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Abstract
Unstructured and semi-structured radiology reports represent an underutilized trove of information for machine learning (ML)-
based clinical informatics applications, including abnormality tracking systems, research cohort identification, point-of-care
summarization, semi-automated report writing, and as a source of weak data labels for training image processing systems.
Clinical ML systems must be interpretable to ensure user trust. To create interpretable models applicable to all of these tasks,
we can build general-purpose systems which extract all relevant human-level assertions or “facts” documented in reports;
identifying these facts is an information extraction (IE) task. Previous IE work in radiology has focused on a limited set of
information, and extracts isolated entities (i.e., single words such as “lesion” or “cyst”) rather than complete facts, which require
the linking of multiple entities and modifiers. Here, we develop a prototype system to extract all useful information in
abdominopelvic radiology reports (findings, recommendations, clinical history, procedures, imaging indications and limitations,
etc.), in the form of complete, contextualized facts. We construct an information schema to capture the bulk of information in
reports, develop real-time MLmodels to extract this information, and demonstrate the feasibility and performance of the system.

Keywords Machine learning . Radiology reports . Natural language processing . Structured reporting

Introduction

Unstructured and semi-structured radiology reports represent
an underutilized trove of information for clinical informatics
applications, including follow-up tracking systems, intelligent
chart search, point-of-care summarization, semi-automated re-
port writing, research cohort identification, and as a source of
weak data labels for training image processing systems. The
growing importance of structured data is reflected in radiolo-
gists’ increasing embrace of structured reporting, standardized
coding systems, ontologies, and common data elements [1, 2].
It is an open question as to whether all potentially useful
structured information can be captured feasibly a priori at
the time of reporting. Even if this undertaking proves feasible,
large amounts of historically useful data will remain in their
unstructured form.

A parallel approach to procuring structured information
involves the development of automated systems capable of
extracting structured information from unstructured free text.
This approach is frequently used for individual downstream
applications (e.g., text mining for research cohort identifica-
tion). However, individual applications often recreate old
pipelines to extract the information from reports, reduplicating
large amounts of work, and leaving the general information
extraction problem unsolved. Recent advances in natural lan-
guage processing (NLP) and modern machine learning (ML)
technologies have made it feasible to extract complete sets of
structured information from unstructured free text within lim-
ited domains, essentially fully converting unstructured infor-
mation to structured information. Tasks of this form fall under
the general umbrella of information extraction (IE) [3].
Table 1 provides a breakdown of some (but by no means all)
common subtasks and task formulations of information ex-
traction, while Table 2 contrasts rule-based andmachine learn-
ing approaches for performing these tasks.

Previous IE work within radiology has focused on named
entity recognition (NER)—identifying particular spans of text
corresponding to relevant entities in the document [4–7].
Some definitions of named entity recognition are limited to
proper nouns (e.g., person, organization, and location), but in
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this paper, we use “named entity recognition” to refer to rec-
ognition of any text span which corresponds to a relevant
piece of information (e.g., including modifiers such as
“spiculated” or “5 mm”). Such NER systems represent a
step-up from systems which merely perform a raw text search
over a pre-specified set of terms, as there are many cases in
which there is not a one-to-one mapping between raw text and
entity (e.g., homonyms, multiple context-dependent meanings
of a word, and pronouns). Furthermore, modern machine
learning systems such as neural networks are capable of gen-
eralizing beyond set lists of terms and are therefore not limited
by incomplete ontologies.

However, systems which strictly perform named entity
recognition-level tasks are insufficient for answering even
basic clinical queries. Perhaps the most commonly cited
example is negation: in the sentence “No lesion observed,”
an NER-only system could (correctly) identify “lesion” as an
entity, but cannot correctly answer the intended question
“does this patient have a lesion” without additional informa-
tion about the negation and how it relates to the “lesion” entity.
Many other limitations exist, including conditional expres-
sions, e.g., “if a lesion is present, consider …”; uncertainty,
e.g., “possibly representing a lesion”; temporal modifiers, e.g.,
“patient with history of lesion”; and even person-specific, e.g.,
“patient’s father with reported history of lesion”; which add
crucial context to the entity. Despite the relatively narrow
vocabulary and informational scope of radiology reports
compared with general-purpose English text, these linguistic
phenomena are very common in radiology reports, rendering
pure NER systems incapable of answering basic clinical
queries without additional post-processing.

The task known as relation extraction [8] is a step-up from
NER (see Table 1), as it involves identifying entities and re-
lations between them. In the most general form, a set of pos-
sible relations between entity types are defined, such as “le-
sion X has size Y” or “imaging modality X was used on body
region Y”, and a successful system is capable of identifying
these relations from raw text. Such systems, therefore, can
answer questions such as “does this patient have a lesion,”
“are any of the lesions larger than 5 mm,” or “has this lesion
changed since it was last observed” by using information
relating multiple named entities. Some systems exist for rela-
tion extraction in a general-purpose clinical text, but the radi-
ology literature is limited.

In addition, most systems only focus on small subsets of
information within reports. By contrast, we aim to create a
system capable of general-purpose complete information ex-
traction from radiology reports, for a wide variety of down-
stream uses, as listed above. In this study, we develop an
information schema capable of capturing the majority of in-
formation in radiologic reports, demonstrate the feasibility of
a neural network system to extract this information, and mo-
tivate possible downstream uses.Ta
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Methods

Fact Schema

We iteratively developed a schema of all relevant information
documented in radiology reports by qualitatively examining a
body of existing reports. For the purposes of this feasibility
study, we used only abdominal and pelvic radiology reports to
constrain the space of possible information. However, most of
the schema covers information (e.g., findings, follow-up rec-
ommendations, and indications) which applies to all body
parts, and a similar process could easily be used to modify
the informational schema to include missing domain-specific
information.

The basic unit of information in our schema is a clinical
assertion, predicate, or “fact”, such as “a radiologic finding
was observed,” “the patient has a follow-up recommenda-
tion,” or “the patient has a known diagnosis.” Each fact has
one “anchor” text span—e.g., the finding, the recommenda-
tion, or the diagnosis—as well as a set of informational
“modifier” text spans which contextualize or modify the fact.
These modifier spans include common linguistic elements
such as negation, uncertainty, and conditionality, as well as
fact-specific information (e.g., a radiologic finding has
“location,” “size,” “description,” and “change over time”
whereas a follow-up recommendation has “desired timing”)
designed to be able to answer most reasonable queries a
clinician might have regarding a report. These modifier spans
are roughly analogous to “slots” in a slot filling task [9], in
which systems populate predefined relation types for a given
entity. Figure 1 shows an example “radiologic finding was
observed” fact.

It is important to note that multiple facts can occur within
the same span of text—for instance, a sentence stating “this
exam is compared to a previous abdominal CT” contains at
least two separate facts—(1) that an imaging study was done
in the past and (2) that this imaging study was used for com-
parison with the current study.

Rather than trying to build up an ontology from simple
entities, as past work has done, we designed each anchor
and modifier span to answer a specific question and trained
our system to produce all information necessary to answer the
question implied by the span type. For instance, in a “patient
has radiologic finding” fact, the entire phrase “within the left
kidney” would be tagged as the “location” span, as all of this
information, including the organ, laterality, and preposition
“within,” is necessary to answer the common question “where
is the finding?”

We iteratively developed the information schema by
using it to label radiology reports with their complete
factual content. When information was found that was
not captured by our schema, we updated our schema to
capture this information. The schema is extensible to any
piece of information which can be formatted as assertions
or predicates relating groups of entities which map to
spans of radiologic text.

Data

For our data set, we used a convenience sample of 120 ab-
dominal and pelvic radiology reports from imaging studies
obtained at our institution from 2013 to 2018. These reports
included a variety of indications as well as modalities, includ-
ing CT (n = 50), MRI (n = 48), and ultrasound (n = 22). The
reports included adult patients of all ages and sexes. The re-
ports were written using a wide variety of personal reporting
templates and language and most were written in prose. Some
reports, but not all, used some form of anatomical section
headings, although the form of these headings was highly
variable. The corpus included reports written by 26 different
attending radiologists and 51 resident radiologists. Our study
was approved by our Institutional Review Board.

We used custom-developed labeling software to manually
annotate 120 reports with their complete factual content. Each
piece of extracted information was required to be linked to a
specific span of text in the document, in order for the system to

Fig. 1 Example fact with anchor and modifier text spans
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be interpretable and evaluable. Each fact was labeled with the
following three pieces of information: (1) the minimal contig-
uous text span from the report necessary to capture the com-
plete fact, (2) the text span corresponding to the anchor span
which defines that fact, and (3) text spans corresponding to
surrounding pre-defined modifier spans (e.g., negation and
size of lesion). Labels [2] and [3] were required to fall within
the span of label [1], but only the anchor entity [2] was re-
quired to be contiguous. A fact could have only one anchor
entity, but could have any number of non-anchor modifier
spans, including zero. In many cases, the same text span was
labeled with multiple different fact instances. Text spans for
all three span labels were constrained to the word token level
rather than the individual character level (e.g., a fact might
begin at token 230 and end at token 266). Tokenization of
documents was performed using spaCy, a freely available py-
thon package.

Models

For continuous word token embeddings, we used custom
fastText vectors trained on a corpus of 100,000
abdominopelvic radiology reports at our institution. We
chose fastText because it is relatively quick to train and is
capable of using subword information such as a word’s
spelling, enabling out-of-vocabulary tokens (including
typos) to be reasonably well-represented. We used the
fastText implementation from the gensim python package
with the skip-gram training procedure, 300-dimensional
embeddings, and all other parameters set to gensim’s de-
fault values. Qualitative inspection of the resulting vectors
showed reasonable similarity between nearby words both
in spelling and semantics. We concatenated these embed-
dings with GloVe embeddings trained on large volumes of
general-purpose English text to form our complete word
embeddings, believing that the combination of large-
volume training data (from GloVe) and domain-specific
embeddings (from fastText) may outperform each embed-
ding type individually.

We used a two-part neural network architecture for our
models. The first neural network takes a full document as
input and outputs (1) token-level predictions of anchor
entities and (2) token-level predictions of complete fact
spans. The second takes as input an anchor entity, fact
type, and candidate fact span and outputs (1) token-level
predictions for context modifier spans and (2) a refined
prediction of the beginning and end of the complete fact.
This refinement is necessary because of the small amount
of training data for the full-document model (120 example
documents) compared with the large amount of training
data for the second network (> 5000 manually labeled fact
spans within these reports). It is unsurprising that the fact
spans predicted by the fine-tuning module in the second

neural network are significantly better than those predicted
by the first neural network, given the significantly larger
volume of training examples it had to work with.

The first neural network works as follows: embedded
full documents are processed sequentially by a 2-layer
bidirectional gated recurrent unit (GRU), a type of recur-
rent neural network module used frequently in text pro-
cessing systems to encode surrounding context. The out-
puts of the two directions of the GRU are concatenated
and used as shared features for two separate dense layer
“heads,” which calculate predictions for each word token
in the document. One head predicts which fact types
each word token is part of and the other predicts which
anchor entity types (including none) a word token is part
of. We treated the problem as a multi-class, multi-label
prediction problem, allowing each word token to be part
of multiple different facts or anchor types. A dropout of
0.3 was applied to the GRU outputs for regularization.
We opted to keep the fact span head and anchor span
head independent, and use the joint output of both to
definitively identify facts, as described below.

For every predicted anchor span, if it is inside of a predicted
fact span, we create a fact candidate. The second neural net-
work takes as input each fact candidate, consisting of the
predicted anchor span, the predicted fact type, and the embed-
dings of the words within the predicted fact span. The predict-
ed anchor span is provided in the form of a mask vector of
zeros and ones, where 1 corresponds to a predicted anchor
token and 0 corresponds to a predicted non-anchor token.
This “mask” vector is concatenated to the word embeddings.
To enable the second network to expand the predicted span of
the first network if necessary, we also include the word em-
beddings of the 20 tokens which come before and after the
predicted fact span. This network has separate weight param-
eters stored for each separate fact type, as each fact may re-
quire different learned information—the fact type predicted by
the first network determines which stored parameters are used
by the second network.

The second network outputs word token-level predictions
for all modifier spans (including possible refinement of the
anchor entity prediction), and error is computed using a sig-
moid function followed by binary cross-entropy loss. Last,
this network predicts the refined beginning and end of the
complete fact span as follows: a dense layer processes the
GRU-encoded tokens and outputs “beginning” and “end”
scores for each token. A maximum is taken over all token
positions to produce the final predictions for the beginning
and end of the fact span, and loss is computed using a softmax
followed by a cross-entropy loss function. The overall loss
function for the second network is the sum of the beginning
and end position losses and the token-level predictions.

A complete diagram of the neural network architecture is
given in Fig. 2.
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Training and Validation

Data was divided into training, validation, and test sets (80%/
10%/10%) and model design decisions and hyperparameters
were tuned on the validation set. Models were trained until
validation set performance ceased increasing, with a patience
of three epochs. Model performance was evaluated using
word-level micro-averaged recall, precision, and F1 score
for (1) full-fact spans, (2) anchor entities, and (3) modifier
spans on the unseen test data.

For further information about model hyperparameters and
other specific training decisions, see Appendix.

Results

Information Schema

Our full information schema is given in Table 3, along with
parsed examples and relative frequency in the labeled docu-
ment corpus. In total, 5294 facts were labeled (an average of
44.1 facts per report) with 15,299 total labeled pieces of infor-
mation (anchor entities and modifier spans) for an average of
2.88 labeled text spans per fact. Our fact schema was compre-
hensive and covered the vast majority of information present
in abdominopelvic radiology reports, with 86.3% of the raw
text (53,862 tokens) covered by at least one fact. Almost all of
the texts not covered by facts were document section headers
and other metadata. We did not have to add any new facts after

approximately 50 reports were fully labeled, suggesting that
we had achieved some degree of content saturation within the
limited domain of abdominopelvic reports.

Fact Extraction

For prediction of fact spans, our model achieves token-level
recall of 88.6%, precision of 93.5%, and F1 of 91.0%, micro-
averaged over all fact types. For anchor prediction, we achieve
77.1% recall, 88.4% precision, and 82.4% F1. Micro-averaged
across all pieces of information, including modifier spans, the
model achieves 74.5% recall, 75.1% precision, and 74.8% F1.
Performance varies significantly across class types, from 0% for
rare facts (i.e., < 10 training examples) to > 95% for the most
common facts. This is unsurprising given that some fact types
have extremely limited training data in our corpus; e.g., in our
corpus, there were only 9 “patient has lab result” facts vs. ap-
proximately 2500 “radiologist asserts imaging finding” facts, so
the model does not have enough data to learn generalizable
properties for the rarest fact types. Additional data would likely
improve the model’s performance across all fact types, but most
particularly on rare fact types. However, our model was able to
achieve > 75% F1 score at extracting “patient had procedure”
and “patient carries diagnosis” facts, each of which have fewer
than 200 labeled training examples, suggesting that the volume
of training data required for thismodel to performwell in limited
domains is not prohibitively large. Future labeling can be direct-
ed toward the rare facts to improve the system’s performance.

Fig. 2 Architecture for (a) first and (b) second neural network
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Table 3 Complete information schema. Examples are color-coded
using the colors in the “anchor entity” and “modifier spans” columns.
Modifier spans which are in standard color do not appear in the parsed
example, while example texts in standard color are not part of any

information spans. Note that multiple modifier and/or anchor spans may
overlap, but for ease of visualization, no examples with overlapping spans
were selected

Fact Anchor en�ty Modifier spans Parsed example Frequency in labeled dataset

Pa�ent carries 
diagnosis

DDiagnosis Timing of diagnosis, 
body loca�on specifics, 
current status/severity, 
previous workup, 
previous therapeu�c 
measure

62-year-old male 
with history of SMA
dissection status 
post repair.

161

Pa�ent has/had 
procedure

Procedure Timing, body location
specifics,
outcome/consequence,
indica�on, where/by 
whom procedure 
performed

Stable post surgical 
changes from right 
upper pole partial
nephrectomy.

195

Imaging study 
occurred

Modality Time of occurrence, 
anatomic region,
contrast-related 
informa�on, imaging 
sequences, other 
protocolling informa�on, 
summary of findings, 
indica�on

Findings: please 
refer to CT chest
from today's date
for chest findings.

341

Study was used 
for comparison 
with this study

Modality (of
compared study)

Anatomic region, �ming Comparison: 
Complete 
abdominal
ultrasound
__DATE__.

142

Radiologic 
finding was 
observed

Finding Loca�on, finding 
descriptors, �ming, 
image cita�on, 
quan�ta�ve size 
measurement, 
description of change
over time, related 
diagnos�c interpreta�on

Stable septated
inferior interpolar 
cys�c lesion is seen 
on image 1/4,
measuring 7 x 7 
mm.

2651

Anatomic region 
has property

Region Property, image cita�on, 
quan�ta�ve size 
measurements, 
statement rela�ve to 
past imaging, related 
diagnos�c reasoning

Soft tissues appear 
unremarkable.

1221

Pa�ent has lab 
results

Lab Result, �ming, indica�on, 
other se�ng informa�on 
(e.g., at what facility)

AFP was 1 on 
__DATE__..

9

Pa�ent has 
pathology 
results

Tissue Findings/result,
indica�on, �ming, other 
se�ng informa�on

Status post le� 
robo�c par�al 
nephrectomy on 
__DATE__. Kidney
pathology 

18
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Table 3 (continued)

demonstrated clear 
cell carcinoma, 
Fuhrman grade 1. 

Pa�ent has/had 
symptom

SSymptom None History: 64-yr-old 
male with 
abdominal pain.

39

Follow-up 
recommenda�o
n made

Recommendation Timing/condi�on, 
indica�on

9 x 15 mm 
nonaggressive 
appearing right 
adnexal cyst for 
which one-year
follow up pelvic
ultrasound is 
recommended if the 
pa�ent is 
postmenopausal.

162

A�ending 
a�esta�on/com
ment exists

Commenter A�esta�on or comment A endingending
radiologistadiologist
agreement: 
I have personally 
reviewed the 
images and agree 
with this report

119

This study has a 
limita�on

Limitation Reason Portions of the head
and tail are
obscured by bowel 
gas.

82

Informa�on is 
elsewhere (e.g., 
in another 
document)

Information Loca�on
Findings: Please 
refer to CT chest 
from today's date
for chest findings.

24

Radiologist 
communicated 
with someone

Whom Timing, modality, 
informa�on conveyed

These observa�ons
were discussed with 
and acknowledged 
by __NAME__ at 
__TIME__ on 
__DATE__.

8

This study has an 
indica�on

Indication N/A He presents for 
active surveillance
of a left kidney
mass.

27

Pa�ent has 
stated age and 
gender 

Age Gender 63-year-old male 87

Modifiers 
associated with 
all facts

Nega�on (of en�re 
fact), statement of 
uncertainty, 
informa�on source

-

tt
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Examples

Inspection of predictions on unseen reports showed that the
network was able to extract varied information successfully
from complex sentences. For instance, in the test set fact
“9 mm nonaggressive appearing cystic lesion in the pancreatic
tail on image 16 series 2 is unchanged from prior exam when
measured in similar fashion, likely a sidebranch IPMN,” the
system was able to produce correct labels for all 7 informa-
tional spans, including diagnostic reasoning. Furthermore, the
system was able to generalize to fact instances it had not seen
before (for instance, it identified “Gamna-Gandy bodies” as a
finding in the test set), indicating that it had learned general
representations of how facts are recorded in radiology reports.
In this way, it has a significant advantage over rule-based
systems and ontologies which are limited to pre-specified vo-
cabularies and ontologies. The fastText embeddings, which
utilize subword information in the form of character n-grams
to embed unseen words, allowed the system to handle typo-
graphical errors effectively.

Discussion

Our study demonstrates the feasibility of near-complete infor-
mation extraction from radiologic texts using only a small
corpus of 120 abdominopelvic cross-sectional imaging re-
ports. It introduces a novel information schema which is ca-
pable of handling the vast majority of information in radiolog-
ic text and a neural network model for extracting that infor-
mation. It is capable of extracting information from reports
written in a wide variety of template and prose styles by >
50 different radiologists. Although we have not yet integrated
it into the clinical workflow, the system is capable of operating
in real time (i.e., while a user types) and the information sche-
ma is easily extensible to additional facts with no changes to
the neural network other than the number of output units. It is
likely that our schema and models would generalize effective-
ly to other radiologic and clinical domains.

Our representational system has several strengths. First, it
is capable of handling multiple facts of the same type
contained with the same text span—for instance, in the sen-
tence “hepatic artery, portal vein, and hepatic veins are pat-
ent,” our system extracts three separate “anatomic region has
property” facts - one for each anatomic structure. This disen-
tanglement of separate facts from raw text is particularly cru-
cial for downstream applications that involve tracking or rea-
soning over discrete facts. Second, by representing our infor-
mation schema using complete predicates, e.g., “patient has
diagnosis” and “imaging study was used for comparison with
this study,” we are able to represent relations involving some
implied entities such as “this patient” or “this study” and dif-
ferentiate them from predicates involving other people or

studies. Thirdly, by treating our modifier spans as questions
to be answered rather than entities to be identified, we include
all the information necessary to answer a single clinical query
in each modifier span. To see the advantage of this, consider
the sentence “Lesion observed within the left kidney.” Many
NER-based systems would attempt to identify “left” as a
laterality and “kidney” as a body organ, but our system iden-
tifies the complete text span “within the left kidney” as the
location of the lesion, which directly answers the clinical que-
ry and is more readily applicable to downstream tasks; e.g., an
automated tracking system could disambiguate this lesion
from other kidney lesions or lesions on the left side of the
body, and display it separately.

There are, however, some limitations to our representation
of the IE task. Although our system is able to represent the
vast majority of information found in abdominopelvic radiol-
ogy reports, no matter how comprehensive a structured infor-
mation schema is, there are rare types of information that will
be missed. Furthermore, our system is unable to handle some
types of “implied” information which are not directly refer-
enced in the text–e.g., in the sentence “The gallbladder is
surgically absent,” an ideal system might infer a cholecystec-
tomy procedure fact, but there is no span of text corresponding
to the procedure name in this sentence, and therefore our sys-
tem cannot extract a procedure fact. For this study, this was a
deliberate design decision, as we wanted to provide interpret-
able and verifiable output where each prediction is linked to a
particular span of text [13]. However, this trade-off results in
our system being unable to extract some types of implied
information. In the limited domain of radiological text at our
institution, the assumption of direct textual evidence for each
entity was valid in the vast majority of cases, but not all.

Exceptions are rare in the structured domain of radio-
logic text, and we were able to find sensible workarounds
for this study. However, moving to a more general model,
where systems are capable of answering arbitrary natural
language questions about a report or span of text, is likely
necessary to solve some of these difficulties and expand
the capabilities of information extraction systems.
Figure 1 of a study from the Allen Institute [10] effective-
ly highlights the difficulty in capturing every piece of
information using structured ontologies and relations be-
tween entities and suggests a simpler alternative to com-
plex ontologies in the form of question-answer meaning
representations (QAMRs), which do not grow more com-
plex and brittle with larger information schemata.
Development of large question-answer data sets for radio-
logic and other clinical domains is an important step for
progressing the field and developing models which can
effectively comprehend and reason about radiologic texts.
A parallel approach involves transfer learning from
general-purpose question answering tasks such as the
Stanford Question Answering Dataset (SQuAD) [11].
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Another limitation of this study is the small amount
of labeled data available for the full document-level
neural network (120 reports); it is a general rule that
deep learning models perform better with larger training
data sets, and many specific vocabulary terms are not
represented within this corpus. Labeling each report
with their complete informational content requires hun-
dreds of text spans to be manually identified (each re-
port takes 30–45 min to label). However, our models
were able to perform reasonably well even with this
small training set and are able to generalize unseen vo-
cabulary terms, suggesting that the effort required to
create effective training sets is not prohibitive even for
smaller groups of clinicians or researchers. We plan to
continue increasing the size of the training set, includ-
ing additional reports from other department sections,
imaging modalities, and institutions, to improve gener-
alization performance. Alternatively, using rule-based la-
beling algorithms to produce weak labels for a much
larger corpus of reports may be effective for training,
although manually labeled data is still required to eval-
uate the performance of such systems.

From the modeling perspective, usage of more so-
phisticated word token representations such as language
models, which tend to outperform static word embed-
dings on most NLP tasks [12] may provide further im-
provement. Using attentional models such as the trans-
former architecture [13] may also enable the system to
handle long-range text dependencies more effectively
than recurrent neural network models.

Our current study is limited to abdominopelvic radiology
reports, and we did not conduct any formal experiments on
other report types. It is likely that the similar vocabulary de-
scribing findings, recommendations, imaging modalities, and
measurements, as well as the similar document-level form of
most reports (findings ordered by anatomic region) would
provide a baseline level of generalizability across radiology
subdisciplines. However, exposure to subdiscipline-specific
vocabulary (anatomic terms, specific lesion descriptions)
would almost certainly be necessary for high-accuracy perfor-
mance. Future work will aim to formally test these assump-
tions (e.g., training a model on one type of report and testing
on another).

Conclusions

We develop a comprehensive information schema for com-
plete information extraction from abdominopelvic radiologic
reports, develop neural network models to extract this infor-
mation, and demonstrate their feasibility. Our system uses no

pre-specified rules, runs in real time, generalizes arbitrarily
large information schemata, and has representational advan-
tages over systems which only perform named entity recogni-
tion. The system has many downstream applications including
follow-up tracking systems, research cohort identification, in-
telligent chart search, automatic summarization, and creation
of high-accuracy weak labels for large imaging data sets.
Future work includes using more sophisticated language
models, generalizing to all radiologic subdisciplines, and
building downstream applications. Complete conversion of
unstructured data to structured data represents a feasible com-
plementary approach to structured reporting toward the goal
of creating fully machine-readable radiology reports.

Appendix. Hyperparameters and Model
Specifics

All models were trained using the PyTorch module with the
adaptive moment estimation (Adam) optimizer and a learning
rate of 1e-3.

Since the second network receives as input the predicted
fact spans and anchors from the first network, we stochasti-
cally augment the dataset to simulate incorrect output predic-
tions by the first network. A random number of additional
tokens between 0 and 20 is appended to either side of the true
fact span in order generate a noisy training example for the
second network. This enables the second network to learn to
correct the first network’s incorrect predictions.

Training was completed in 2 h on a machine with one
NVIDIA GTX 1070 GPU.
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