used in AR and 
VR medical visualization applications, including simula-
tions for pre-operative surgical and therapy planning, edu-
cational tools, diagnostic imaging, and training[11–15]. In 
Unity, a fragment program interpolates data from multiple 
vertex programs to calculate information about the surface 
of a model. The fragment and vertex programs are speci-
fied within Unity shaders, which run on a GPU to provide 
instructions on how to render a specific pixel. The pipe-
line in Unity was initially developed using pre-computed 
(baked) ad hoc rendering calculations to mimic indirect 
lighting. Since the 2014 release of Unity 5.0, however, 
Unity’s Standard Shader[16] math implementation uses 
Disney’s BRDF model proposed by Burley[3] for the dif-
fuse component, GGX model[5] for specular, with Schlick 
Fresnel approximation[7] to render interactions between 
light sources, the view, and the surface normal mapping 
of objects[17]. Furthermore, Unity 5.0 incorporates global 

illumination (GI), or a range of computational techniques 
that attempts to mimic light interacting with surface meshes 
present in the scene[18]. While PBR and GI are designed for 
robust visualizations convenient to most game developers, 
the anticipated effects may add uncertainty to the visualiza-
tion of medical data depending on the conditions necessary 
for an ideal viewing environment. For example, GI and PBR 
calculations mimicking ambient light under a blue sky in 
Unity’s default features using a sky material called ”Sky-
box” may be extraneous in viewing an X-ray image. In this 
setting, such calculations may not only undermine the effi-
ciency of the real-time rendering for HMDs, but also add 
unintended distortions in the transfer of pixel color before 
reaching the display. While individuals with a background 
in computer graphics may be well aware that shaders will 
produce modifications to an underlying base color or texture 
in order to simulate lighting and shading effects, the cause 
and degree of these distortions may not be obvious to medi-
cal professionals or novice XR developers.

As HMDs are commercial products already presenting 
with limitations in technology[19–21], medical applica-
tions for HMDs should be developed with rendering set-
tings intentionally optimized for intended environments. 
In this paper, changes to color image properties associated 
with different rendering settings for a digital test object are 
characterized within a virtual Unity scene. While mate-
rial properties have been referred to for a few applications, 

Fig. 1   RGB input and output for five digital material, digital lighting, 
and digital camera configurations within the Unity engine in the ren-
dering of cross-platform applications for selected scenes: (a) a digital 

pathology image[8], (b) a digital chest radiograph, and (c) a full-field 
digital mammogram[9]

Journal of Digital  Imaging  (2021) 34:16–26 17

0123456789)1 3



detailed reports are not available on the characterization of 
color transfer considering lighting, materials, and camera 
configurations for a virtual scene containing medical data. 
The work presented here provides a framework for objective 
characterization of the transfer of pixel color and an initial 
step for color standardization and consistency in medical 
XR applications.

Methods

The assessment of color transfer throughout an XR system’s 
visualization pipeline should distinguish the software and 
hardware component (in this case, Unity and a computer) 
from the display component (display performance of an XR 
HMD). For example, evaluation of color distortions across 
different XR HMDs requires distinction from color distor-
tions as a result of either the rendering software or the hard-
ware specifications that are driving the final composition of 
the image data sent to the HMD. In this study, the software 
components are investigated in three experiments.

Scene Definitions

Unity version 2019.3.0f1 was tested. Opening a new project 
in Unity using a 3D template creates a default scene contain-
ing a Directional Light (Position: 0, 3, 0; Rotation: 50, -30, 
0) and a Camera. The test environment designed for all three 
experiments utilized a primitive cube with scale (1, 1, 1) 
placed at location (0, 0, 0) and rotation (0, 0, 0) as a digital 
test object, with a digital rendering camera positioned at (0, 
0, 1.366) with a field of view of 60◦ facing the digital test 
object as shown in Figure 2.

Color transformation was investigated based on the initial 
RGB input values for the material color of the digital test 
object, as compared with the RGB rendered output of the 
side of the digital test object facing the rendering camera. 
The output of the display component was assumed to be 
within the sRGB color space. The configurations vary in 
material, light, and camera rendering properties as described 
in Table 2. Default settings for the main camera, light, and 
Standard Shader of the material were preserved for the ini-
tial set of measurements (configuration 1). The graphics 

rendering path of the main camera was changed from default 
in configuration 2. In configuration 3, the ”Metallic” and 
”Smoothness” values of the Standard Shader are adjusted 
to mimic a more reflective material. Configuration 4 is like 
configuration 3, except that light influence from skybox 
reflections are excluded from the rendering process. Finally, 
configuration 5 tests the Unlit Shader, which is not affected 
by lighting conditions.

In the first experiment, each of the 24 color patches from 
ColorChecker was rendered through the five configurations 
(Table 2) and then sampled as a single-frame, 1024x1024 
pixel PNG image with four channels for each R, G, B color 
and alpha. Values in sRGB color space were input via the 
Albedo property found in the material’s shader script for 
each of the 24 color patches. In the second experiment, a 
single-slide tissue sample obtained from multispectral imag-
ing[8] was imported into Unity as a 2D texture file. Four 
pixels of varying RGB values were selected from the ground 
truth image (Figure 3) and then compared with the render 
result through the same five configurations.

The output was analyzed for RGB values detected at each 
pixel of the resulting image across the five configurations. 
Each single-frame render output was encoded at 32-bit floats 
per channel. A reference white (255, 255, 255) was cap-
tured for each configuration and then applied for conver-
sion between the sRGB and CIELAB color spaces. Project 
settings were kept at gamma color space in Unity, as linear 
color space is not yet supported by some mobile devices. 
Matlab and R were used for data analysis of the first two 
experiments.

In the third experiment, the TG18-QC test pattern[9] was 
imported as a 2D Texture file[22] with the nine import set-
tings detailed in Table 2. Images were rendered using ren-
dering configuration 5, using an Unlit Shader. Default import 
settings for a 2D texture file includes a Resize Algorithm, 
Filter Mode set to Bilinear with Aniso Level of 1, and a 
compression method set to ”Normal Quality.” These settings 
are found in the inspector window of the Unity editor when 
a texture file is selected from the Project window. Texture 
import settings include general as well as platform-specific 
parameters. Filter mode can be found under general import 
settings. Max size, resize algorithm, format, and compres-
sion are designated specifically for individual platforms.

Table 1   Rendering configurations for experiment 1: ColorChecker 24 and experiment 2: Tissue WSI

Config. Material Shader Light Properties Camera Rendering Path

1 Standard Shader, Metallic 0.0, Smoothness 0.5 (Default) Default Default
2 Standard Shader, Metallic 0.0, Smoothness 0.5 (Default) Default Legacy Vertex Lit
3 Standard Shader, Metallic 1.0, Smoothness 1.0 Default Default
4 Standard Shader, Metallic 1.0, Smoothness 1.0 No Skybox Reflections Default
5 Unlit Shader Default Default

Journal of Digital  Imaging  (2021) 34:16–2618

1 3



	

The nine images rendered from Unity and the original 
TG18-QC image were then imported into ImageJ for region 
analysis. The original image is a single channel grayscale 
image with 16 unsigned bits per pixel, whereas the output 
images are in RGB. In order to operate a difference between 
the two, the original image type was converted to RGB Color 
in ImageJ. Every pixel difference of the nine rendered images 
was evaluated.

Colorimetry

For analysis of the first two experiments, the 8-bit pixel val-
ues, R, G, and B, were converted to the CIEXYZ color space, 
X, Y, and Z, using the sRGB model with the CIE D50 white 
point[23]:

where

The CIEXYZ values of the reference white in each of the 
five configurations were individually determined to be Xn , 
Yn , and Zn . For this work, the reference white was defined 
using the average pixel output of the white patch in each 
scene. The CIEXYZ values were then converted to the 
CIELAB color space as L∗ , a∗ , and b∗:

(1)
⎡⎢⎢⎣

X

Y

Z

⎤⎥⎥⎦
=

⎡
⎢⎢⎣

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9504

⎤⎥⎥⎦

⎡⎢⎢⎣

�(R∕255)

�(G∕255)

�(B∕255)

⎤
⎥⎥⎦

(2)�(u) =

{
12.92u, if u ≤ 0.0031308

1.055u
1

2.4 − 0.055, otherwise

Fig. 2   Setup of the Unity scene 
for all three experiments

Journal of Digital  Imaging  (2021) 34:16–26 19

0123456789)1 3



where

(3)L∗ = 116f (
Y

Yn
) − 16

(4)a∗ = 500(f (
X

Xn

) − f (
Y

Yn
))

(5)b∗ = 200(f (
Y

Yn
) − f (

Z

Zn
))

(6)f (t) =

�
3
√
t, if t > 𝛿3

t

3𝛿2
+

4

29
, otherwise

Finally, the difference between two colors was calculated 
based on the CIE 1976 color difference formula:

Details of the colorimetrical conversion are described in 
Ref. [24].

The CIE 1976 Δ E uses distances in the CIELAB color 
space which is not necessarily uniform to human perception. 
However, the 1976 formula contains less assumptions on 
the visual models that are used and is useful for obtaining 
objective measurements of rendering settings.

Results

Experiment 1: ColorChecker 24

The 24 RGB color values of the ColorChecker were entered 
as material color in the shader script and rendered through 
the five configurations as described in Table 2. Render result 
of the 24 color patches through the five configurations can be 
seen in Figure 4. The distribution of pixel value differences in 
Δ E for the first experiment ranges from zero for Unlit Shader 
to 25.97 for default configurations. The configuration using 
Unlit Shader returned zero values across all 24 color patches. 
Excluding configuration 5 (Unlit Shader), mean render out-
put values for all other configurations cover a range of the 
CIELAB color space varying from what was input through 
the Unity render pipeline (Fig. 5a) and show a distinct pat-
tern. Specifically, the Δ E values show an increasing pattern 
in the grayscale ramp from patches #19-24 for configurations 
1-4. Configuration 1 (default) returned highest Δ E values for 
all of the 24 color patches, followed by configurations 2 (leg-
acy vertex lit rendering path), 4 (smooth, metallic material 

(7)� =
6

29
.

(8)ΔE =

√
(L∗

2
− L∗

1
)2 + (a∗

2
− a∗

1
)2 + (b∗

2
− b∗

1
)2.

Fig. 3   Four pixels varying in RGB values are selected from the 
ground truth of a tissue sample slide obtained from multispectral 
imaging [8] as input RGB data

Table 2   Nine different texture import settings in experiment 3: TG18-QC

Setting Filter Mode Max Size Resize Algorithm Compression Format

1 Bilinear, Aniso Level 1 (Default) 2048 (Default) Mitchell (Default) Automatic: Normal Quality (Default)
2 Bilinear, Aniso Level 1 (Default) 512 Mitchell (Default) Automatic: Normal Quality (Default)
3 Bilinear, Aniso Level 1 (Default) 512 Mitchell (Default) Automatic: High Quality
4 Bilinear, Aniso Level 1 (Default) 512 Bilinear Automatic: High Quality
5 Trilinear, Aniso Level 1 2048 (Default) Mitchell (Default) Automatic: Normal Quality (Default)
6 Point (no filter) 2048 (Default) Mitchell (Default) Automatic: Normal Quality (Default)
7 Point (no filter) 128 Mitchell (Default) Automatic: Normal Quality (Default)
8 Point (no filter) 512 Mitchell (Default) Automatic: Low Quality
9 Point (no filter) 512 Mitchell (Default) Automatic: High Quality

Journal of Digital  Imaging  (2021) 34:16–2620

1 3



	

without Skybox reflections), and then 3 (smooth, metallic 
material). Configuration 5 returned a Δ E value of 0 across 
all 24 color patches.

Experiment 2: Tissue WSI

The ground truth of a skin tissue slide sample obtained 
from multispectral whole-slide imaging (WSI)[8] was 

imported into Unity as a 2D texture file. Import settings 
were kept at default values. The four chosen pixels vary-
ing in RGB values (Fig. 3) were then rendered through 
the five rendering configurations as in the first experi-
ment. Δ E values ranged from 7.49 to 34.18 (Fig. 5b). 
Unlike in the Experiment 1: ColorChecker results, the 
Unlit configuration in this experiment did not return zero 
values of Δ E. Rather, the Unlit configuration resulted 

Fig. 4   Input and rendered 
output for 24 color patches of 
ColorChecker across five con-
figurations described in Table 1. 
Reference white (255, 255, 255) 
can be seen on the upper left 
corner of each configuration

Fig. 5   Mean Δ E for color patch 
outputs and selected pixels 
across the five configurations 
for experiments 1(a) and 2(b)

Journal of Digital  Imaging  (2021) 34:16–26 21

0123456789)1 3



in the highest Δ E values in three of four selected pixels 
in a skin tissue sample image. These results are unex-
pected and do not exhibit any of the patterns or increas-
ing trends seen in the first experiment despite consist-
ency in methods.

Experiment 3: TG18‑QC Test Pattern

The TG18-QC image was imported as a 2D Texture file 
nine times with the import settings as detailed in Table 2. 
The image was then mapped onto the digital test object 
and rendered using an Unlit Shader, similar to configura-
tion 5 of the first and second experiments. Figure 6(b) 

and (c) show the render results of the test pattern using 
the default import settings, as compared with the original 
image. Differences between the two images are easier to 
distinguish once magnified (Fig.6c). The output image 
of the Unlit Shader appears to be compressed as sug-
gested by visible color banding. Pixel by pixel difference 
between the render output image and original test pattern 
can be visualized in Figure 7. The differences found from 
each pixel was then plotted in a histogram for each of 
the 9 import settings (Figure 8). Import setting 6 (Point 
Filter Mode) had both the lowest mean and standard 
deviation, followed by settings 1 (Bilinear Filter Mode) 
and 5 (Trilinear Filter Mode), which were identical. In 

Fig. 6   (a) TG18-QC test pattern 
render output with increasing 
incremental smoothness to the 
right. Top row is metallic 0, 
bottom row at metallic 1. (b) 
Rendered output next to the 
input image file. (c) Detailed 
view of input versus output

Journal of Digital  Imaging  (2021) 34:16–2622

1 3



	

settings 1, 5, and 6, the set Max Size (2048) exceeds the 
image dimensions (1024) so the resulting textures after 
image import are not compressed, and Resize Algorithm 
is not applied. Thus, effects from only the Filter Mode is 
assessed for settings 1, 5, and 6. Of the three, the Point 
Filter Mode (no filter) resulted in the least pixel devia-
tion from the original image. Setting 7 had the highest 
mean and standard deviation, which was expected as the 

Max Size was set to 128, followed by settings 2 and 3. 
Import settings 4, followed by 9 and 3, had the highest 
number of pixels with difference values of 0. These three 
import settings used Automatic: High Quality Compres-
sion format. Import setting 4 (Bilinear Resize Algorithm) 
resulted in less pixel deviations than the Mitchell Resize 
Algorithm (settings 9 and 3).

Fig. 7   Pixel by pixel differ-
ences between the render output 
image and original TG18-QC 
test pattern

Fig. 8   Histograms of the number of pixels with the difference from 0-255 (0-25 shown here) between original 1024x1024 TIFF image TG18-QC 
pattern and the output 1024x1024 PNG images using 9 different import settings rendered using Unlit Shader

Journal of Digital  Imaging  (2021) 34:16–26 23

0123456789)1 3



Discussion

Results from the first experiment show mean render out-
put values for configurations 1–4 covering a range of the 
CIELAB color space varying from what was input after 
processing through the Unity render pipeline (Fig. 5a). 
Once the reference white was calculated into the trans-
fer between color spaces to account for luminance, the 
default rendering settings (configuration 1) interestingly 
returned highest Δ E values for all of the 24 color patches. 
Based on the visualization of the render results seen in 
Figure 4, one may anticipate greatest deviations from the 
input RGB values with a smooth, metallic material that 
reflects lighting of the Skybox (configuration 3), or at 
least less so than the default rendering settings (configu-
ration 1). Yet, configuration 3 resulted in the lowest Δ E 
values out of configurations 1-4, with the default render-
ing properties resulting in the greatest color difference.

The default Skybox in Unity, which mimics an outdoor 
setting underneath a blue sky, is a source for environmen-
tal ambient lighting and reflections. The Standard Shader 
with increased smoothness and metallic levels will reflect 
the environment, as seen in configuration 3 render results 
(Fig. 4). Even without a defined light source, ambient light-
ing from the Skybox is calculated at every rendering. The 
Skybox can be removed by deleting it from the Skybox 
Material property under the Environment section of the 
Lighting Settings.

Experiment 1 results from the Unlit Shader script (con-
figuration 5) of zero color difference across all 24 color 
patches is expected, as the shader is scripted to ignore influ-
ences from light sources and environmental effects. Devia-
tions from the input RGB values are expected to occur with 
changes to material shader properties, light source proper-
ties, and camera properties as in configurations 1-4. The 
proposed framework helps to characterize the various ren-
dering techniques used in exploratory visualizations, as is 
typically the case with XR. For example, the increasing pat-
tern of Δ E values for the grayscale ramp from patches #19-
24 for configurations 1–4 show a greater color difference 
with decreasing RGB values. Users should keep in mind that 
color deviations in medical data may be greater than what 
they may anticipate strictly based on visualizations.

Results from the second experiment (Fig. 5b) were less 
predictable and did not reflect those seen in experiment 
1. These results suggest that color transfer in the pixels is 
affected by factors beyond just rendering configurations. 
Based on our study design, the only difference in methods 
between experiment 1 and 2 was the import of an external 
image as a Unity-readable 2D Texture file. Thus, the image 
import process and the resulting texture that is displayed as a 
material was tested for additional color distortions. The third 

experiment found texture import settings to add distortions 
to the pixels, even when using an Unlit Shader. Though the 
exact reason for the color banding effect is not identified 
in this investigation, experiment 3 highlights the effects of 
various import settings on the image.

When building an XR application for different platforms, 
developers should consider the file size with associated 
memory size requirements, pixel dimensions, and resolu-
tion of the image textures for each target platform[25], as 
the type of texture compression is dependent on the intended 
platform. For instance, a standalone XR HMD, Android 
mobile device, and a PC will each have their own unique 
compression formats that work with their specific hardware 
as some graphics devices only use certain compressed for-
mats. Developers have the ability to designate specific com-
pression settings for each platform in the import settings of 
the inspector window.

Thus, while the Unlit Shader yields predictable and con-
sistent transfer of color throughout the rendering pipeline for 
input colors, it is not always the case when using a texture 
due to how the image is imported. Though the TG18-QC 
render result seen in Figure 6(b) may not be significantly 
noticeable to the human eye, image quality should be pre-
served as much as possible for imaging datasets to be used 
in medical XR visualizations.

Limitations of the Study

While the characterization of color transfer in software 
remains important, user studies should be conducted to 
quantify how the different parameters ultimately affect user 
tasks and human perception. Variability in color across 
HMDs need to be addressed in future work. Furthermore, 
this study was limited to the software component and did 
not investigate the hardware contributions to this effect. For 
example, a field-programmable gate array (FPGA) circuit 
board may be used to capture the digital pixel data trans-
mitted on high-definition multimedia interface (HDMI) to 
capture the pixel data altered by the color management, the 
graphics card driver, and the XR applications following 
rendering.

This investigation did not address the influence of tone 
mapping and post-processing effects. Unity offers several 
tone mapping options, and a custom tone mapper allows 
users to create their own transfer curves, which can heavily 
affect colors and saturation[26]. In addition, this investiga-
tion does not address the use of baked lighting as compared 
with real-time lighting.

Another limitation of this study is that various corrections 
including sampling strategies and inverse lens distortion that 
might be applied to HMDs are not addressed in our experi-
ments. The nature and degree of inverse distortion imple-
mented is dependent on the optical specifications of each 

Journal of Digital  Imaging  (2021) 34:16–2624

1 3



	

HMD as well as on the eye centering and interpupil distance 
of the user. Future studies that evaluate complete software 
implementation of an XR system may benefit from adding 
these considerations to their measurement setups.

Lastly, anisotropic filtering takes into account that, due 
to the camera orientation, the output polygon may not be 
rectangular. This filter method applies additional transforma-
tions to compute the effect of camera angle on the dimen-
sions of the output. As the rendering camera zooms in on 
a texture, the pixels of the texture need to be mapped onto 
multiple pixels in the output image. In this study, the render-
ing camera is faced straight-on toward the texture mapped 
onto the digital test object. Effects of texture filtering may 
have been better evaluated if the camera angle was not per-
pendicular to the digital test object, or if the digital object 
was slightly rotated.

Conclusion

Color transfer of materials using the Unlit Shader is unaf-
fected by the Unity rendering pipeline, except when using 
texture files due to image compression during import. 
Deviations from the input RGB values occur with changes 
to material shader properties, light source properties, and 
camera properties. The proposed framework addresses the 
characterization of the rendering techniques for explora-
tory XR visualizations. This research provides developers 
of medical XR applications with considerations regarding 
how to ensure color information displayed in the headset is 
accurate and consistent. While a custom shader script may 
be appropriate for medical data visualization, such a shader 
would not be universally applicable and standardized for all 
visualization tools. To investigate this issue, a standardized 
instrument for color measurement of virtual objects will be 
further implemented to fully characterize color transfer in 
rendering pipelines.

As the XR user community expands to include medical 
professionals and applications, so does the need for an inter-
disciplinary understanding and control over graphics render-
ing properties. The effects of various texture import settings 
in color difference are highlighted in this work. While these 
measures of change in color image properties are specific 
to the Unity engine, this methodology could be extended to 
address similar concerns for other software tools utilized in 
medical XR application development.

Compliance with Ethical Standards 

Conflict of Interest:The authors declare that they have no conflict of 
interest.

References

	 1.	 Valcasara N, Unreal Engine Game Development Blueprints. Packt 
Publishing, 2015.

	 2.	 Kim SL, Suk HJ, Kang JH, Jung JM, Laine TH, Westlin J, Using 
Unity 3D to facilitate mobile augmented reality game develop-
ment, 2014 IEEE World Forum on Internet of Things (WF-IoT), 
2014. https://doi.org/10.1109/WF-IoT.2014.6803110

	 3.	 Burley B, Physically-based shading at Disney. In ACM SIG-
GRAPH 2012 Courses, ACM, SIGGRAPH 2012.

	 4.	 Cook RL, Torrance KE, A reflectance model for computer 
graphics. ACM Trans. Graph. 1, 5, pp.7-24, 1982.

	 5.	 Walter B, Marschner SR, Li HS, Torrance KE, Microfacet mod-
els for refraction through rough surfaces, The Eurographics 
Association, Proceedings of the 18th Eurographics Conference 
on Rendering Techniques, pp.195-206, 2007.

	 6.	 Blinn JF, Models of light reflection for computer synthesized 
pictures. Proceedings of the 4th Annual Conference on Com-
puter Graphics and Interactive Techniques, Association for 
Computing Machinery, New York, NY, pp.192-198, 1977. 
https://doi.org/10.1145/563858.563893

	 7.	 Schlick C, An inexpensive BRDF model for physically-based 
rendering, Computer Graphics Forum, 13(3), pp.223-246, 1994.

	 8.	 Cheng WC, Saleheen F, Badano A, Assessing color performance 
of whole-slide imaging scanners for digital pathology, Color 
Research & Application, 44(3), pp.322-334, 2019. https://doi.
org/10.1002/col.22365

	 9.	 Samei E, Badano A, Chakraborty D, Compton K, Cornelius 
C, Corrigan K, Flynn MJ, Hemminger B, Hangiandreou N, 
Johnson J, and others, Assessment of display performance for 
medical imaging systems: executive summary of AAPM TG18 
report, Medical Physics, 32(4), pp.1205-1225, 2005.

	10.	 Unity. https://unity3d.com/. Accessed 15 Jan 2020
	11.	 Wheeler G, Deng S, Toussaint N, Pushparajah K, Schnabel JA, Simp-

son JM, Gomez A, Virtual interaction and visualisation of 3D medical 
imaging data with VTK and Unity, Healthcare technology letters, 5(5), 
pp.148–153, 2018. https://doi.org/10.1049/htl.2018.5064

	12.	 Seif M, Umeda R, Uehara Y, Higa H, A Data Conversion for 
Medical Training System, IEEJ 2016 Conference, 2016.

	13.	 Wang R, Yao J, Wang L, Liu X, Wang H, Zheng L, A surgi-
cal training system for four medical punctures based on vir-
tual reality and haptic feedback, 2017 IEEE Symposium on 
3D User Interfaces (3DUI), pp.215-216, 2017. https://doi.
org/10.1109/3DUI.2017.7893348

	14.	 Peters TM, Linte CA, Yaniv Z, Williams J, Mixed and aug-
mented reality in medicine, CRC, 2018.

	15.	 Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B, 
A Review of Simulators with Haptic Devices for Medical Train-
ing, Journal of Medical Systems, 40(104), 2016. https://doi.
org/10.1007/s10916-016-0459-8

	16.	 Unity Technologies, Unity Manual 2019.2: Standard Shader. 
https://docs.unity3d.com/Manual/shader-StandardShader.html. 
Accessed 15 Jan 2020.

	17.	 Lagarde S, The High Definition Render Pipeline: Focused on visual 
quality. https://blogs.unity3d.com/2018/03/16/the-high-definition-
render-pipeline-focused-on-visual-quality/. Accessed 15 Jan 2020.

	18.	 Unity Technologies, Unity Manual 2019.2: Global Illuminance. 
https://docs.unity3d.com/Manual/GIIntro.html. Accessed 15 Jan 2020.

	19.	 Khor WS, Baker B, Amin K, Chan A, Patel K, Woong J, Aug-
mented and virtual reality in surgery the digital surgical envi-
ronment: applications, limitations and legal pitfalls, Annals of 
translational medicine, 4(23), 2016.

	20.	 Chen L, Day TW, Tang W, John NW, Recent developments and future 
challenges in medical mixed reality, 2017 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), pp.123-135, 2017.

Journal of Digital  Imaging  (2021) 34:16–26 25

0123456789)1 3



	21.	 Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J, Habib 
N, El-Gendi A, Recent development of augmented reality in 
surgery: a review, Journal of healthcare engineering, 2017.

	22.	 Unity Technologies, Unity Manual 2019.2: Textures. https://
docs.unity3d.com/Manual/class-TextureImpor ter.html. 
Accessed 15 Jan 2020.

	23.	 International Electrotechnical Commission and others, Multime-
dia systems and equipment-Colour measurement and manage-
ment-Part 2-1: Colour management-Default RGB colour space-
sRGB, IEC 61966-2-1, 1999.

	24.	 Ohta N, Robertson A, Colorimetry: fundamentals and applica-
tions. John Wiley & Sons, 2016.

	25.	 Unity Technologies, Unity Scripting API 2019.2: Texture Importer 
Platform Settings. docs.unity3d.com/ScriptReference/TextureIm-
porterPlatformSettings.html. Accessed 15 Jan 2020.

	26.	 Dille S, Fuhrmann A, Fischer G, Real-time tone mapping- An 
evaluation of color-accurate methods for luminance compression, 
Tagungsband des 22. Workshop Farbbildverarbeitung, Ilmenau, 
Germany, 2016.

Journal of Digital  Imaging  (2021) 34:16–2626

1 3


	Color Rendering in Medical Extended-Reality Applications
	Abstract
	Background
	Methods
	Scene Definitions
	Colorimetry

	Results
	Experiment 1: ColorChecker 24
	Experiment 2: Tissue WSI
	Experiment 3: TG18-QC Test Pattern

	Discussion
	Limitations of the Study

	Conclusion
	References




