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Abstract
Numerous lung nodule candidates can be produced through an automated lung nodule detection system. Classifying these
candidates to reduce false positives is an important step in the detection process. The objective during this paper is to predict
real nodules from a large number of pulmonary nodule candidates. Facing the challenge of the classification task, we propose a
novel 3D convolution neural network (CNN) to reduce false positives in lung nodule detection. The novel 3D CNN includes
embedded multiple branches in its structure. Each branch processes a feature map from a layer with different depths. All of these
branches are cascaded at their ends; thus, features from different depth layers are combined to predict the categories of candidates.
The proposedmethod obtains a competitive score in lung nodule candidate classification on LUNA16 dataset with an accuracy of
0.9783, a sensitivity of 0.8771, a precision of 0.9426, and a specificity of 0.9925. Moreover, a good performance on the
competition performance metric (CPM) is also obtained with a score of 0.830. As a 3D CNN, the proposed model can learn
complete and three-dimensional discriminative information about nodules and non-nodules to avoid some misidentification
problems caused due to lack of spatial correlation information extracted from traditional methods or 2D networks. As an
embedded multi-branch structure, the model is also more effective in recognizing the nodules of various shapes and sizes. As
a result, the proposedmethod gains a competitive score on the false positive reduction in lung nodule detection and can be used as
a reference for classifying nodule candidates.
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Introduction

Lung nodule detection is an effective means for early screen-
ing and diagnosis of lung cancer. However, to carry out this
task, various images are provided by different screening
methods [1, 2]; among which, the lung spiral scan is common-
ly used and a large number of computed tomography (CT)
images can be obtained through this screening method.
Thus, the lung nodule detection discussed in this paper is to
find and mark the location of nodules from such multiple CT
images.

However, for a patient with lung nodules, there is generally
only one or a few nodules in his (or her) lung, which often
occupies few pixels among 100 to 400 lung slices, making
manual detection more difficult. Figure 1 shows a nodule in
a lung. The nodule is found to occupy only a few dozen pixels
even in its center section, which is an area usually with the
most nodules. On the contrary, it is also shown in Fig. 1 that
the pixel size of a slice is 512 × 512, which is hundreds of
times the size of a nodule.

In view of this status, the automated lung nodule detection
system is proposed to reduce the burden on radiologists for
manually recognizing a large number of CT images. Given
that the nodules occupy a much smaller area than the entire
lung slice does, the automated lung nodule detection system is
generally divided into two steps [3]:

1. Candidate detection
2. False positive reduction

The candidate detection refers to the detection of candi-
dates suspected lung nodules from a large number of CT
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slices. The purpose of candidate detection is to include as
many real nodules as possible in the detection results, but
allow for a large false positive rate. False positive refers to
those pseudo-nodules that resemble true nodules. Figure 2
shows some of these false positives and their contrast with
true nodules. It can be seen that false positives are similar to
true nodules in appearance, but are often composed of blood
vessels, lymph nodes, or other lesions. For this reason, the
false positive reduction, as the second step of a complete nod-
ule detection, aims to distinguish true nodules from false nod-
ules as accurately as possible from candidates.

In these two steps, the task of false positive reduction faces
more challenges, mainly attribute to the following two
aspects:

1. The lung nodules vary in size, shape, and even resolution,
partly due to the different thicknesses of CT slices in the
data set. Specifically, the CT slices in LUNA16 dataset
were obtained from 7 different academic institutions

which adopted different scanners with various parameters,
resulting in the change in slice thickness and resolution.

2. The surrounding texture environment of nodules is com-
plex, including many tissues such as blood vessels, lymph
nodes, and other pathological tissues which are highly
similar to lung nodules.

In order to overcome these challenges, an embedded multi-
branch 3D convolution neural network (CNN) is proposed to
reduce the false positive. The main processes of this method
include the extraction of 3D samples, the establishment and
training of 3D model, the experimental results, and the evalu-
ation of nodules’ classification performance. Different from
other algorithms that are either 2D CNN methods or multi-
3D CNN combination methods, the proposed method is based
on a single 3D CNN network and easier to use. Moreover, the
proposed method is more discriminative for pulmonary nod-
ules of different resolution and sizes and can directly classify
candidates without requiring some pretreatments such as vox-
el normalization. The main advantages of this method are as
follows:

1. A novel 3D CNN model is established. The model con-
tains multiple embedded branches, and each branch
comes from layers at different depths of the network. All
of such branches can deal with feature maps in different
levels, enabling the model to distinguish lung nodules in
different resolution and sizes more easily.

2. The model is based on 3D convolution calculation and
employs 3D samples as input, so that it can extract the
spatial correlation characteristics of the target more effec-
tively than that of the traditional 2Dmethod, thus improv-
ing the classification performance.

3. Some effective tricks are proposed to make the network
easier to converge in training. The network is complex
and with a large number of parameters which make it hard
to converge when trained. We adopt some tricks like

Fig. 2 False positives and true nodules

Fig.1 A slice from CTscans and a lung nodule in the slice. The picture is
a slice; the nodule is in a rectangular box
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adding batch normalization (BatchNorm) layer into the
appropriate location of the network or adding Gaussian
noise to the feature map of a particular layer to make the
network more general and converge quickly and
efficiently.

4. A good performance achieved in false positive reduction
makes the proposed method a valuable one for reference
in this type of application.

Related Work

At present, more and more researchers are committed to solv-
ing the challenging problems in lung nodule detection. In their
research, some traditional methods and deep learningmethods
are the most commonly used.

Traditional methods tend to make use of some low-level
features such as the boundary character, shape character, and
intensity character [4] as well as high-level features such as
AM-FM [5] and artificial GLCM features [1] which are all
man-made. Furthermore, these traditional features are com-
bined for lung nodule detection or classification. For example,
there are over 80 kinds of features that are used together in [6]
for lung nodule classification, causing the traditional methods
to require much pretreatment before detecting pulmonary nod-
ules. Obviously, the traditional method is not an adaptive ap-
proach and complicated to use.

On the contrary, deep learning technology is widely used
for it can adaptively extract target features and obtain better
performance in lung nodule detection. Specifically, both the
2D CNN and 3D CNN methods are frequently used for this
purpose [3, 7–12].

Take the example of 2D CNN used for the false positive
reduction in lung nodule detection, Zagoruyko and
Komodakis [7] proposed a 2D wide residual network to ad-
dress the challenging problems of the false positive reduction.
In the method, three patches are extracted from the axial, sag-
ittal, and coronal views. Three wide residual networks process
these three kinds of patches, respectively. As a result, the final
prediction comes from the average value of outputs of the
three networks. The method ranks fifth with a CPM score of
0.758, slightly lower than that of CADIMI method, which is
also a 2D CNN method with a CPM of 0.783.

In fact, three teams among all of the five teams who won
the top five places of LUNA16 challenge have chosen to use
2D CNN technology [7–9]. The reason is probably that the
number of parameters of 2D CNN is small and easy to con-
verge, which enables it to be complexly designed for complex
tasks.

However, though the 2D CNN technology is mature and
has been applied in many medical fields, it is still not as good
as 3DCNN at sufficiently extracting the spatial information of

the volumetric target. Therefore, some 3D CNN models as an
alternative have been gradually used in pulmonary nodules
detection [8, 10, 11].

As a typical example, Huang et al. [10] proposed a 5-layer
3D CNNwhich achieved a better classification effect than that
of the corresponding 2D network while being trained only by
99 sets of CTscans through data enhancement in false positive
reduction. The prior research by Anirudh [8] presented a 4-
layer 3D CNN to classify lung nodule candidates and gained a
sensitivity of 0.80 for 10 false positives per scan.

But, it is worth mentioning that the design of a single 3D
CNN network cannot be too complex due to its various pa-
rameters and difficulty in converging, causing its performance
limited in lung nodule detection. Therefore, Dou et al. succes-
sively proposed two schemes to combine three 3D CNNs for
lung nodules’ prediction [11], which is also a common idea for
multi-network combinedmethod. Two schemes can be seen in
Fig. 3, where the blue blocks with label X represent the input,
the purple dots with label Y or {Yi, i = 1, 2, 3} represent the
output, and other white blocks represent the layers in the mid-
dle of the network. It can be seen that in both schemes, all the
three networks need to be trained separately to predict the
results or extract features, whichmake these schemes not ideal
“end to end” ones.

In accordance with the abovementioned, we come up with
one kind of embedded multi-branch 3D CNN for false posi-
tive reduction in lung nodule detection. It is a single but com-
plex 3D CNN network with a host of parameters. To make the
proposed network easier to converge, we also apply some
tricks to the scheme. The details are described in the next
section.

Methodology

The Multi-branch 3D CNN Model

The proposed multi-branch 3D CNN model is shown in Fig.
4. The backbone of the network consists of nine main layers,
namely seven 3D convolution layers and two 3D pooling
layers. These nine layers can be divided into three parts. The
first part is the shallow-layer part (SL), which includes two 3D
convolution layers and one pooling layer. The second part is
the middle-layer part (ML), including two 3D convolution
layers and one pooling layer. The last part is the deep-layer
part (DL) with three 3D convolution layers involved.

The network branches also can be divided into three parts.
Each part is connected to the deepest layer of the correspond-
ing part of the backbone, respectively. Thus, feature maps
from the different depth layers of the backbone can be proc-
essed individually by each branch.

Behind each branch part, a 1 × 1 × 1 convolution layer is
included to compress the multi-channel feature map into a
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single-channel one. After that, the 3D pooling layer or 3D
crop layer is added into different branch parts, where the clip-
ping range of the 3D crop layer is designed as the size of (1, 1,
1) to crop the edge of the feature mapping block by 1 pixel
along each dimension. Thus, the feature map output from each

branch will be in the same size. Finally, all the feature maps’
output from these three branches are merged and input to the
full connection layer to train the classifier.

Through this kind of structure, each branch processes the
feature maps with different receive field from the backbone

Fig. 3 Two common schemes for
the idea of multi-network combi-
nation. a The scheme obtains the
final prediction result byweighted
summation of the prediction re-
sults of the three separately
trained models. b The scheme
uses the three separately trained
models to extract features, and
then combines the features to train
the classifier and predict

Fig. 4 The embedded multi-branch 3D CNN model. The cubes with
different colors represent the 3D convolutional layer, pooling layer, and
cropping layer, respectively. The numbers beside the convolution layer

represent the number and size of the convolution kernel, respectively,
while the number beside the pooling layer represents the stride of the
pooling operation
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(see Table 1). All of the feature maps also have different
strides in backbone which are eventually changed into the
same stride through pooling, indicating that the features of
different scales from different levels can be extracted and syn-
thesized by the model; thus, the model can work better in
extracting the distinguishing characteristics of the target so
as to address the challenging problems in false positive
reduction.

These feature maps with different levels from branches are
presented in Fig. 5, where the subfigure (a) is an original
sample with size of 18 × 18 × 18 shown along the Z-axis.
The subfigure (b) shows all 32 feature maps of the SL branch,
in which each feature map is shown by a cross section located
in the center of the feature map cube. In the same way, the
subfigure (c) shows all 64 feature maps of the ML branch, and
the subfigure (d) also displays 64 feature maps, only half of all
the 128 feature maps of the DL branch.

Since these feature maps are also in different scales, that is,
the size of each feature map cube of the ML branch is 9 × 9 ×
9, and one of the DL branches is 5 × 5 × 5, both of which have
few pixels for display. For the sake of clear presentation, the
cross sections of the feature map in Fig. 5 c and d are uniform-
ly converted into the size of 18 × 18 by double cubic
interpolation.

It can be found that the feature maps from the SL branch
show more basic features such as edge and direction informa-
tion, whereas the feature maps from the ML and DL branches
show more detailed features. By merging these features at
different scales and levels, the proposed multi-branch 3D
CNNmodel is more conducive to the analysis of lung nodules
with different sizes and shapes than the general one, so as to
improve the detection performance of lung nodules.

The Training Process

We denote the training sample set as (X, Y) = {(xm, ym),m = 1,
2,⋯,M}, where xm represents the mth sample image, and y-
m ∈ {0, 1} is the corresponding ground truth label of xm. Since
these samples need to be input into the network for analysis,
we denote the collection of all the parameters of the network
as W. Due to multiple branches contained in the proposed
network, if each branch is regarded as a separate output from
the network, the corresponding weights of the branch can be

expressed as w = {w(1),⋯,w(N)}. In addition, because the net-
work contains a fusion part which fuses the output features of
each branch, we denote the fusion weight as β = {β1,⋯, βN}.
Thus, our training program can be explained by a formula as
follows.

The objective function of this model can be expressed as
formula (1).

W ;w;βð Þ* ¼ argmin Lfuse W ;w;βð Þ� � ð1Þ

where Lfuse(W,w, β) is the loss function used for gradient iter-
ation and is defined as the cross entropy function, as shown in
formula (2).

Lfuse W ;w;βð Þ

¼ −
1

M
∑
M

m¼1
ymlogŷm þ 1−ymð Þlog 1−ŷmð Þð Þ

� �
ð2Þ

In formula (2), ŷm is the prediction confidence that the
image xm is judged as a nodule by the proposed network,
defined as formula (3).

ŷm ¼ Pr ym ¼ 1jxm;W ;w;βð Þ∈ 0; 1½ � ð3Þ

Since the proposed network is a multi-branch fusion net-
work, the prediction ŷ of input sample x is actually obtained by
the joint action of all branches; hence, it can be calculated
according to formula (4).

ŷ ¼ σ ∑N
n¼1βna

nð Þ
branch

� �
ð4Þ

where a nð Þ
branch is the activation of the nth branch output, and

σ(⋅) is the sigmoid function.
By combining the above formulas (1), (2), (3), and (4), the

weights can be constantly updated until we get the optimized
result (W,w, β)∗ and complete the training process.

Some Tricks for Network Generalization
and Convergence

In order to make 3D CNN converge, a typical 3D network is
usually not designed in a complicated manner. However, over-
ly simple network structure may affect the performance of the
network in classification tasks. Therefore, in order to improve
the classification performance of lung nodule candidates, the
network proposed in this paper is relatively complex, which
requires tricks to facilitate convergence.

Batch normalization (BatchNorm) is an effective means to
accelerate the convergence of the network [13, 14]. Besides,
as the name implies, BatchNorm converts input feature maps
to output by re-parameterizing them on batch. This kind of re-
parameterization makes gradients of the loss more Lipschitz.
This, in turn, enables us to use a larger learning rate and, in

Table 1 The size of receive field for each branch and its corresponding
stride

Backbone SL ML DL

Branch Branch 1 Branch 2 Branch 3

Rec-field size 5 14 40

Stride 1 2 4

Pooling stride 4 2 1
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general, makes the convergence speed of the network acceler-
ate significantly in the process of training.

We tried to add the BatchNorm layer to different locations
in the network to accelerate convergence. The experiment
results are shown in Table 2, in which the BatchNorm layer

is added behind the input layer or behind the deepest
convolutional layer of the three different parts (SL, ML, and
DL) of the backbone, respectively; thus, four networks with
different structures are obtained, and their loss functions are
named loss1, loss2, loss3, and loss4, respectively. According
to Table 2, in the four networks, only loss1 and loss2 are
convergent in the training process, while loss3 and loss4 fall
into local convergence and cannot reach the optimal state,
which is considered as non-convergence.

The training results of these convergent networks are
shown in Fig. 6, where loss2 performs better than loss1.
Therefore, the BatchNorm layer is finally added behind the
SL of the backbone.

Fig. 5 The pictures of feature map from each branch. a The original sample. b The feature maps of the SL branch. c The feature maps of the ML branch.
d The feature maps of the DL branch

Table 2 Training results when the normalized layer is placed in
different positions of the network

Location Input SL ML DL

Loss Loss1 Loss2 Loss3 Loss4

Convergence Yes Yes No No
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However, in addition to adding the BatchNorm layer, we
also add Gaussian noise to the network for training to gener-
alize the proposed model. Through experiments, the factor of
Gaussian noise is finally selected as 0.125. And this compo-
nent is added to the network behind the input layer.

The Experiments

The Dataset for Experiments

The experiments are carried out on LUNA16 dataset [3],
which is provided by the organizer of the LUNA16 challenge.
The LUNA16 dataset is obtained by filtering the largest pub-
licly available database of chest CT scans, the LIDC-IDRI
dataset [15, 16]. Through screening, the LUNA16 dataset fi-
nally retained the location information of 1186 lung nodules
from 888 patients. This information will be used as compari-
son information to evaluate the prediction results.

The LUNA16 dataset also contains the location and cate-
gory information of 551,065 lung nodule candidates, detected
by existing algorithm [6, 17, 18]. This information is used to
conduct classification experiments on candidates and reduce
the false positive rate of lung nodules detection.

The Evaluation Index for Experiments

Our task is to classify lung nodule candidates and reduce false
positives. Thus, the metrics commonly used for classification
and the competition performance metric (CPM) for the false
positive reduction track in LUNA16 challenge are used to
evaluate the work of this paper.

The metrics commonly used for classification include ac-
curacy, precision, sensitivity, and specificity, which can be
expressed by the following formulas (5), (6), (7), and (8),
respectively.

Accuracy ¼ TP þ TNð Þ
TP þ FP þ FN þ TNð Þ ð5Þ

Precision ¼ TP
TP þ FPð Þ ð6Þ

Sensitivity ¼ TP
TP þ FNð Þ ð7Þ

Specificity ¼ TN
TN þ FPð Þ ð8Þ

where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative, respectively; all
of which are indicators generated by the classification task.

Among the commonly used classification indexes men-
tioned above, the sensitivity at seven predefined false positive
rates is as follows: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan are
taken as the main metric of the LUNA16 challenge. The av-
erage of these seven specific sensitivities is defined as CPM
[3], which is another important metric provided by the
competition.

The Experimental Results

1. Parameters setting
The experiments are carried out on one GTX1080 Ti

GPU. The deep learning framework of Keras is taken as
the software platform. In order to make the network con-
verge to the optimal value during training, we set the super-
parameters of the network in the training process as follows:

Fig. 6 The declining trend of loss during training nodules Fig. 7 The variation trend of accuracy in the training process

Table 3 Average confidence of candidate to be predicted as a nodule

Candidate classes Amount Avg. conf.

True nodule (“1”) 1320 0.9673

Non-nodule (“0”) 542,061 0.0161
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We set the training epochs to 15, the batch-size to 128,
and the learning rate to 0.01. For each convolution layer, we
set the initial bias to 0.2 and adopt the “Relu” as activation
way. As for the pooling layer, we set all the strides to 2
except the one in the shallow-layer branch, which is set to
4. In addition, in order to balance the huge difference in the
number of positive samples and negative samples that may
affect the network recognition ability, we set the mode for
the parameter “class_weight” in the function “fit( )” in the
Keras framework to “auto.”

2. Data preprocessing
The proposed approach is an “end-to-end” one, which

indicates that no pretreatments such as lung segmentation
are needed. Instead, all of our samples were extracted
based on candidate location information provided by the
dataset. Moreover, as can be seen from the above, the
proposed method is not likely to be affected by variations
in the size and resolution of lung nodules when identify-
ing the nodules. Therefore, the sample does not need any
preprocessing such as voxel normalization either. Thus,
all samples are directly obtained from those CT volumes
which are stacked by original CT slices.

There are two steps to make the samples: the determi-
nation of the sample center points and the segmentation of
the sample blocks. When making negative samples, we
extracted the coordinate information of candidates marked

as non-nodules from the data set and took these coordinates
as the locations of the center points of the negative samples.
Since the sample size is designed to be 18 × 18 × 18 and
obtained through experiments, we get the sample block by
extending 8 or 9 pixel distances from the center along
either side of the X-axis, Y-axis, and Z-axis, respectively.

Whereas, when making positive samples, after we ex-
tracted the coordinate information of candidates marked as
real nodules from the data set, we needed to expand these
coordinate points to get more positive sample centers. This
is because the number of positive candidates in the data set
is much smaller than that of the negative candidates, and
this treatment can further reduce the impact of sample im-
balance. We move the obtained coordinate points along the
X-axis, Y-axis, and Z-axis by corresponding pixel distances.
Each move gets a new coordinate point, thus getting mul-
tiple coordinate points. Each of these coordinate points is
taken as the center of the sample. Then, the expanded pos-
itive sample block can be obtained by using the method
similar to the method of making negative sample block.

3. Training performance
The model is trained from scratch and takes the gradi-

ent descent method as the optimization algorithm. The
changing process of its loss and accuracy is shown in
Figs. 6 and 7, respectively.

It can be seen from Figs. 6 and 7 that although the
network is complexly designed and has many parameters,
the training process converges quickly due to the tricks
proposed in the previous section. It also can be seen that
the validation loss and accuracy are slightly shaken in the
last few epochs, which is caused by employing a larger
learning rate, but this does not affect the overall conver-
gence trend and final accuracy of the network.

4. Performance on Acc., Pre., Sen., and Spe.

We used the trained model to predict the class of lung
nodule candidates, and the probability that candidate was
judged to be a nodule is known as prediction confidence.

Fig. 8 Comparison with the state-of-art approach on the classification
indexes

Table 5 Comparison of
classification accuracy
on lung nodule
candidates

Method Acc.

Multi-crop [19] 0.8714

Deep 3D DPN [20] 0.8874

All feat. +GBM [20] 0.9044

Multi-scale CNN [21] 0.8684

Vanilla 3D CNN [22] 0.8740

Majority voting [23] 0.9465

EMU_3D_CNN 0.9783

Italicized numbers represent the best
scores on each indicator

Table 4 True positive rates (TPR) of nodules with different diameters

Diameter (mm) 3 < d < 6 6 < d < 9 9 < d < 12 12 < d < 15 d > 15

True nodule 492 343 123 83 121

Correct prediction 476 337 121 80 119

TPR (%) 96.75 98.25 98.37 96.39 98.35

Italicized numbers represent the best scores on each indicator
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Table 3 shows the average prediction confidence that real
nodules or non-nodules are predicted to be nodules. It can be
seen that among 543,381 candidates that can be cropped out in
the size of 18 × 18 × 18 from the LUNA16 dataset, 1320 real
nodules are predicted as nodules with an average confidence
of 0.9673, whereas 542,061 non-nodules are predicted as nod-
ules with an average confidence of 0.0161. The huge gap in
prediction confidence indicates that the proposed model is
well distinguishable for different classes.

We also conducted a separate classification experiment on
1186 nodules in the LUNA16 dataset, which had beenmarked
with size information. And because 1162 of these 1186 real
nodules could be completely reduced to the size of 18 × 18 ×
18, excluding those too close to the edge, we figured out the
diameter distribution of these 1162 nodules and classified the
nodules within each diameter range. The experiment results
are shown in Table 4.

In Table 4, the number of nodules correctly predicted with-
in each diameter range is actually the number of TP, while the
number of true nodules is equivalent to that of TP plus NF.
Thus, the true positive rates (TPR) of nodules with different
diameters can be obtained according to formula (7). As can be
seen from Table 4, the TPR value of nodules with a diameter
of 6–12 mm or greater than 15 mm is higher, while the TPR
value of nodules with other diameters is relatively small.
However, in general, the TPR values of nodules within all
diameter ranges exceeded 96%, indicating that the proposed

method has a good classification performance for nodules
with various sizes.

What is more, in order to evaluate the classification perfor-
mance more comprehensively, we compare our method with
other classification methods on four commonly used classifi-
cation evaluation indexes. The results are shown in Fig. 8 and
Table 5, where our method is named as EMU_3D_CNN. It
can be found from Fig. 8 that the EMU_3D_CNN method
gains higher scores than those of the majority voting method
[23] and multi-crop [19] on four classification metrics. In
terms of the acc. index, the EMU_3D_CNN method also
gains higher score than other methods mentioned in Table 5.

5. Performance on CPM

As mentioned earlier, the sensitivity at seven predefined
false positive rates and the CMP are taken as the main metrics
of the LUNA16 challenge to evaluate the “the false positive
reduction” work. Thus, we submitted the classification results
of 551,065 candidates in the LUNA16 dataset to the evalua-
tion software and obtained the evaluation results. Table 6 and
Fig. 9 show these experimental results.

In Fig. 9, the FROC performance is shown in the form of
three curves, where the solid curve represents the average
sensitivity at different false positive rates, while the dotted
curves represent the upper and lower sensitivity at different
false positive rates, respectively. All the curves show that the
sensitivity increases with the rise of the average number of
false positives per scan, particularly at 1/8, 1/4, 1/2, 1, 2, 4,
and 8 FPs per scan; the sensitivity scores are competitive.

Table 6 compares the performance of our EMU_3D_CNN
method with that of the other two. The other two methods
used the same version of the competition dataset as the meth-
od in this paper and won the first and third place of LUNA16
competition, respectively.

As can be seen from Table 6, the CPM score of our
EMU_3D_CNN method is 0.830, close to but slightly higher
than that of CUMedVis method (the top-ranked method) [11].
Maybe, it is because three single 3D networks are combined
for prediction (as shown in Fig. 3) in the structure of
CUMedVis, which is similar to the idea of a three-branch
network structure in this paper. However, our model is a single
network and only needs to be trained once, which is more
convenient for training and using than the CUMedVis
method.Fig. 9 The FROC curve of the EMU_3D_CNN method

Table 6 Comparison of
experimental results on metrics of
the LUNA16 challenge, where
0.125, 0.25, 0.5, 1, 2, 4, and 8 are
7 predefined false positive rates
(FPS)

Method 0.125 0.25 0.5 1 2 4 8 CMP

CUMedVis [11] 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827

DIAG CONVNET [8] 0.636 0.727 0.792 0.844 0.876 0.905 0.916 0.814

EMU_3D_CNN 0.630 0.753 0.819 0.869 0.903 0.915 0.920 0.830

Italicized numbers represent the best scores on each indicator
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Table 6 also shows that the CUMedVis method performs
better than the DIAG CONVNETmethod [8]. That is because
the DIAG CONVNET method adopts 2D CNN, while our
EMU_3D_CNN method adopts 3D CNN, which once again
proves that 3D CNN is better at processing spatial information
of 3D targets than 2D CNN.

Fig. 10 shows some correctly classified nodules and their
classification confidence. These nodules vary in shapes, sizes,
and peripheral textural environment, but all can be classified
correctly with a confidence greater than 0.5, indicating that the
proposed method can correctly classify nodules of different
sizes and shapes from complex peripheral environments with
a low false positive rate.

Discussion

1. Advantages and causes

An embedded multi-branch 3D CNN is proposed in this pa-
per to reduce false positives in lung nodule detection. The model
can learn more subtle features of the target, including features of
different scales and levels, and process spatial correlation infor-
mation of 3D samples more effectively, thus avoiding some
identification errors while classifying lung nodule candidates.

The proposed approach is an “end-to-end” approach, which
indicates that no manual feature extraction is required.
Moreover, since the samples used in this method are all taken

Fig. 10 Some nodules detected from CTslice and their prediction confidence. The yellow number in each slice and the number under in each subfigure
are the corresponding confidence
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from the original CT images, there is no need to carry out image
preprocessing such as grayscale transformation, morphological
transformation, and frequency domain transformation.

It should be noted that we adopt a ten-fold cross-validation
method, so the test set and training set are independent. In
other words, the total sample set is randomly divided into
approximately equal 10%, one of which is selected as the test
set and the remaining 9 as the verification set. Therefore, the
experimental results in this paper are scientific.

A large number of previous studies [3, 24] have shown
that, in order to reduce false positives in lung nodules
detection, the algorithms of combining multiple CNNs
for classification of lung nodule candidates are worthy
of recommendation. But the experiment results show that,
as a single CNN algorithm, the embedded multi-branch
3D CNN model can get similar and slightly higher scores
than multi-CNN combined method such as CUMedVis
and DIAG CONVNET method for false positive reduc-
tion in lung nodule detection, which greatly simplifies the
detection process of lung nodules.

The improvement of classification performance of the pro-
posed single CNN method may be mainly due to its multi-
branch structure. However, this kind of structure is rarely seen
in previous 3D networks, for it will make the 3D network with
a large number of parameters more complex and difficult to
converge. In order to solve this problem, batch normalization
is used in this paper to normalize the output of the correspond-
ing layer of the network so as to speed up the convergence of
the networks. This training strategy can be used as reference
for the rapid convergence of networks with similar complex
structures in the future.

2. Limits and future work

As mentioned above, the proposed embedded multi-branch
3D CNN can identify nodules of different sizes and shapes

with a low false positive rate. Even so, for nodules in different
sizes, the prediction confidence is often different. As shown in
Fig. 11, the average prediction confidence for nodules within
each diameter range is displayed, where, for nodules with a
diameter of 6–12 mm, the prediction confidence is higher,
with a score of over 97%. However, for nodules larger than
12 mm in diameter, the prediction confidence is lower, with a
score of about 93%. The reason may be that there are more
cases of nodules with a diameter of 6–12 mm in the LUNA16
data set, which enables them to be fully represented in the
training process. In contrast, the number of nodules with other
sizes is relatively small and less well represented in the train-
ing set. We believe that this is a problem that will be improved
as larger data sets become available in the future.

Finally, it is worth mentioning that in the above experi-
ment, only 543,381 out of the 551,065 candidates in
LUNA16 dataset were successfully cut out in size of 18 ×
18 × 18, which indicates that some other candidates are too
close to the edge to be cut out. This kind of inadequate cut may
affect the identification accuracy. In order to solve this prob-
lem, we may also cut out targets of other sizes for auxiliary
identification in the future, or only use one or several parts of
the target for joint identification, or propose other algorithms
specifically targeted at those marginal nodules for recognition,
which will all be the work that we might try in the future.

Conclusion

The false positive reduction in lung nodule detection is often
challenged by the fact that the lung nodules are three-
dimensional and have a wide variation in size and shape.
Therefore, an embedded multi-branch 3D CNN model is pro-
posed to resolve this challenging problem. This model takes
3D volumes as the input and carries out 3D convolution cal-
culation, which can more effectively deal with the spatial in-
formation of nodules. Moreover, as an embedded multi-
branch structure, the model identifies lung nodules of different
sizes and shapes more effectively. The experimental results on
the LUNA16 dataset show that the proposed method has ob-
tained a competitive score on the evaluation metrics of classi-
fication performance and the LUNA16 challenge metrics. In
addition, experiments show that the network converges rapid-
ly despite its complex structure and large number of parame-
ters. To sum up, our model is more convenient to be trained
and used, and as a single network, can actually achieve the
effect similar to that of multi-network combination approach.
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Fig. 11 The average prediction confidence for nodules in different sizes
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