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Abstract
Remarkable progress has been made in image classification and segmentation, due to the recent study of deep convolutional
neural networks (CNNs). To solve the similar problem of diagnostic lung nodule detection in low-dose computed tomography
(CT) scans, we propose a new Computer-Aided Detection (CAD) system using CNNs and CT image segmentation techniques.
Unlike former studies focusing on the classification of malignant nodule types or relying on prior image processing, in this work,
we put raw CT image patches directly in CNNs to reduce the complexity of the system. Specifically, we split each CT image into
several patches, which are divided into 6 types consisting of 3 nodule types and 3 non-nodule types.We compare the performance
of ResNet with different CNNs architectures on CT images from a publicly available dataset named the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI). Results show that our best model reaches a high detection
sensitivity of 92.8% with 8 false positives per scan (FPs/scan). Compared with related work, our work obtains a state-of-the-art
effect.
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Introduction

Lung cancer is the most aggressive disease among all the
cancer-related diseases due to its significant morbidity and
mortality. According to a World Health Organization survey,
lung cancer has been the largest cause of cancer deaths among
male patients, while in female patients, lung cancer deaths
rank second only to breast cancer [1, 2]. Therefore, early de-
tection is significant for lung cancer diagnosis, which can
greatly increase a lung cancer patient’s chance of survival.

Low-dose computed tomography (CT) is a powerful meth-
od for detecting lung cancer early, by identifying the malig-
nant primary lung nodules [3]. However, it is a quite tiring task
for radiologists to carefully examine each CT image, of which
there can be a large amount. Meanwhile, the diagnosis is very
likely to be affected by the limitation of the radiologists’

experience and knowledge, which increases the possibility
of misdiagnosis and failure to diagnose. To avoid the radiolo-
gists’ subjectivity factor and reduce their burden, computer-
aided detection, which can find the location of lung nodules
and predict the risk of lung cancer, can be used to help radi-
ologists with the speed and accuracy of diagnosis [4, 5].

Before deep learning methods came out, image-based lung
nodule detection was usually associated with two steps: first,
image analysis did feature extraction [6] or hand-crafted fea-
tures work [7, 8]. Second, they used a support vector machine
(SVM) classifier [9] or random forest [10] method to classify
these featured nodules. Descriptors of the histogram of orient-
ed gradients (HOG) [11], local binary patterns (LBP) [12], and
wavelet feature descriptors [13] were used for feature extrac-
tion. Without these automatic feature extraction methods, they
can also extract hand-crafted features in terms of geometry
[14], appearance [15], or texture [16]. For example, Gurcan
et al. [6] used weighted k-means clustering to segment the
lung structures from the lung region and classified them by
designing a rule-based classifier to reduce the number of false
positive (FP) objects per slice. Their work can achieve 84%
sensitivity with 5.48 FP objects per slice. Elmar et al. [9]
calculated several masks to eliminate the background and sur-
rounding tissue and used SVM to categorize the regions of
interest with a sensitivity of 84.93%, specificity of 80.92%.
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In 2006, Geoffrey and his team [17] proposed a fast learning
algorithm for deep belief nets. After that, deep learning methods
developed quickly. Thanks to a large number of available
datasets such as ImageNet and the computational power of the
GPUs, convolutional neural networks (CNNs) have amazingly
advanced the landscape of image classification [18], object de-
tection [19], and semantic segmentation [20].

Recently, with the development of CNNs’ architectures
such as AlexNet [21], VggNet [22], GoogLeNet [18], and
ResNet [23], more and more teams use CNNs to do medical
image diagnosis tasks. Rotem et al. [24] used AlexNet to
extract valuable volumetric features from the input data and
achieved a sensitivity of 78.9% with 20 false positives per
scan (FPs/scan). Shuo et al. [25] present multi-view
convolutional neural networks for lung nodule segmentation.
The architecture can capture a set of nodule features from
axial, coronal, and sagittal views in CT scans, so it has obtain-
ed a sensitivity of 83.72%with 20.71 FPs/scan. Kui et al. [26]
also designed multi-view CNNs, but they used an MV-CNN
for lung nodule classification, which consisted of benign, ma-
lignant primary, and metastatic malignant categories. Huang
et al. [27] made full use of the spatial 3D context of lung
nodules and proposed 3D CNNs. The results showed that
3D CNNs perform better than 2D CNNs, which can achieve
a sensitivity of 90% at 5 FPs/scan. Yu et al. [28] also used 3D
CNNs. However, their team used a multi-scale prediction
strategy including multi-scale cube prediction and cube clus-
tering which can detect extremely small nodules. The sensi-
tivity of their scheme is 92.93% with 4 FPs/s. Recently, more
teams apply object detection methods to lung nodule detec-
tion. Zhu et al. [29] used 3D Faster-RCNN method on a basis
of dual-path network and a U-Net like encoder-decoder struc-
ture to obtain the features which achieve a sensitivity of 93.3%
with 8 FPs/scan.

In this work, we propose a CAD system using the ResNet-
like CNNs based on a prior CT image split, or what we called
CT image segmentation. The architecture of a CAD system
usually has two parts: (1) generating nodule candidates and (2)
classifying candidates. However, we do not need to generate
nodule candidates in this work. We split the raw CT images
into several patches that were numbered in a certain order and
divided into six types instead of the first part of former CAD
systems. Then we put these six types of patches into CNNs to
extract their features. We can predict if the patch has nodules
and find the location of the patch in the CT images according
to their numbers. The radiologists can use the information
from the CAD system to make a correct diagnosis. We also
evaluate the performance of different CNN models like
AlexNet and GoogLeNet. Our contributions are summarized
as follows:

1. We use an image split technique to reduce the complex-
ity of the CAD system. In contrast with former work in this
area, we do not need to do hand-crafted feature extraction or

image pre-processing to generate nodule candidates, which
can reduce the subjectivity factor.

2. The image split technique can easily find the location of
nodules thanks to a certain number each patch has.

3. We use ResNet-like CNNs to classify six types of
patches, which is more accurate than the two types of patches
used in former work. This can increase the sensitivity of the
CAD system and decrease the false positive rate at the same
time.

Methods

Dataset

We use the Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) dataset [30] to do
training and testing experiments in this work. The LIDC-IDRI
contains 1018 cases consisting of marked-up annotated le-
sions in lung cancer screening thoracic CT scans. Four expe-
rienced radiologists independently divided these lesions into
three categories (Bnodule ≥ 3 mm,^ Bnodule < 3 mm,^ and
Bnon-nodule ≥ 3 mm^). The XML file attached to each patient
indicates the region of interest (ROI) of each nodule and its
characteristics, such as texture, malignancy, and calcification,
labeled by each of the four radiologists. The images of each
patient comply with the Digital Imaging and Communications
in Medicine (DICOM) standard and have a resolution of
512 × 512 pixels, where the number of slices may range from
65 to 764.

To rigorously evaluate the performance of our CNNs’ ar-
chitecture, we partitioned the 600 scans into three subsets:
training, validation, and testing sets. The training set was used
to update the weights of the convolutional layers, fully con-
nected layers, and softmax layers. The validation set was used
to tune the values of hyper-parameters such as the learning
rate, kernel size of each unit, and number of kernels. The
testing set was used to evaluate the performance of the
CNNs’ architecture and the whole CAD system.

CT Image Split

Due to the high resolution of raw CT images, it is quite diffi-
cult for the CNN model to directly determine whether the
image has nodules. We came up with an effective way to solve
this problem.

Former work usually used two or three specific detectors to
extract nodule from CT scan and then put them into CNN
classifier which was computationally inefficient. Some teams
just used CNN classifier to categorize candidates into two
types: nodules and non-nodules. According to the
Ginneken’s work [31], it is an arduous task to classify adhe-
sion pulmonary nodules attached lung wall because lung wall
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usually occupies most space of one patch which is extremely
different from solitary pulmonary nodules in morphology. If
we put solitary pulmonary nodules and pulmonary parenchy-
ma adhesion type into one category which we will talk about
in the Discussion section, the sensitivity will decrease a lot.
Inspired by his studies, we considered categorizing patches
into six types.

Before training, we should make six types of patches and
label them as our train set. We split each slice of CT scans into
several small patches in a certain order and numbered the
patches in accordance with their locations in the scan. With
the help of the diagnoses in the XML files provided by LIDC-
IDRI, we marked patches as belonging to one of the six types
so that the CNNs could more effectively detect lung nodules
and locate them by patch number.

Figure 1 illustrates the six types of patches: (1) solitary solid
nodules whose CT values are larger than – 450 HU, (2) large
solitary solid nodules whose diameter is larger than 10 mm, (3)
nodules attached to or surrounded by lung parenchyma, (4) lung
parenchyma without nodules, (5) vessels and tissues, (6) no ob-
vious tissues, vessels or lung parenchyma. Types 1, 2, and 3 are
all nodules, and types 4, 5, and 6 are all non-nodules.

CNNs’ Architecture

In this work, we propose CNNs based on former researchers’
work [23]. Though the architecture of the CNNs is designed
for classifying thousands of types of objects, it still has a
remarkable performance in lung nodule detection task. As is
shown in Fig. 2, the CNNs’ architecture consists of two parts.
The first part consists of training CNNs to extract various

features from the six types of patches we mentioned in section
B and is composed of four residual blocks from RB1 to RB4.
Every block has three different convolutional layers with
leaky rectified liner units (Leaky ReLU) and batch normaliza-
tion layer. The second part consists of the classifier that is
composed of a global average pooling layer, followed by a
softmax layer.

The system starts from one single CT scan. It gets one
image from the whole scan and cuts it into 64 blocks, which
we call patches. These patches are numbered in a certain order
according to their location in this image. The classification
part of the CNNs’ architecture will classify these patches into
the six types we have talked above. With the help of these
numbers, the CAD system can easily distinguish the nodules
from the patches and find their locations in images.

Considering that the diameters of lung nodules usually
range from 3 to 30 mm [32], we resize these patches to 64 ×
64 pixels, which can keep the full feature information of nod-
ules. However, this may lead to a failure involving the misdi-
agnosis of small nodules. The size of the first convolutional
layer C1 is 3 × 3 with 32 kernels and the size of the second
layer C2 is 3 × 3 with 64 kernels. And the strides of C2 is 2.
The strides are set to decrease the size of feature maps and the
number of the CNNs’ weights. Each kernel produces a 2D
image output (e.g., 64 32 × 32 small patches after C2). Then
the main body of the network is residual block. It consists of
three different convolutional layers. The input of the residual
block will be connected to the end of the convolutional block
with a skip connection. In this way, the ResNet can access the
earlier activations which were not modified in the
convolutional block. The values of the kernels are initialized

Fig. 1 Examples of six types of patches cut from rawCT images. Patches: (1) solitary solid nodules, (2) large solitary solid nodules, (3) nodules attached
to or surrounded by lung parenchyma, (4) lung parenchyma without nodules, (5) vessels and tissues, (6) no obvious tissues, vessels or lung parenchyma
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by the Xavier algorithm and can be updated during the train-
ing of CNNs using a back-propagation algorithm. The whole
CNNs’ architecture is described in sequence as follows:
C1:32 × 3 × 3, C2:64 × 3 × 3/2, RB1:× 1, C3:128 × 3 × 3/2,
RB2:× 2, C4:256 × 3 × 3/2, RB3:× 4, C5: 512 × 3 × 3/2,
RB4:× 2, AP1:4 × 4 where, e.g., RB2:× 2 means there are
two the same residual blocks and AP1:4 × 4 means an average
pooling layer with a kernel size of 4 × 4.

We used Leaky ReLU as the activation function in the
convolutional layer. Unlike traditional activation functions
such as sigmoid and tanh, Leaky ReLU is quite simple.
The activation f(x) for an input x is obtained as f(x) = x
when x > 0, f(x) = ax when x < 0. It is more in line with
the transmission of a neural impulse of the human nervous
system and can appropriately solve the problem of gradient
dispersion in deep networks and introduce sparsity to the
network to reduce the overfitting.

In the last of our network, we used a global average pooling
layer instead of fully connected layer. We used a 4 × 4 size of
kernels which meant every feature map will be followed by
one output. It can reduce a large number of parameters com-
pared with a fully connected layer. Furthermore, we used the
batch normalization layer to control overfitting effect and
speed up network’s convergence. Batch normalization layers
are widely used in a convolutional network. The batch nor-
malization layer’s work can be summarized as:

μΒ←
1

m
∑
m

i¼1
xi

σ2
Β←

1

m
∑
m

i¼1
x1−μBð Þ2

x̂i←
xi−μΒ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
Β þ ε

p

yi←γx̂i þ β≡BNγ;β xið Þ

where μB is themean of onemini-batch, and σ2
B is the variance

of one mini-batch. The subscript B means a mini-batch. γ and
β are parameters which can be learned, output is yi.

The output layer global average pooling layer is followed
by a softmax classifier that uses the cross-entropy cost func-
tion. The softmax classifier can give us a more intuitive output
than another commonly seen classifier, SVM. Suppose that θi
is the ith row weight of softmax layer. xi is the input vector, or
we can call it the output of global average pooling layer (in
this paper, the size of θi is 1 × 512 and xi is 512 × 1), and we
have the probability assigned to the correct label yi as

p yijxi; θið Þ ¼ eθi∙xi

∑k
j¼1e

θ j ∙xi

the division performs the normalization to make the summa-
tion one. To maximize the probability of the correct class and
improve the networks, we should minimize the cross-entropy
loss. The loss function is defined as follows:

j θð Þ ¼ −
1

m
∑
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i¼1
∑
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n o

log
eθ jxi
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" #
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2

∑
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∑
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j¼0
θ2ij

where {y(i) = j} means it is equal to 1 if the condition is met;
otherwise, it is equal to 0. We add an L2-norm to penalize
large values of the parameters.

Experiments

Data Augmentation

Optimization of the CNNs relies on the quality of the training
dataset. If the training dataset is skewed, the weight of each
layer will lead the deep learning algorithm to the local opti-
mum, which means the normal balanced set cannot reach the
same performance as the training set evaluated during the
training period. Therefore, we use the data augmentation tech-
nique to prevent the overfitting of the training set. Meanwhile,
the testing set does not have enough patches to evaluate the
CNNs, so data augmentation is also applied to this set.

Since the number of non-nodules is much more than the
number of nodules, we pay more attention to the nodules’

Fig. 2 An overview of our proposed CAD system
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types. We use rotation, translation, and scaling techniques to
enlarge the nodules set. It is noteworthy that a rotation tech-
nique usually cannot be used in data augmentation because of
misleading image semantics. Here, however, the image se-
mantics of the nodule patches do not change with rotation.
Overall, there are 3286 patches with nodules and 4294 patches
with non-nodules, as shown in Table 1. Finally, we resize each
patch in all three sets to 64 × 64 to be put into the CNNs.

Evaluation Criteria

To evaluate the performance of the CAD systems and CNNs,
some evaluation criteria need to be defined. The most intuitive
performance metric is accuracy. However, it is not enough for
medical diagnosis. We should pay more attention to missed
diagnoses (regarding nodule patches as non-nodule patches)
and misdiagnosis (regarding non-nodule patches as nodule
patches) [33]. For this reason, sensitivity and misdiagnosis
rates are applied to the evaluation criteria. Supposing that
the number of true positives is TP, false positives is FP, true
negatives is TN, and false negatives is FN, we have the for-
mula for accuracy, sensitivity, and misdiagnosis as follows [9,
34]:

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN

Sensitivity ¼ TP

TPþ FN

misdiagnosis rate ¼ FP

FPþ TN

For the evaluation criteria of the CAD system, the evalua-
tion is performed by measuring the sensitivity and the corre-
sponding false positive rate per scan. We usually call these
evaluation criteria the free receiver operating characteristic
(FROC) analysis [34]. First, we set a threshold t; then the
sensitivity and average number of false positives per scan
are determined. The two values make coordinates in the
FROC curve. If we change the threshold t by a value such as
0.001, we will get a new sensitivity and a new average number
of false positives per scan in the FROC curve. In this way, we
can draw a whole FROC curve. To be more easily compared

with other work, we can get some certain sensitivity at the
predefined false positive rate, such as 4 or 8 FPs/scan.

Training

The CNNs are implemented in a TensorFlow framework by
using a GeForce RTX 2080 Ti GPU. We use the mini-batch
gradient descent technique to update the parameters where the
batch size is 32. As learning rate is a very important hyper-
parameter during the training process, we should anneal it
over time. With a high learning rate, the parameter vector
may bounce around chaotically which can contribute to the
system being unable to find a smaller loss of the results.
However, if we set the learning rate too small, we will be
wasting too much time on finding the best position for the
system. So, we apply the step decay technique to the system,
which means the learning rate will be reduced by some factor
every few iterations. We also use the momentum technique to
accelerate learning. The momentum algorithm accumulates an
average of past gradients and continues to update in their
direction.We set the momentum to 0.9.We have the annealing
learning rate formula as follows:

α ¼ base lr � gamma floor iter=stepsizeð Þð Þ

where base_lr is 0.001, gamma is 0.9, stepsize is 100,000, and
iter is the number of the current iteration.

We do one evaluation process of the validation set every
few iterations. Finally, we train the CNNs for 30,000 batches
and choose one CNNs’ architecture with the best parameters.
In this work, we also try the image split technique in different
CNN models like AlexNet and GoogLeNet.

The training curves of the three networks are shown in
Fig. 3. As shown, the accuracy of AlexNet, GoogLeNet, and
our ResNet became stable after 20 epochs.

Results and Comparison

When we begin to calculate the sensitivity of this CAD sys-
tem, we regard the multi-classification task as the binary clas-
sification task which means if one patch is classified as type1,
2, or 3 patches, it will be regarded as nodules; otherwise, it will
be regarded as non-nodules.

If we focus on the performance of the nodule classification
task, the results of the binary classification for the networks are
shown in Table 2. AlexNet can only achieve a 72.16% sensi-
tivity along with 4 FPs/scan. There is no doubt that AlexNet
networks are not deep enough to learn all the nodules’ features.
GoogLeNet obtains a sensitivity of 75.25% with 4 FPs/scan
because of the more convolutional layers, which is much better
than AlexNet. Our ResNet can achieve a sensitivity of 89.60%
with 4 FPs/scan, which is much higher than the sensitivity

Table 1 The number of
nodules and non-nodules
in the whole dataset

Label Type Number Total

Nodule 1 889 3286

Nodule 2 914
Nodule 3 1483

Non-nodule 4 1685 4294
Non-nodule 5 1350

Non-nodule 6 1259
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achieved by GoogLeNet and AlexNet. Within a certain range,
increasing the depth of the network can improve accuracy.
However, when the depth of the networks comes to a certain
limit, the performance of the network cannot make good prog-
ress. That is why GoogLeNet can get better performance than
AlexNet but still is not good enough. If we keep increasing the
number of convolutional layers, the accuracy which we can see
in Fig. 3 will start to become stable at one point and eventually
degrade. It is obvious that shallower networks contain more
feature information from patches than deeper network. Our
ResNet-like network takes this advantage of shallower network.
We connect the shallower network directly to deeper network to
guide the whole CNNs to learn more features of nodules. The
result of our ResNet-like network seems promising.
ResNet also does better work at training speed compared with
GoogLeNet and AlexNet.

To illustrate the effect of the networks, we inspect the
FROC curves of AlexNet, GoogLeNet, and ResNet shown
in Fig. 4 [35].

Table 3 shows the details of some CAD systems working
with the LIDC-IDRI dataset. There are two types of CAD
systems using CNNs. One is the type of CAD system that
can work without any prior knowledge of nodules, like our
work and the work of Rotem et al. This method can detect all
types of nodules including ground-glass and juxta-pleural.
Another type of CAD system, like that used by Setio et al.,
is a CAD system that generates all suspicious candidates ac-
cording to the existing nodule detecting algorithms, which
means it cannot detect those nodules that the algorithms do
not cover, like ground-glass and juxta-pleural. So we can see
that although these works are all done in recent years, the

results are quite different, as shown in Table 4. The ap-
proaches which have a candidate generation part can have a
small FPs/scan thanks to the small problem space, but they
cannot detect all types of nodules. The approaches whose
candidates include just the sub-space of the whole scan can
detect all types of nodules with a substandard FPs/scan. Our
work uses an image split to generate raw patches without any
pre-processing. The system puts all types of nodules into the
CNNs so that the networks can learn all the features of differ-
ent nodules. Though the problem space is large, the result is
still state-of-the-art. It can get a sensitivity of 92.8% with 8
FPs/scan.

To put our CAD systems in a broader context, the per-
formances of existing CAD systems are reported in
Table 4. All these schemes were implemented with deep
learning methods. Setio’s scheme, Rotem’s scheme, Jiang’s
scheme, Huang’s scheme, Khosravan’s scheme, Broyelle’s
scheme, and Dou’s scheme all used CNNs to do classifica-
tion task to reduce false positives. Setio’s scheme used 2D
CNNs to implement lung nodule detection and others all
used 3D CNNs. Except Rotem’s scheme and Khosravan’s
scheme, these schemes all consisted of two steps whose
first step was lung nodule detection and the second step
was a FP reduction step. From the results, we can deter-
mine that those methods which had two steps usually had
better performance in FPs/scan thanks to the little problem
space which can be reduced in the first step.

Though Khosravan’s method just had one step, it still
obtained much better performance even than those that had
two steps. Khosravan’s scheme adopted dense network,
which could keep the low-level information in shallower
layers. Our ResNet is similar to its dense network in
avoiding the loss of shallower layers’ information. Thus,
both our scheme and their scheme generated few FPs with
one step method.

Zhou’s scheme in Table 4 also obtained remarkable perfor-
mance. They used Faster-RCNN deep learning method which
is a quite popular method in object detection task. They
adopted 3D Faster regions with 3D dual path blocks and a
U-Net-like structure which could take advantage of both
ResNet and DenseNet.

Fig. 3 The training curves of the AlexNet, GoogLeNet, and ResNet

Table 2 The results of the binary classification for networks with
different architectures

Architecture Sensitivity FPs/
scan

Speed of training s/100batch

AlexNet 72.16% | 82.47% 4 | 8 0.159 s

GoogLeNet 75.25% | 79.38% 4 | 8 0.162 s

Our ResNet 89.60% | 92.80% 4 | 8 0.026 s
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Compared with Setio et al. and Huang et al.’s approaches,
the FPs/scan of our proposed system is little larger than theirs
because of different pre-processing methods. They detect sus-
picious candidates in raw scans and remove the useless image
data so that the number of non-nodules needing to be classi-
fied by networks is much smaller than that of our system.
However, their methods may ignore some very small nodules
and cannot detect certain types of nodules, which may lead to
failure to diagnose. Additionally, in their pre-processing, they
may ignore some nodules that their results do not notice. So,
in application, the sensitivity of their work may be lower than
their results. Our pre-processing method is simple but effec-
tive. It is convenient for users to immediately find the location
of nodules in the scan of the patient. Our pre-processing meth-
od is similar to Rotem et al., but the performance of our net-
work is much better than theirs both in sensitivity and FPs/
scan. The reasonwhy our scheme is better is that we divide the
results into six types, which is of great help in improving the
sensitivity. In the next section, we will study the influence of
the number of types on our CAD systems.

Discussion

In this study, a lung nodule detection CAD system using an
image spilt technique is proposed. Compared with other pub-
lished CAD systems, our CAD system achieves a state-of-art
performance whose detection sensitivity can obtain 92.8% with
8 FPs/scan. Furthermore, other published CAD systems need
prior CT scan candidate generation steps, which is unnecessary
for the application of our CAD system.We design an image split
technique to generate several patches from raw CT scans so that
the CNNs can classify each patch one by one. Once one patch
from an image of a CT scan is classified by CNNs, the system
can immediately find the location of the nodules in CT images.
The classification workwhich is performed byCNNs has proven
to be very remarkable, indicating that the CNNs can extract
correct features of different types. So, CNNs are suitable for the
problem of lung nodule detection.

We also tried different CNNs’ architectures based on our im-
age split technique. Results are shown in Table 2. Comparedwith
the simple AlexNet architecture, GoogLeNet and our ResNet

Table 3 The details of some CAD systems working with the LIDC-IDRI dataset

Researchers Datasets Pre-processing Advantages Disadvantages

Rotem
et al.
[24]

LIDC-IDRI Extracting features using sliding windows in the whole CT scan 1) Easy pre-processing 1) Problem space is too large

2) Do not need prior
knowledge of
nodules

2) Sensitivity is low

Setio et al.
[36]

LIDC-IDRI Candidate detection by combining three existing algorithms. Can
only detect 3 types of nodules with a result of 93.25%
sensitivity at 269.2FPs.scan

1) Combine former
nodule detection
techniques

1) Complex pre-processing

2) Cannot detect 2 types of
nodules, which may lead to
failure to diagnose2) CNNs part

remarkably reduces
false positive rates

Our work LIDC-IDRI Generating raw candidate patches using an image split 1) Easy to find
nodule’s location

1) Cannot classify malignant
nodule types

2) Simple
pre-processing

3) Lower requirements
for memory

3) Fast speed of
detection

Fig. 4 The FROC curves of the AlexNet, GoogLeNet, and our ResNet
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perform better in detection accuracy and controlling overfitting.
Compared with GoogLeNet, AlexNet has fewer parameters and
layers, while it can achieve nearly the same accuracy as
GoogLeNet. The ResNet we designed has more layers but fewer
parameters. In application, the time of detection for ResNet is less
than that of GoogLeNet and AlexNet. Above all, adopting more
advanced networks can obtain faster speed of detection and
higher accuracy of detection.

To figure out the effect of the number of patch types, we
tried three different methods of classification. We set the num-
ber of patch types as 2, 4, and 6. At first, we categorized
patches into two types which were nodules and non-nodules
and get some results. But the results showed that the network
could not classify non-nodules correctly because non-nodule
patches were quite different in features. The rate of misdiag-
nosis was high. According to the results, we divided the non-
nodules into three types. First one is patches of lung paren-
chyma without nodules; second one is patches of vessels and
tissues; third one is patches of no obvious tissues, vessels, or
lung parenchyma. In this way, the network can learn features
of different non-nodule patches. The result of four types of
patches showed that the accuracy of classification increased
but it was still difficult for the CAD systems to distinguish
between patches of nodules attached to or surrounded by lung
parenchyma and patches of solitary nodules which was also
mentioned in Ginneken’s work [31]. We also found that the
size of nodules affected the accuracy of our CAD system. So
we divided patches of nodules into three types on the basis of

sizes and locations. The experiment showed that dividing
patches into six types could increase the sensitivity of our
CAD system and reduce the FPs/scan Table 5.

Conclusion

In this paper, we used deep learning methods for the problem
of lung nodule detection and designed a new CAD system
using CNNs based on an image split. The system consists of
two parts: (1) obtaining six types of patches from the process
of splitting images and (2) using ResNet to classify six types
of patches to detect lung nodules. The first part of our pro-
posed CAD system can reduce the complexity of the system
compared with other existing systems. The promising results
indicate that the CNN-based CAD system is suitable to be
used to help radiologists with diagnosis work.

However, limited by the lack of large training sets of lung
nodules, the detection sensitivity of our system is not good
enough. We will explore more CNNs’ architectures using
larger training sets and try to apply the deep learning methods
to the diagnosis of other lung diseases.
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