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Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Up to 50% of non-palpable breast cancers are
detected solely through microcalcification clusters in mammograms. This article presents a novel and completely automated
algorithm for the detection of microcalcification clusters in a mammogram. A multiscale 2D non-linear energy operator is
proposed for enhancing the contrast between the microcalcifications and the background. Several texture, shape, intensity,
and histogram of oriented gradients (HOG)–based features are used to distinguish microcalcifications from other brighter
mammogram regions. A new majority class data reduction technique based on data distribution is proposed to counter data
imbalance problem. The algorithm is able to achieve 100% sensitivity with 2.59, 1.78, and 0.68 average false positives
per image on Digital Database for Screening Mammography (scanned film), INbreast (direct radiography) database, and
PGIMER-IITKGP mammogram (direct radiography) database, respectively. Thus, it might be used as a second reader as
well as a screening tool to reduce the burden on radiologists.

Keywords 2D NEO · Non-linear energy operator · NEO · Microcalcification · Microcalcification clusters · Mammogram ·
Shape features · Texture features · SVM classifier

Introduction

Breast cancer is the second most frequently diagnosed
cancer in the world with 2.1 million new cases in 2018.
It is the most common cancer diagnosed in women and
accounts for approximately 25% of all cancer cases in
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women worldwide. Breast cancer is the fifth most common
cause of death leading to 626,679 cancer deaths worldwide
in 2018 [1]. In India, an estimated 145,000 cases were
diagnosed with breast cancer, and about 70,000 breast
cancer patients died in 2012 [12]. The detection of breast
cancer at an early stage can help to reduce the suffering of
the patients, mortality rate, and expense of treatment.

Mammography is the most efficient and well-known
technique for the early detection of breast cancer. There
are various abnormalities found in mammograms, including
microcalcification, mass, architectural distortion, and bilat-
eral asymmetry, which can act as early signs of breast can-
cer. Microcalcifications are tiny specks of mineral deposits
such as calcium. They are found scattered throughout the
breast tissue, and they often occur in clusters. Microcalcifi-
cation (MC) clusters solely act as an early indicator of up
to 50% of all non-palpable breast cancers. They are also
present in about 93% of cases of ductal carcinoma in situ
(DCIS). Thus, detection of MC clusters is very crucial in
the diagnosis of breast cancer [6]. Computer-aided diagno-
sis (CAD) system can act as a second reader and can help the
radiologists to find MC clusters that radiologist otherwise
might have missed.
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Due to the increase in the number of cancer cases
every year, the workload of radiologists is increasing. The
ratio of radiologists to population is 1:50,000 in the USA
and Europe, while many African countries have a ratio of
1:1,000,000 or worse. Fourteen African countries have no
radiologists, and most have fewer than 30 [2]. So, there
is a massive burden on radiologists for diagnosing such
a large population. There is a need for screening CAD
which can predict the normal cases with 100% confidence
so that radiologist does not have to check most of the
normal cases and thereby reducing their workload. Thus,
we aim for developing an automated algorithm which can
detect microcalcification clusters with 100% sensitivity at
low false positives per image.

RelatedWorks on the Detection
of Microcalcifications

Several preprocessing techniques are proposed for pre-empha-
sizing the microcalcifications. Conventional enhancement
techniques include contrast stretching, histogram equaliza-
tion, and enhancement using convolution mask. As the
conventional methods are often based on global transfor-
mation which is not so effective, many approaches were
proposed to enhance the mammogram images using local
enhancement techniques [4, 32]. Gurcan et al. [16] pro-
cessed the mammogram images by a subband decomposi-
tion filterbank and used higher order statistical parameters
such as skewness, kurtosis, etc. to detect microcalcifi-
cation clusters. Papadopoulos et al. [29] have compared
various preprocessing techniques like linear range modifica-
tion (LRM), contrast-limited adaptive histogram equaliza-
tion (CLAHE), and wavelet-based preprocessing and shown
that the best results are obtained using LRM-based pre-
processing. Morphological processing [9, 27] and wavelet
reconstruction [42] are also some of the successful meth-
ods which enhance microcalcifications and suppress other
high-intensity regions in mammograms.

Many techniques are focused on feature extraction and
selection. Kim and Park [21] have compared the perfor-
mance of different features from spatial gray-level depen-
dence method (SGLDM), gray-level run-length method
(GLRLM), gray-level difference method (GLDM), and the
surrounding region-dependence method (SRDM) for micro-
calcification detection and shown that SRDM outperforms
other features. Zadeh et al. [37] compared the performance
of four different types of features, namely shape-, texture-
, wavelet-, and multi-wavelet-based features and concluded
that multi-wavelet performs relatively better compared with
other features.

Extensive research has been performed on the detection
and classification of microcalcifications using machine
learning techniques. Yu and Guan [43] proposed a
completely automated two-stage neural network approach
in which wavelet features, gray-level statistics, and shape
features were used to train two neural networks. It achieved
a sensitivity of 90% with 0.5 false positives (FPs) per
image. El-Naqa et al. [11] used support vector machines
(SVM) to detect microcalcification clusters and achieved
a sensitivity of 94% at one FP per image. Wei et al. [39]
proposed a Bayesian learning approach known as Relevance
Vector Machines (RVM). The method is computationally
efficient and provides similar performance when compared
with SVM with 90% sensitivity at one FP per image.
Nakayama et al. [26] proposed a Hessian matrix–based filter
bank for extracting multiscale features. Peng et al. [30]
proposed an algorithm based on stochastic resonance noise
for detecting microcalcifications. Guo et al. [15] proposed
a MC cluster detection algorithm which uses contourlet
transform and pulse-coupled neural network (PCNN). Liu
et al. [23] used the possibilistic fuzzy c-means (PFCM)
clustering and weighted support vector machine (WSVM)
and reported the sensitivity of 92% with 2.3 FP per image.
Shin et al. [36] used discriminative restricted Boltzmann
machine (DRBM) and reported Az value of 0.8294.
Zhang et al. [44] proposed morphological image processing
and wavelet transform–based method to microcalcification
clusters. The said method reported the sensitivity of 92.9%
with 0.08 false positive per image. Chen et al. [3] proposed
a method for classification of microcalcification clusters
using the topology of individual microcalcifications and
reported accuracy up to 96% and Az value up to 0.96.
Rampun et al. [31] analyzed the performance of 11
classifiers for classification of microcalcification clusters
using confidence levels for each classifier. The study shows
the importance of investigating confidence levels in the
development of CAD systems. Mordang et al. [24] proposed
a semi-automated deep learning–based technique for the
detection of microcalcification clusters in which the regions
of interest or patches of size 13×13 pixels are manually
cropped and are classified as microcalcification clusters or
normal regions. The method achieved the sensitivity close
to 100% at high false positive per image (more details
are given in Section 1 of the Supplementary Material).
The method by Mordang et al. have not reported the
results in terms of number of true positive and false
positive microcalcification clusters. There is no paper on
automated detection of microcalcification cluster detection
using deep learning to the best of our knowledge. Note that
the performance of microcalcification detection algorithms
is highly dependent on the database and the criteria on
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Table 1 Database details

Database Total no. of images No. of images without MC clusters No. of images with MC No. of MC clusters

DDSM 197 100 97 100

INbreast 410 389 21 26

PGIMER 110 50 60 76

which the results are evaluated. Karale et al. [20] proposed
a modified unsharp masking for the enhancement of
microcalcifications. The sensitivity of 96.72% with 3.48 FP
per image and 96.05% with 1.81 FP per image are reported
on Digital Database for Screening Mammography (DDSM)
and private database, respectively. In this work, two novel
multiscale 2D NEO operators are proposed which can detect
even subtle microcalcifications of various sizes and shapes.
In addition to this, a new majority class data reduction
technique based on data distribution is proposed to counter
data imbalance problem in a more efficient way.

Database

The performance of the proposed method is evaluated
on three different databases, namely Digital Database
for Screening Mammography (DDSM) [33] and INbreast
database which are publicly available and third is PGIMER-
IITKGP mammogram database which is collected by doc-
tors of PGIMER for the researchers of IITKGP. The DDSM
contains scanned film images digitized at the resolution of
0.05 mm, 0.042 mm, and 0.0435 mm with 16-bit grayscale
resolution. DDSM is the largest, popular, and freely avail-
able database. From DDSM, 100 normal images and 97
images with 100 microcalcification clusters (one or two
microcalcification clusters per mammogram) are selected
for this study. DDSM provides mammographer-assigned
subtlety ratings on the scale of 1 to 5, where 1 indicates most

subtle, and 5 indicates the obvious cases. Twenty microcalci-
fication clusters are selected from each subtlety level for an
unbiased evaluation of proposed algorithms.

PGIMER-IITKGP mammogram database is direct radio-
graphy (DR)-type private database having a resolution of
0.07 mm and a grayscale resolution of 12 bits, acquired
from Post Graduate Institute of Medical Education and
Research, Chandigarh, India. A set of 110 images, includ-
ing 50 normal images and 60 images having one to five
microcalcification clusters, are selected. The subtlety rating
information of microcalcification clusters is not available
for the PGIMER-IITKGP mammogram database.

The publicly available DR-type INbreast database has
a resolution of 0.07 mm and a grayscale resolution of
14 bits. The database contains 410 images, including 389
images without microcalcification clusters and 21 images
having one to three microcalcification clusters. The subtlety
ratings of microcalcification clusters are not provided
by the INbreast database. The locations of individual
microcalcifications in the clusters for PGIMER-IITKGP
database are identified by the experienced radiologist TS.
In the case of DDSM and INbreast databases, the cluster
boundaries are provided by the DDSM and INbreast
database. The microcalcifications in the clusters are marked
by the experienced radiologist, AS, for DDSM and INbreast
database. INbreast database reports 27 microcalcification
clusters in 21 images. As one cluster is found with less
than three microcalcifications, radiologist AS has merged it
with the adjacent cluster. Hence, we have 21 images with

Fig. 1 Block diagram of the
proposed microcalcification
detection method
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26 microcalcification clusters in INbreast database in our
study.

The details about the databases used are given in Table 1.

ProposedMethod for the Detection of MC
Clusters

The block diagram of the proposed algorithm is shown in
Fig. 1. It consists of the following steps.

Preprocessing

Breast Region Segmentation

First, breast region is segmented using multilevel hierarchi-
cal thresholding (MLHT) [14, 34] to limit the search within
the breast region. It also helps to remove various artifacts
like tags or labels outside the breast region which may be
detected as microcalcifications due to their high-intensity.

Pre-emphasis

Microcalcifications appear as tiny bright spots in mammo-
grams. Since they often have very low contrast with respect
to the background, a novel multiscale 2D non-linear energy
operator (2D NEO) is proposed, which can enhance the
contrast of microcalcifications over the background in mam-
mograms. The Teagers energy operator (TEO) [18] is a
non-linear energy operator in 1D and defined as:

y(n) = x2(n) − x(n − 1)x(n + 1).

where “x” is the input signal in 1D and x(n) is the value at
nth sample number. Initially, TEO was used to measure the
instantaneous energy of a signal [18]. Later, Mukhopadhyay
and Ray [25] have given the statistical interpretation of TEO
and have shown that it can be effectively used to detect
spikes in 1D signals. In a similar way, 1D NEO can be
extended in 2D for the detection of peaks in mammogram
images. For the extension of the 1D NEO operator to 2D
NEO operator, two possibilities are experimented, and the
best one is selected. In the first case, 1D NEO operator
is applied on the pair of pixels from 4 neighborhood of
the central pixel in x direction and y direction only. The
filter response in x direction and y direction is added to
get a final response at that pixel location. In the second
case, the 2D NEO response is calculated by combining the
responses of 1D NEO operator applied on each pair of
pixels from 8 neighborhood of central pixel, unlike the first
case. According to Mukhopadhyay and Ray, NEO operator
should be followed by moving average filter to remove
spurious spikes. Accordingly, the response of 2D NEO
operator is convolved twice with the 3×3 box filter [13] in
both cases. The rotation invariance property of these two
approaches is compared to select the best representative
method. For this, an ROI of 61×61 pixels centered at a
microcalcification object is cropped. The ROI is rotated at
various angles and the 2D NEO is applied on cropped ROI
and its rotated version.

Figure 2 shows the 2D NEO responses of an ROI and
the rotated ROI by 45◦ for both the cases with the center
of ROI marked by “+” in red color. Although it is expected
that the 2D NEO response of rotated and normal ROIs are
equal, a small difference is observed between them. In order
to demonstrate this, the absolute error at the center pixel vs.

Fig. 2 Visualization of NEO
responses. a ROI containing
microcalcification. b 2D NEO
response in all directions of ROI
in (a). c 2D NEO response only
in x and y directions of ROI in
(a). d ROI containing
microcalcification rotated by
45◦. e 2D NEO response in all
directions of rotated ROI in (d). f
2D NEO response only in x and
y directions of rotated ROI in (d)
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Fig. 3 Plot showing absolute error vs. angle of rotation for 2D NEO
response in all directions and 2D NEO response only in x and y directions

angle of rotation is plotted which is shown in Fig. 3. As
shown, the difference in absolute errors is highest at 45◦
and 135◦. From Fig. 3, it is found that 2D NEO response
obtained from all directions has less error due to the rotation
compared with 2D NEO response obtained from x and y

directions. Therefore, the second possibility is selected to
extend the NEO operator in 2D.

Since microcalcifications are of different sizes, a multiscale
approach is applied to enhance different-sized microcalcifica-
tions. The response of multiscale 2D NEO can be obtained
by combining the individual response of 2D NEO at various
scales. The 2D NEO response at the d th scale is defined as

NEO(x, y, d) = 4dI 2(x, y)−
⎡
⎣

d∑
p=−d

I (x−d, y+p) × I (x+d, y−p)

+
d−1∑

q=−(d−1)

I (x−q, y−d)×I (x+q, y+d)

⎤
⎦

where I represents the input image, x and y represent the
location of the pixel, and p and q represent the shift in y and
x, respectively.

Two techniques are proposed, namely mean multiscale
2D NEO and max multiscale 2D NEO, based on the way the
response of 2D NEO are combined over multiple scales. In
the mean multiscale 2D NEO technique, the final response
is obtained by averaging the individual 2D NEO responses
of each scale which is given by:

NEO1(x, y) = 1

MaxScale

MaxScale∑
d=1

NEO(x, y, d) (1)

Fig. 4 Responses of 2D NEO
filtering at various scales after
box filtering on ROI of
“C 0063 1.RIGHT MLO”
image of DDSM. a Input ROI. b
Ground Truth of the ROI; 2D
NEO response for the ROI with
kernel size of c 3×3, d 5×5, e
NEO 7×7, f NEO 9×9, g NEO
11×11, h NEO 21×21. i NEO
all scales averaged (NEO1). j
NEO all scales max (NEO2)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)
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where d indicates the scale and MaxScale represents the
maximum scale used for calculating NEO response which
is equal to the maximum size of the microcalcifications.

In the max multiscale 2D NEO technique, the response
of multiscale 2D NEO is obtained by taking maximum
response over all scales which is given by:

NEO2(x, y) = max
d∈1,2,...,MaxScale

NEO(x, y, d) (2)

Figure 4 shows the input ROI, corresponding ground
truth, and the responses of 2D NEO with various scales
ranging from 3×3, 5×5, 7×7, 9×9, 11×11, and 21×21
and combined response of all mentioned scales after box
filtering. Figure 4i shows the combined response of NEO
across all scales. As shown in Fig. 4c, the response of
2D NEO at the smallest scale of 3×3 is able to detect
microcalcifications of size 3 pixels in diameter. The bigger

microcalcifications of size greater than 10 pixels in diameter
(shown in cyan and yellow color bounding boxes) are split
into smaller parts using NEO kernel of size 3×3 and thus
unable to detect some of the bigger microcalcifications.
The response of 2D NEO at smaller scales appears noisier
compared with the response at bigger scales as they are
sensitive to the small local variations in intensities of
the image. On the other hand, as shown in Fig. 4h, the
response of 2D NEO at bigger scales of 21×21 can detect
microcalcifications of size greater than 10 pixels in diameter
but are less sensitive to the microcalcifications of diameters
less than 5 pixels (shown in magenta color bounding box).
Same observations are made in Fig. 5, which shows the
intensity profile and the NEO responses at various scales
along the horizontal line drawn on the ROI shown in Fig. 4a.
The ground truth in red color is superimposed on each plot
of Fig. 5, which shows the location of microcalcification

Fig. 5 Linear profile of 2D
NEO responses at various scales
after box filtering along the
horizontal line drawn on ROI
shown in Fig. 4a. The red line
indicates ground truth of
microcalcifications. The blue
line indicates image intensity in
a input image and 2D NEO
responses with kernel size of b
3x3, c 5x5, d 7x7, e 9x9, f
11x11, and g 21x21. h Using all
scales (NEO1). i Using all scales
(NEO2)
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pixels. Thus, in order to detect the microcalcifications of
various sizes, the response of NEO kernels across all scales
are combined to get the final response. In the case of mean
multiscale NEO, the spurious spikes caused due to the noise
present in the image are suppressed, since the response is
averaged over all the scales.

Iterative Thresholding

The preprocessed image is thresholded to get the probable
location of microcalcification candidates. The goal of this
process is to detect microcalcification clusters with 100%
sensitivity by allowing false positive candidates which can
be removed in subsequent stages.

In the case of the mean multiscale 2D NEO technique, the
threshold is selected such that a preset number of objects,
having a higher intensity than the threshold, are detected.
The thresholding is started with a value slightly less than
the maximum intensity of the pre-emphasized image (NEO
output). The image is binarized with this threshold and
connected component labeling is done to identify the objects
formed by connected pixels. The threshold value is then
decreased by a step size if the number of segmented
objects is less than the preset number. This procedure
is repeated until the number of segmented objects just
exceeds the preset number. If Imax and Imin represent the
maximum and minimum intensity of the pre-emphasized
image respectively, then the step size by which the threshold
is decreased is given by δ = (Imax −Imin)/N . Here, N is the
number of threshold levels.

In the case of the max multiscale 2D NEO technique,
two nearby peaks may be merged at different scales.
It leads to a bigger footprint which disqualifies it as
a microcalcification. In order to avoid this, previous
thresholding technique is modified. Let the threshold at nth

level of thresholding be represented by tn. If at nth level
of thresholding, two or more objects (detected at (n − 1)th

level) get merge into a single object then those objects
are thresholded with the higher threshold tn−1 while other
objects are segmented with threshold tn. This process of
multilevel thresholding is continued until we get a preset
number of microcalcification candidates. The estimation of
preset number for thresholding the image is discussed in
Section “Selection of the Preset Number for Thresholding
the Microcalcification Candidates”.

Rule-Based False Positive Reduction

Microcalcification appears as a tiny speck in mammograms
varying from 0.05 mm to 1 mm in diameter [11]. Thus,
most of the false positives objects which are linear in shape

and greater than 1 mm can be discarded based on the
length of the major axis. Based on these observations, the
microcalcification candidates satisfying any one or more of
the following rules are removed:

1. lobj >lmax

2. Aobj >Amax

3. Aobj <Amin

where lmax, Amax, and Amin is the maximum length of major
axis, maximum area, and the minimum area of the selected
objects, respectively. The selection of lmax, Amax, and Amin

are discussed in Section “Selection of Thresholds for Rule
Based False Positive Reduction”.

Feature Extraction

In rule-based FP reduction step, some of the false positives
are reduced, but still, there are plenty of false positives in the
binary image. So, the classifier-based false positive reduc-
tion is done to reduce remaining false positives. Microcal-
cifications tend to appear as tiny circular bright spots. Thus,
shape- and intensity-based features are used to distinguish
microcalcifications from the normal breast region in mam-
mograms. As blood vessels in the mammograms are brighter
and have high contrast, some of the broken parts of them
are often detected as microcalcifications. Histogram of ori-
ented gradients(HOG) [8] features helps to remove these
false positives. Various shape- and texture-based features
along with HOG features are extracted from individual seg-
mented objects. All the features are obtained from the local
square window, containing the object, with dimension 6 pix-
els more than the major axis length of the individual object.
In total, 38 features are extracted from the pre-emphasized
image which are listed in Table 2.

The list of 38 features and their definitions are given below:

– Mean foreground intensity (μf ): Mean intensity of
segmented objects.

– Standard deviation: Standard deviation of the intensities
within the segmented object region.

– Foreground-background ratio: It is given by

FBR = μf − μb

μf + μb

.

where μf is the mean intensity of segmented objects
and μb is the mean intensity of the background

– Foreground-background difference: It is given by

FBD = μf − μb.

– Foreground Entropy: The foreground entropy is the entropy
of the intensities within the segmented object region.

– Area: Number of pixels present in the segmented objects.
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Table 2 List of all the
extracted features Type Feature no. Feature name

Intensity 1 Foreground-background ratio

2 Standard deviation obj

3 Foreground entropy

4 Foreground-background difference

5 Mean foreground intensity

Shape 6 Area of an object

7 F3

8 F1

9 compactness

10 Fourth moment (F3-F1)

11 Elongation

Invariant moments 12 Φ1

13 Φ2

14 Φ3

15 Φ4

16 Φ5

17 Φ6

18 Φ7

Haralick features 19 Information measure 1

20 Information measure 2
21 Sum average
22 Correlation
23 Inverse difference moment
24 Energy
25 Sum Entropy
26 Sum of the squares
27 Sum variance
28 Difference variance
29 Entropy
30 Difference entropy
31 Contrast

HOG features 32 Mean of HOG bins
33 HOG bin 1
34 HOG bin 2
35 HOG bin 3
36 HOG bin 4
37 Standard deviation of HOG bins
38 Kurtosis of HOG bins

– Compactness: Compactness of segmented object is
calculated as follows

compactness = perimeter2

area
.

– Shape moments: Shape moments proposed by Shen et
al. [35] are computed for each segmented object. These
moments are defined as:

F1 =
[

1

N

N∑
i=1

[z(i) − m1]2

]1/2 /
m1

F3 =
[

1

N

N∑
i=1

[z(i) − m1]4

]1/4 /
m1

Fourth moment = F1 − F3

where

m1 =
[

1

N

N∑
i=1

z(i)

]

and z[i], i = 1, 2, ..., N are the Euclidean distances
between centroid and the contour pixels of the
corresponding segmented object.
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– Elongation: It is defined as:

Elongation = Major axis length

Minor axis length

where “Major axis length” and “Minor axis length” are
computed from eigenvalues of the segmented object.

- Invariant moments: 7 Invariant moments [13] are
calculated within the local window centered at the
centroid of the object.

– Haralick features: 13 Haralick features [17] are
extracted to get local texture information.

– HOG-based features: HOG features [8] help to seg-
regate microcalcifications and curvilinear segmented
objects. Note that the HOG features are not computed
by dividing the complete image into blocks and cells.
Instead, the histogram of oriented gradients is com-
puted from local window centered at the centroid of the
object. The size of the window is the same as that used
for Haralick features. The histogram is quantized into
four bins. Also, the mean, standard deviation, and kur-
tosis values of these four Histogram bins are computed
for each segmented object.

Feature Selection

The minimum redundancy maximum relevance (mRMR),
proposed by Ding and Peng [10], is used for selecting the
relevant features in our experiments. This technique selects
the set of features that minimizes the redundancy among
individual features and maximizes the relevance between

feature and target vector. First, the features are ranked by
giving scores to each feature depending on its redundancy
with other features and its relevance with the target vector.
The forward search is then performed using support vector
machines (SVM) classifier and the first K features are
selected from the ranked feature list. The K features
are selected which maximizes the objective function of
balanced accuracy by Velezet al. [38] and is defined as
Accb = (sensitivity + specificity)/2. Since accuracy gives
overestimated values in case of data imbalance, the balanced
accuracy is used as a criterion function.

Handling Data Imbalance Problem

As the number of microcalcification objects is very less
as compared with the number of false positive objects,
the problem of data imbalance arises. Classifier tends to
get biased to the majority class (negative class) samples
leading to the reduction of true positives. In the training
set, the ratio of positive class to negative class samples
is approximately 1:80, 1:20, and 1:90 for the DDSM,
PGIMER-IITKGP, and INbreast databases, respectively. In
this study, we have proposed a novel majority class data
reduction method to handle the data imbalance problem.
The performance of SVM classifier can be improved by
training it with the samples which are difficult to classify
or the samples which lies near the decision boundary [11].
Based on this idea, a simple data reduction technique
is proposed which reduces the number of majority class
samples (negative class samples). The imbalance of data is

Fig. 6 Distribution of positive and negative samples
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reduced by considering only the samples of the majority
class (negative class) which have all their features in the
overlapping region of probability distributions of positive
and negative samples. Thus the majority class samples
having any feature lying in the non-overlapping region, are
discarded as shown in Fig. 6. The samples are randomly
chosen from the reduced majority class (negative class)
such that there are equal number of samples from both the
classes.

Classification

The SVM [7] classifier with radial basis function kernel
is trained using the proposed set of features which
helps in reduction of false positives while preserving the
true positive objects. The kernel function parameters like
Gaussian width (σ ) and soft margin constant (C) are
determined by performing grid search. The grid search is
performed using training data of the 5-fold cross validation.
The 2-fold cross validation is applied on training data, and
the paired values of σ and C which produce the highest
average cross validation accuracy are selected. The values
of σ and C for each fold of DDSM, INbreast, and PGIMER-
IITKGP mammogram databases are given in Tables 4–9 in
the Supplementary Material.

Nearest Neighbor Clustering

Microcalcification clusters are clinically significant, unlike
the isolated ones. Thus, the proposed framework is focused
on the detection of microcalcification clusters. Since
microcalcification cluster is said to be detected if 3 or more
number of microcalcifications are detected within 1 square
cm region, a single link clustering with a maximum nearest
neighbor distance of 0.5 cm is incorporated to cluster the
detected objects [41]. The clusters containing less than three
objects are discarded.

Evaluation Criteria for Microcalcification Cluster
Detection

The convex hull is obtained from detected cluster for
categorizing the clusters as true positive (TP) or false
positive (FP) clusters. The evaluation criteria are set by
radiologist AS which is in-line with the article by Kallergi et
al. [19]. The detected cluster is said to be a true positive
cluster if the following criteria are met:

1. The centroid of the detected cluster should lie inside the
cluster marked by the radiologist as the ground truth.

2. The area of the convex hull of a detected cluster should
not exceed five times the cluster area marked by the
radiologist.

Results

The performance of the proposed methods is evaluated with
5-fold cross validation. The mammograms with and with-
out MC clusters, from selected dataset, are split into 5
folds. The splitting of selected dataset is done patient-wise,
i.e., all the mammograms of same patient will be in the
same fold. In each round, one fold each from the mam-
mograms with MC clusters and the mammograms without
MC clusters is selected for testing and the remaining four
folds from each are selected for training. In the case of
DDSM, a uniform distribution of subtlety levels for micro-
calcification clusters is maintained in each fold. For the
test data in each fold, the parameters and features are
selected using corresponding set of training data. The selec-
tion of parameters along with their effect on performance
followed by the performance of the proposed methods has
been discussed in Sections “Selection of Scales of 2D
NEO”, “Selection of the Preset Number for Thresholding
the Microcalcification Candidates”, “Selection of Thresh-
olds for Rule Based False Positive Reduction” to “Reduc-
tion of False Positives using SVM Classifier”.

Selection of Scales of 2D NEO

The pre-emphasis step enhances the contrast between the
microcalcifications and background tissues using multiscale
2D NEO. The maximum scale used for calculating 2D
NEO response corresponds to maximum size of the
microcalcifications (1 mm). The value of MaxScale in
Eqs. (1) and (2) is given by:

MaxScale = floor

(
Max MC size

2

)

where Max MC size is the maximum size of the microcal-
cification in pixels corresponding to 1 mm, which is given
by:

Max MC size = 2 ∗ round

(
1

2 ∗ res

)
+ 1

where res is the resolution of the input image in millimeter.
The above formula is adjusted such that Max MC size is
always odd since it corresponds to the maximum kernel size
for the calculation of 2D NEO.

Selection of the Preset Number for Thresholding
theMicrocalcification Candidates

The preprocessed image is thresholded using iterative
thresholding. The threshold is decreased from maximum to
minimum intensity of pre-emphasized image in “N” number
of steps. The value of “N” is chosen as 1000 in our exper-
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Fig. 7 A plot of sensitivity of individual microcalcifications versus number of microcalcification candidates. The red line is fitted using the
last three points in the plot. The green line is the reference line for measuring the angle of inclination of the red line a for DDSM and b for
PGIMER-IITKGP database

iments (The effect of N on sensitivity and FP per image
is given in Section 4 of the Supplementary Material). The
preprocessed image is thresholded in such a way that some
preset number of objects having the higher intensities are
segmented. The number of microcalcification candidates
was determined from the training set of 5-fold validation
by analyzing the sensitivity and the number of segmented
objects. The sensitivity of individual microcalcifications vs.
number of microcalcification candidates are shown respec-
tively in Fig. 7a and b for DDSM and PGIMER-IITKGP
database, respectively. The sensitivity of the microcalcifica-
tion detection increases with the number of microcalcifica-
tion candidates. Two approaches are followed to determine
the preset number of microcalcification candidates to be
thresholded, depending on whether the curve saturates. In
order to determine whether the curve is saturated, the angle
of inclination of the line fitted on last three points is cal-
culated. If the angle of inclination of the line is less than
10 degrees then the curve is considered in saturation. As
shown in Fig. 7a, the curve saturates for the number of
microcalcification candidates greater than 1500.

A second approach is used to find the knee point of the
curve when it does not saturate. Figure 7b shows one of
the case where the curve does not saturate as there is small
decrease in curvature even after 1500 microcalcification
candidates, unlike the one shown in Fig. 7a. In Fig. 8, a
second-order polynomial (c1 in red color) is fitted through
all the points. A line (l1 in orange color) joining the first and
last point is drawn. Two straight lines (l2 in purple and l3
in green color in Fig. 8) are fitted on first three points and
last three points, respectively. From the point of intersection
(p1) of the lines l2 and l3, a perpendicular (l4 in cyan color)
is drawn on line l1. It cuts the curve (c1) at a point p2. The
number of microcalcification candidates is selected from the

nearest neighbor of p2. In Fig. 8, the number of candidate
objects should be selected as 1100.

Selection of Thresholds for Rule Based False Positive
Reduction

After the probable microcalcification candidate selection,
the ratio of the number of microcalcifications to the number
of false positives is 1:120, 1:21, and 1:100 for DDSM,
PGIMER-IITKGP, and INbreast databases, respectively.
Due to such large imbalance in the number of samples
in two classes, the classifier is not trained appropriately
and it gets biased towards majority class. Thus, there

Fig. 8 This figure shows plot of sensitivity of individual microcalcifi-
cations versus number of microcalcification candidates for PGIMER-
IITKGP database. This figure also shows how to find out the knee
point (p2) and the nearest point (p3) indicating the number of micro-
calcification candidates which should be selected for 100% sensitivity
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is a need to reduce false positives for reducing the
imbalance between the classes. Based on the clinical
knowledge, some rules are derived from the shape and
appearance of microcalcifications which are mentioned in
the Section “Rule-Based False Positive Reduction”. The
maximum size of the microcalcification in mammograms is
1 mm [5, 11]. Thus, the false positive objects having major
axis length greater than maximum length in pixels (lmax) are
eliminated. The value of lmax, corresponding to 1 mm, is
given by:

lmax = round

(
1

res

)

where “res” is the resolution of the input image in
millimiter.

The threshold on maximum area (Amax) for rejecting the
false positive objects is given by:

Amax = round

[
π

(
lmax

2

)2
]

Most of the objects having an area less than 3 pixels are
due to noise present in the image [5, 43]. So, the minimum
area of microcalcification (Amin) is selected as 3 pixels for
the elimination of very small detected objects.

Reduction of False Positives using SVM Classifier

For the comparison of the proposed techniques with
existing literature, some of the automated techniques for the
detection of microcalcification clusters are implemented for

bench-marking. The performances of proposed techniques,
i.e., mean multiscale 2D NEO and max multiscale 2D NEO,
are compared with competing techniques by El-Naqa et
al. [11], Zhang et al. [44], and Karale et al. [20]. Mordang et
al. [24] proposed a deep learning–based technique for
the detection of microcalcification clusters. In the said
method, the regions of interest or patches of size 13×13
pixels are manually cropped and are divided into training
and test set for performance evaluation. Thus, the said
method is semi-automated and cannot be compared directly
with the proposed methods. In order to compare the
performance of the proposed techniques with competing
technique, maximum sensitivity and the corresponding FP
per image are calculated for each fold of 5-fold cross-
validation for the individual technique. The average of the
maximum sensitivities and the average of FP per image is
computed across 5-folds. The comparative performance of
the proposed methods in terms of the average maximum
sensitivity and the average FP per image with standard
deviation is shown in Table 3.

In the case of mean-multiscale 2D NEO, we could
achieve the best results of 100% sensitivity with 2.59, 0.68,
and 1.78 average FP per image for the DDSM, PGIMER-
IITKGP, and INbreast databases, respectively. The max-
multiscale 2D NEO outperforms previous competing
techniques in the cases of INbreast and PGIMER-IITKGP
mammogram database.

The results obtained for the technique by Karale et al.
in this study are similar to the results reported in their
work whereas the results obtained for the techniques by

Table 3 Comparative performance of proposed methods in terms of average maximum sensitivity and the average FP per image with standard
deviation

Database Techniques No. of MC clusters No. of MC clus-
ters detected

Average maxi-
mum sensitivity
(%)

Average FP per
image with stan-
dard deviation

DDSM El-Naqa et al. [11] 100 99 99 8.51 ± 2.68

Karale et al. [20] 100 92 92 3.79 ± 0.86

Zhang et al. [44] 100 73 73 8.37 ± 2.45

mean multiscale 2D NEO 100 100 100 2.59 ± 1.47

max multiscale 2D NEO 100 99 99 3.35 ± 1.89

PGIMER-IITKGP El-Naqa et al. [11] 76 71 92.89 1.59 ± 1.09

Karale et al. [20] 76 72 94.43 0.91 ± 0.45

Zhang et al. [44] 76 74 97.29 3.14 ± 2.67

mean multiscale 2D NEO 76 76 100 0.68 ± 0.62

max multiscale 2D NEO 76 76 100 2.0 ± 2.81

INbreast El-Naqa et al. [11] 26 26 100 4.25 ± 3.05

Karale et al. [20] 26 25 97.14 2.13 ± 2.2

Zhang et al. [44] 26 25 97.14 2.29 ± 1.79

mean multiscale 2D NEO 26 26 100 1.78 ± 1.2

max multiscale 2D NEO 26 25 97.14 0.67 ± 0.31
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Fig. 9 a FROC plots and b standard deviation of sensitivity values for the proposed techniques (mean multiscale 2D NEO and max multiscale 2D
NEO) with El-Naqa et al., Zhang et al., and Karale et al., for the DDSM

El-Naqa et al. and Zhang et al. are lower than the results
reported in their work. The deviation in the simulated
results for competing techniques could be due to change
in evaluation criteria and difference in the set of images
used for the experiment. We have used a more realistic
criteria which are set by radiologist for the evaluation of
TP and FP clusters. In the case of the criteria followed
by El-Naqa et al., the detected cluster is considered as TP
cluster if at least 3 true microcalcifications are detected
within an area of 1 cm2. There is no upper limit on the
detected cluster area for considering the detected cluster
as TP, which causes overestimation of the performance.
The criteria chosen in our study penalizes detected clusters
whose area is unreasonably large. Thus, the clusters whose

area is more than five times the area of the ground truth
cluster are considered as FP clusters. Zhang et al. have
not mentioned the evaluation criteria for considering the
detected cluster as TP or FP cluster.

Since we are interested in the detection of microcalci-
fication clusters, the results are computed in terms of true
positive and false positive clusters. The estimation of met-
rics like specificity, accuracy, and false positive fraction is
not possible, as it requires the number of negative clus-
ters which are not known a priori. So, the ROC analysis
is not suitable for the performance evaluation of the pro-
posed techniques. In this study, the FROC analysis is done
to compare the performance of the proposed techniques with
the competing techniques. For the computation of FROC
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Fig. 10 a FROC plots and b standard deviation of sensitivity values for the proposed techniques (mean multiscale 2D NEO and max multiscale
2D NEO) with El-Naqa et al., Zhang et al., and Karale et al., for the PGIMER-IITKGP mammogram database

740 J Digit Imaging (2019) 32:728–745



0 1 2 3 4 5 6 7 8
False positive per image

0

20

40

60

80

100

A
ve

ra
ge

 S
en

si
tiv

ity
 (%

)

mean multiscale 2D NEO
max multiscale 2D NEO
El-Naqa et al
Zhang et al
Karale et al

(a)

0 1 2 3 4 5 6 7 8
False positive per image

0

20

40

60

80

100

St
an

da
rd

 d
ev

ia
tio

n 
in

 s
en

si
tiv

ity

mean multiscale 2D NEO
max multiscale 2D NEO
El-Naqa et al
Zhang et al
Karale et al

(b)

Fig. 11 a FROC plots and b standard deviation of sensitivity values for the proposed techniques (mean multiscale 2D NEO and max multiscale
2D NEO) with El-Naqa et al., Zhang et al., and Karale et al., for the INbreast database

response, the average sensitivity is calculated across 5-folds
at various FP per image. The average sensitivity at the inter-
val of 0.5 FP per image is given in Figs. 9a, 10a, and 11a for
DDSM, PGIMER-IITKGP, and INbreast databases respec-
tively. The corresponding standard deviation in sensitivity is
given in Figs. 9b, 10b, and 11b.

From Fig. 9a, the mean multiscale 2D NEO has
high mean sensitivity values compared with competing
techniques at various FP per image. As shown in Fig. 9b,
the mean multiscale 2D NEO and max multiscale 2D
NEO have higher values of standard deviation in sensitivity
compared with competing techniques up to 1.5 FP per
image and gradually decreases to zero at 4 FP per image.
Thus, the proposed methods are more robust at higher
sensitivity values compared with competing techniques.
Similar observations can be made from Fig. 10a, b. As
shown in Fig. 11a and b, mean multiscale 2D NEO has zero
standard deviation at 3.5 or more FP per image.

The average sensitivity along with standard deviation
values obtained by individual techniques at various FP
per image for DDSM, PGIMER-IITKGP, and INbreast
databases are given in Tables 1, 2, and 3, respectively, in the
Supplementary Material.

The technique by El-Naqa et al. used high pass filtering
as preprocessing technique and done pixelwise classifica-
tion using the 7×7 local window on high pass filtered
output. The method did not used any shape-based, intensity-
based features to reduce FP. Thus, the technique has more
FP clusters at high sensitivity. The technique by Zhang et
al. proposed a preprocessing technique based on morpho-
logical image processing but the technique does not use
any machine learning algorithm to further reduce the false
positives. Karale et al. proposed modified unsharp masking

as preprocessing technique and use random undersampling
to handle data imbalance problem which lead to reduc-
tion in sensitivity. Thus, the method could not achieve
100% sensitivity in this study. The performance of proposed
mean multiscale 2D NEO technique is better compared
with the competing techniques due to (a) the improve-
ment in the pre-emphasis technique, (b) elimination of false
positives based on clinical knowledge of microcalcifica-
tion size, (c) use of intensity-, shape-, and texture-based
features to classify microcalcifications and normal objects
using SVM, (d) use of novel majority class data reduction
technique to cope with data imbalance problem efficiently.
The heuristic parameters (viz. maximum scale for obtain-
ing NEO response, preset number to terminate the iterative
thresholding process, and the thresholds used for elimina-
tion of false positive objects) are selected by data-driven
approach given in Section “Selection of Scales of 2D
NEO”, “Selection of the Preset Number for Thresholding
the Microcalcification Candidates”, and “Selection of
Thresholds for Rule Based False Positive Reduction”, mak-
ing it easy to adapt for an unknown databases.

Figures 12, 13, and 14 show example of the missed cases
by competing methods from the PGIMER-IITKGP mam-
mogram database, DDSM, and INbreast database, respec-
tively. As shown in Fig. 12e, the technique by El-Naqa et
al. is able to detect three individual microcalcifications but
they are not present in 1 square cm area and hence the clus-
ter is missed. Zhang et al. has detected a cluster whose area
is greater than 5 times the area of cluster in ground truth and
hence the detected cluster is considered as false positive, as
shown in Fig. 12g. Figures 12f, 13e, g, and 14e–g shows
the missed cases where the number of microcalcifications
detected is less than 3 and hence the clusters are missed.
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Fig. 12 Comparative results of missed case from the PGIMER-IITKGP database for a original image, b ground truth, c mean multiscale 2D NEO,
d max multiscale 2D NEO, e El-Naqa et al., f Karale et al., and g Zhang et al.

Discussion

In this study, we have three major contributions. The first
contribution is the pre-emphasis using multiscale 2D NEO
to pre-emphasize microcalcifications and suppress the high-
intensity objects in the background. Thus, it helps to detect
all the true positive MC clusters in the preprocessing step.
The second contribution is the use of HOG, intensity-based,
shape-based, and texture-based features for segregating

microcalcifications from false positive objects. The third
contribution is in handling data imbalance problem. The
novel majority class data reduction technique is proposed
which reduces the number of majority class samples based
on the distribution of majority and minority class samples.

The proposed algorithm can be compared with various
automated algorithms in terms of sensitivity and FP per
image. Peng et al. [30] used stochastic resonance for the
detection of MC clusters and reported an average sensitivity

Fig. 13 Comparative results of
missed case from the DDSM for
a Original image, b Ground
truth, c mean multiscale 2D
NEO, d max multiscale 2D
NEO, e El-Naqa et al., f
Karale et al., g Zhang et al.
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Fig. 14 Comparative results of
missed case from the INbreast
database for a Original image, b
Ground truth, c mean multiscale
2D NEO, d max multiscale 2D
NEO, e El-Naqa et al., f
Karale et al., g Zhang et al.

of 94% with 3.12 FP per image on 75 images from
DDSM and MIAS databases. Oliver et al. [28] proposed
knowledge-based approach for the detection of MC clusters
and reported 90% sensitivity with FP per image ranging
between (3.23,5.52) on MIAS and (3.54,4.09) on private
database. The results of the said method are reported
on 322 and 280 images of MIAS and private database,
respectively. Nakayama et al. [26] proposed eight multiscale
features based on eigenvalue values of Hessian matrix for
the detection of MC clusters and achieved a sensitivity of
100% with 0.98 FP per image. The method was tested on
1200 images with 600 normal and 600 abnormal images
from DDSM. The comparison of the method with proposed
technique requires the ground truth of blood vessels which
is not publicly available. Blood vessels in the mammograms
are difficult to identify unless it has calcium deposition
around its boundaries. Thus, the technique by Nakayama et
al. is not suitable for implementation to compare with
proposed techniques. Linguraru et al. [22] proposed a
biologically inspired contrast stretching followed by foveal
segmentation and reported a sensitivity of 100% with FP per
image slightly greater than two on DDSM with 58 images
with MC clusters and 24 normal images. Note that the
performance of the microcalcification detection technique
highly depends on evaluation criteria and the set of the
images used in the study.

The proposed mean multiscale 2D NEO method achieved
100% sensitivity with a significantly lower number of
false positives per image on DDSM, PGIMER-IITKGP,
and INbreast databases. The number of images (without
microcalcification clusters) detected without any false
positive cluster is 48 out of 100, 43 out of 50, and 178
out of 389 for DDSM, PGIMER-IITKGP, and INbreast

database, respectively. This constitutes 48%, 86%, and
45.68% savings for radiologists in reading the images
without microcalcification clusters for DDSM, PGIMER-
IITKGP, and INbreast database, respectively.The recall rates
of microcalcifications in screening mammograms are 1.7%,
1.82%, 0.67% for 0.42% in Germany, USA, Netherlands,
and Australia, respectively [40]. Thus, the proposed mean
multiscale 2D NEO method, when used as a screening tool,
can play a crucial role in reducing a significant amount of
workload of the radiologists.

The proposed max multiscale 2D NEO is able to achieve
100% sensitivity on only PGIMER-IITKGP mammogram
database. Although the proposed mean multiscale 2D
NEO method achieves 100% sensitivity in detection of
microcalcification cluster on all the three databases used
in the study, the method fails to achieve 100% sensitivity
for detecting individual microcalcifications. In some cases
where the number of microcalcifications in a cluster is less
than or equal 6, the proposed methods are able to detect only
3 microcalcifications.

Conclusions

A completely automated technique is proposed for the
detection of clustered microcalcifications. A novel mul-
tiscale 2D NEO–based filtering technique is used as a
preprocessing step for enhancing the contrast between
microcalcification and background in the mammogram. The
preprocessing step detects all microcalcification clusters
in the first stage. Several intensity-, texture-, shape-, and
HOG-based features are used for reducing false positives
in classification stage. A new majority class data reduction
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technique is proposed to handle data imbalance efficiently.
The sensitivity of 100% is achieved with moderate false pos-
itives per image for the three databases used in this study.
Apart from the normal use of CAD as a second reader, the
mean multiscale 2D NEO can act as a screening tool. It
might eliminate considerable portion of the normal images
from the work-list and thereby reduces the workload of the
radiologists.
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