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Abstract
In the last decades, the amount of medical imaging studies and associated metadata has been rapidly increasing. Despite being
mostly used for supporting medical diagnosis and treatment, many recent initiatives claim the use of medical imaging studies in
clinical research scenarios but also to improve the business practices of medical institutions. However, the continuous production
of medical imaging studies coupled with the tremendous amount of associated data, makes the real-time analysis of medical
imaging repositories difficult using conventional tools and methodologies. Those archives contain not only the image data itself
but also a wide range of valuable metadata describing all the stakeholders involved in the examination. The exploration of such
technologies will increase the efficiency and quality of medical practice. In major centers, it represents a big data scenario where
Business Intelligence (BI) and Data Analytics (DA) are rare and implemented through data warehousing approaches. This article
proposes an Extract, Transform, Load (ETL) framework for medical imaging repositories able to feed, in real-time, a developed
BI (Business Intelligence) application. The solution was designed to provide the necessary environment for leading research on
top of live institutional repositories without requesting the creation of a data warehouse. It features an extensible dashboard with
customizable charts and reports, with an intuitive web-based interface that empowers the usage of novel data mining techniques,
namely, a variety of data cleansing tools, filters, and clustering functions. Therefore, the user is not required to master the
programming skills commonly needed for data analysts and scientists, such as Python and R.
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Introduction

Nowadays, medical imaging repositories contain a wide range
of valuable metadata that describes thoroughly all the stake-
holders involved in medical imaging practice. Despite being
mostly used for supporting medical diagnosis and treatment,

many recent initiatives claim the utility of medical imaging
studies in clinical research scenarios and in the improvement
of the medical institutional business practices.

The current paradigm of medical imaging repositories fits
well with the definition of big data [1]. The continuous pro-
duction of huge volumes of data, its heterogeneous nature, and
the increasing number of performed examinations make the
analysis of medical imaging repositories very difficult for con-
ventional tools. Moreover, the new trend of distributed Picture
Archive and Communications Systems (PACS) architectures
that makes possible to federate multiple institutions in the
same PACS archive at cloud [2] promotes the creation of large
and more useful datasets. Therefore, DA and BI techniques
applied to this scenario have potential to increase the efficien-
cy and quality of the medical practice.

This article proposes an ETL framework for medical imag-
ing repositories that feeds, in real-time, a BI platform oriented
to medical imaging practice and research. The solution can
index distinct data sources and aims to provide the necessary
environment for conducting research on top of live institution-
al repositories. It leverages all the metadata stored in those

* Rui Lebre
ruilebre@ua.pt

Tiago Marques Godinho
tmgodinho@ua.pt

João Rafael Almeida
joao.rafael.almeida@ua.pt

Carlos Costa
carlos.costa@ua.pt

1 University of Aveiro, DETI/IEETA, Campus Universitário de
Santiago, Aveiro, Portugal

2 Department of Information and Communications Technologies,
University of A Coruña, A Coruña, Spain

Journal of Digital Imaging (2019) 32:870–879
https://doi.org/10.1007/s10278-019-00184-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-019-00184-5&domain=pdf
http://orcid.org/0000-0002-3230-0732
mailto:ruilebre@ua.pt


repositories without requiring a data warehouse, predefined
data models, or imposing rigid data flows. The developed
system takes advantage of Dicoogle’s data mining features
[3] for extracting data from production PACS and provides a
series of exploratory techniques and visualization tools for a
deep understanding of the working dataset and extraction of
valuable information. Moreover, its design facilitates the use
of analytics tools without requiring user programming skills
commonly used in other platforms (e.g., Python and R). It
provides an intuitive Web-based interface that empowers the
usage of novel data mining techniques, namely, a variety of
data cleansing tools, filters, and clustering functions.
Moreover, it features an extensible dashboard with customiz-
able charts and reports.

Background

DICOM

The proliferation of PACS was possible mostly due to the
development of Digital Imaging and Communications in
Medicine (DICOM), the standard for handling of medical im-
aging data. PACS are responsible for providing storage, trans-
mission, and even printing services, among others, to allow
connectivity, compatibility, and workflow optimizations be-
tween different medical imaging equipment [4].

The DICOM standard supports not only the pixel data that
defines the medical images but also a wide range of metadata
information related to all the stakeholders involved in the clin-
ical practice, such as the patient, procedure, equipment, staff-
related data, or structured report. Data relative to these stake-
holders is conveyed byDICOMdata elements which compose
DICOM objects or files.

DICOM data elements are encoded using a Tag-Length-
Value (TLV) structure. The tag field identifies the data element
and includes two subfields: the group identifier and the ele-
ment identifier within the group, both encoded using 16-bit
unsigned values. DICOM data elements are grouped by their
relation with real-world entities, i.e., Information Entities (IE)
that represent, for instance, the patient (0 × 0010), the study
(0 × 0008), and the series (0 × 0020). Therefore, elements
holding information related to the patient are encompassed
in the patient group (0 × 0010) and so on. As an example,
the patient’s name tag is represented by (0 × 0010, 0 × 0010).
Apart from the tag, DICOM data elements include also the
field length in bytes. Lastly, the value field holds the actual
element’s data. A simple illustration of a DICOMdata element
is presented in Fig. 1.

DICOM object is an umbrella term to describe a DICOM
file, which could be images, structure reports, among others.
The information enclosed in DICOM objects is very hetero-
geneous. There are data elements for representing names,

measures, dates, among others. Therefore, to express all these
data types, the encoding of the value field changes according
to the element’s type. The part 5 of DICOM standard [5]
defines 27 different encoding formats for the value field.
These are the most basic data types in the standard and are
called Value Representation (VR). A data element can include
sub-group of elements, having the SQ (Sequence) VR. This
creates a hierarchical document structure similar to many con-
temporary data models. This structure is illustrated in Fig. 2.
The data element’s VR can be declared explicitly by inserting
a VR field into the element’s TLV structure, thus turning it
into Tag-VR-Length-Value, or alternatively, it can be implic-
itly inferred by reading the DICOM standard dictionary [6]
that contains near of 2000 entries [7]. These elements cover
very well the general requirements of medical imaging envi-
ronments. Nonetheless, the standard is extensible and private
data elements may be added by manufacturers to support their
latest features. Thus, private dictionaries may extend the de-
fault provided by the standard. By doing so, DICOM standard
has the capability of keeping up with state of the art solutions,
a fundamental aspect for its prevalence in the field.

DICOM objects can represent multiple medical imaging
artifacts, such as images from a wide range of modalities or
structured reports (SRs). These objects are composed of sev-
eral modules associated with an IE, which represents real
word stakeholders such as patients and studies. They include
multiple data elements; for instance, the patient module is
composed of the patient’s name, sex, birthday, among other
attributes.

DICOM also defines which modules shall be included for
each DICOMobject class, as per its specific information mod-
el definition (IOD) [7]. IOD are collections of modules that
describe each object. They define which information must be
included in the DICOM file, along with its type.

DICOM includes the concept of instances that are IOD
templates filled with real-world data and are identified by
unique identifiers (UIDs). Every DICOM object’s instance
UID must be unique.

Finally, the standard provides a DICOM Information
Model (DIM) that follows the hierarchical organization in
patient-study-series-image. This approach resembles the
real-world organization since a patient may perform multiple
studies, each study may have several series of many modali-
ties and each procedure may result in a large collection of
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Fig. 1 DICOM data elements structure
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image instances. Since DICOM images are typically spread
by multiple files for convenience. The linkage between these
entities is achieved using the instances UID. Consequently,
the DIM may be reconstructed even when images are spread
across multiple repositories. The UID attribute is generally
named after its Stakeholders name; however, there are excep-
tions like the SOPInstanceUID (ServiceObjectPair) which is
the UID of the whole DICOM object.

Imaging Business Intelligence

The analysis of the PACS archives content has been demon-
strated to withdraw positive outcomes for many research en-
deavors, namely, radiation dosage surveillance [8], perfor-
mance analysis of institutional business practices processes
[9, 10], the cost-effectiveness of diagnostic procedures [11],
among many others [11–14].

Nevertheless, the complexity of medical imaging data has
increased tremendously [15] since the volume and heteroge-
neity of data generated by the medical practice also increased
considerably. Therefore, researchers must rely on Information
Technologies (IT) tools to be able to perform their analytical
tasks. However, traditional PACS do not allow exploring the
imaging metadata for extraction of relevant knowledge. This
leads to the use of third-party applications to perform data
analysis, including proprietary solutions that only work with
specific PACS.

BI consists of a pipeline that integrates a series of tasks.
When combined, these are responsible for acquiring,
transforming, and translating raw data into useful information
for improving the business practices [16]. This process

encapsulates a multitude of capabilities such as reporting,
dashboards, and data mining [17].

Nowadays, the data generated by medical imaging labora-
tories is highly heterogeneous and inconsistent. Although all
equipment implements the sameDICOM standard, theymight
use different configurations. This generates irregular data,
which occurs, for instance, when two different equipment re-
port the same value but using different metrics [18].
Furthermore, the interaction between technical staff and
equipment is another inconsistency factor. For these reasons,
applying analytical procedures to inconsistent data may gen-
erate unreliable results. So, one of the most important and
crucial steps in the whole BI process is the Data Cleansing
(DC) stage. It ensures the reliability of the data in each repos-
itory, by detecting and correcting inaccurate records [19]. DC
is a complex process (Fig. 3), which can be further divided
into a series of iterative operations. First, the Data Auditing
step, where the working dataset is analyzed to determine
which anomalies it contains. Next, the Workflow
Specification step defines a set of operations required for fix-
ing the previously identified anomalies (or, in some critical
cases, exclude them). After this, the operations are executed
in the Workflow Execution step. Finally, the applied opera-
tions are validated in the Post-Processing and Controlling
step. Each of these steps can be performed manually, super-
vised or unsupervised in line with the level of user input sys-
tem required.

Dicoogle

Dicoogle is an open source PACS archive that has an
extensible indexing and retrieval document-based system
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[20]. It provides easy expansion of new functionalities
through the development and usage of plug-ins using the
available Software Development Kit (SDK). The disposal
of the SDK allows developers to expand the functionali-
ties without making changes in the core of the system.

Dicoogle was designed to support information extrac-
tion, indexing, and storage of the metadata contained in
DICOM files without any special reconfiguration require-
ments [21].

This extendible architecture enabled the use of Dicoogle in
research and healthcare industry and as an educational tool [2,
22] since the need to improve, monitor, and measure the med-
ical imaging systems along with the extraction of knowledge
from the medical images including healthcare quality indica-
tors is of importance.

Furthermore, Dicoogle is being used as a support platform
for DICOM data mining [22]. The DICOM data mining tools
proven to be valuable to gather relevant data for the profes-
sional healthcare improvement by identifying factors that may
contribute to a quality deficit [23].

Related Work

There are some references in the literature relative to the usage
of DA and BI systems applied to medical imaging reposito-
ries. Nagy et al. [12] developed a tool that implements a fully
fledged BI stack. It starts by aggregating data from the insti-
tution’s systems, namely, DICOM metadata from the PACS
and Health Level 7 (HL7) data from the Radiology
Information System (RIS), among others. Data is extracted
on a periodical basis and stored in a MySQL database that
feeds a dashboard. It is a graphical tool that includes the most
relevant chart types, such as histograms and bubble charts.
Whenever a database’s entry is added or updated, the

corresponding chart is automatically rendered to reflect these
changes, as well as the details of currently selected reports.

Kallman et al. [20] developed a framework that provides
a similar set of functionalities. However, there are some
important differences. For instance, the second framework
separates the DICOM metadata header from the image’s
pixel data, storing the first in a separate repository.
Moreover, the user interface is command line based on
Structured Query Language (SQL). It is a powerful and
flexible language for database experts but harder to per-
form data analysis for less experienced users, such as radi-
ology researchers.

The two previous frameworks make use of separate re-
positories; i.e., they do not work directly over institutional
PACS archives. The advantage is that they can be used for
statistical purposes with no risk of interfering with the reg-
ular clinical workflow. However, they will always work
with an outdated snapshot of the archive’s content. In our
point of view, the major limitation is that they are bound to
a strictly relational database model. This means that re-
searchers cannot derive knowledge from metadata fields
that were not previously encompassed in the database
schema, not satisfying this way the requirements of most
research endeavors.

Wang et al. [8] developed a database solution for control-
ling patient’s radiation exposure by analyzing the DICOM
images metadata. It is focused on the detection of irregular
radiation dosages by several filters and can aggregate infor-
mation at the study, patient, and institutional level. It includes
reporting, alerts capabilities, and a Web interface for
interacting with the system. The most interesting module, in
the context of this article and comparing with the previous
tools, is the Knowledge Base that is capable of unifying dis-
tinct vendor data by enforcing the measured attributes to use
the same units, which were defined statically. However, the
major constraint of this solution is that it cannot be used in
other imaging contexts.

In [18], the authors present a DICOM Data Warehouse for
arbitrary data mining. It enables automated data analytics
tasks on top of DICOMmetadata databases. The authors claim
that despite existing some previous efforts in the literature,
namely [8, 9], none shared the purpose of enabling completely
arbitrary data mining (DM) capabilities. The solution is
backed by a relational database, which data model needs to
be extended to support new Data Elements. It also targets the
discrepancies between data attribute’s values from differ-
ent vendors by creating static mappings for different attri-
butes that represent the same measurements. However, this
framework does not provide a graphical interface for cre-
ating reports, alerts, or browsing the data. In an updated
article [21], the authors point out the difficulty of indexing
a very heterogeneous data source, such as DICOM, which
resulted in leaving some DICOM attributes unindexed.

Data Audi�ng

• The working dataset is analysed to determine which anomalies it
contains

Workflow
Specifica�on

• Defini�on of a set of opera�ons required for fixing the previously
iden�fied anomalies

Workflow
Execu�on

• Execu�on of the opera�ons set on the previous step

Post
Processing

• Valida�on of the applied opera�ons

Fig. 3 Data cleansing process
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They state that Not only SQL (NoSQL) approaches may be
required to handle it.

Architecture

The proposed architecture follows a classic client-server
model, segmented into three distinct layers: presentation,
business, and persistence. In this architectural pattern, the
client acts only as the presentation layer of the developed
system, displaying the interface to the user and resorting to
the server when required. In turn, the server is responsible
for implementing the business and persistence layers of the
application. The business layer encompasses most of the
application’s logic, handling the client’s requests and pro-
viding an adequate response. The persistence layer is re-
sponsible for storing and maintaining data across multiple
sessions.

The server’s BI functionalities are provided by the Python
Scipy stack (which includes the NumPy, SciPy, and pandas
libraries) and the scikit-learn library. The methods developed
using the previous libraries are exposed through a
Representational State Transfer (REST) application interface
(API), using Django and the Django REST framework
toolkit.1 The persistence layer is based on PostgreSQL
Relational Database Management System (RDBMS), which
persists the application’s logic-related data, in conjunction
with panda’s Hierarchical Data Format Store (HDFS), respon-
sible for bulk data storage.

The client is a Web application that follows the single page
application pattern, in which all the necessary client code
(HyperText Markup Language (HTML), JavaScript (JS), and
Cascading Style Sheets (CSS)) is loaded in a single page load.
The application was developed using the React framework,
with the help of the Redux state container. Furthermore, it
makes use of the Bootstrap framework to manage most of
the interface as well as the plotly.js library to handle charts
rendering.

This framework leverages the Dicoogle’s data mining fea-
tures for extracting data from the DICOM objects in the
PACS. The communication is supported by the Dicoogle’s
content discovery and retrieval services, namely, its Web ser-
vice query end-points. In turn, these services rely on the tech-
nologies implemented by plug-ins, as described in [22].

Despite the development of the dashboard, the presented
architecture, through the business and persistence layers, al-
lows the supplying of data to third party framework (e.g.,
Kibana2 or Grafana3).

Figure 4 presents the functional modules that will be de-
scribed in the next section, as well as their interactions.

Rule-Based Data Cleansing

One major concern was to allow the manipulation of multiple
irregular records simultaneously because an inaccuracy oc-
curs multiple times in the same dataset. Consequently,
manual correction of those records would be impractical.
To avoid that, a Rule-based control system was devised for
supporting Data Cleansing features. It works in two
phases: Matching and Action. In the first phase, the differ-
ent rules are applied in the dataset to detect inaccurate
records. The action phase performs the corrections to the
records.

A set of basic rules and actions were developed to provide a
powerful service and keeping, at the same time, the usability
high. The rules cover most use cases defined in the context of
this work but it can be extended to cover others by adding
additional modules, written in Python, which are interpreted at
runtime.

The following five rules are currently available in the
system:

& Empty Field: allows the detection of empty values on a
set of fields. This issue is the most common anomaly
when working with data. Unfortunately, most of these
fields cannot be inferred, usually leading to their re-
moval from the dataset;

1 www.djangoproject.com
2 www.elastic.co/products/kibana
3 www.grafana.com Fig. 4 Business Intelligence framework architecture
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& Expected Value: for detecting one (or more) values on a
given group of fields. It works by defining a set of values
and the fields where those values are expected;

& Regular Expression: a more generic and advanced version
of the Expected Value rule, requiring Regular Expression’s
knowledge;

& Filter Date: selects a set of records on which the Date field
matches the defined interval;

& Expression: enables the execution of statements or even
small scripts, allowing to detect more complex cases that
are impossible to perform with the previous rules. It
should only be used as a fallback.

Previous rules can be combined with the following actions:

& Fill Empty Field: it replaces the empty values in the de-
fined fields with a chosen value;

& Replace by Value: it replaces a defined set of values in a
given range of fields;

& Replace by Regex: a specific case of the previous action
when the value, to be replaced, is a Regular Expression;

& Date to Age: it converts a specified field (usually the
Patient Date of Birth field) to the corresponding Age (most
often the Patient Age field) according to the DICOM
standard;

& Normalize Age: convenience action to normalize the Age
field, enforcing the measure to be in Years, Months,
Weeks or Days;

& Expression: it accepts a python script to implement a free
action.

It is important to note that defined rules might not be mu-
tually exclusive since a rule’s triggered action might update
the values that match another rule. For this reason, every rule
has a priority attribute, an integer value, and the rules are
executed according to their priority.

Anomaly Detector

This component permits to detect anomalies in data by asso-
ciating a given field to one of two categories: ordinal or nom-
inal data, based on the field’s datatype. As the names imply, if
the selected field’s datatype is numerical (either integer or
float), then it is provided with an ordinal description; other-
wise, it is provided with a nominal description.

An ordinal description returns a count attribute, with the
total number of non-empty entries in the field, as well as some
of the most common statistics for a numerical set of values,
such as mean, standard deviation, minimum and maximum
values, and percentiles (25%, 50%, and 75%). On the other
hand, a nominal description returns the number of entries in
which a given value appears. Also, both descriptions feature
an empty values’ count, if applied.

Unfortunately, the automatic detection of a field’s descrip-
tion based on its datatype is sometimes flawed. Often, a field
is composed of an integer set of values. However, those values
do not represent a continuous variable, meaning that they are
supposed to be interpreted as a category. Therefore, it is pos-
sible to manually enforce a nominal description for fields
composed entirely of integer values.

View Manager

The concept of Views was implemented to ease the process of
working with large and heterogeneous datasets. Most use
cases do not work with all repository data, particularly, when
the size and heterogeneity of data would affect significantly
the performance of most operations, even the most basic ones.
Moreover, very often the analysis targets a specific subset of
the repository, such as analyzing data related to a specific
modality or analyzing reports performed in a given date range.
Taking this into consideration, it was developed a view con-
cept that intends to represent a smaller and more specific
dataset from the original PACS repository.

Therefore, Views are very important because they deter-
mine the execution context of the other components, i.e., rules
and anomaly detectors will only be applied to their assigned
Views, and consequently sub-datasets. It allows the user-
created Views to inherit the transformations of their parent
views, much like the concept of Object-Oriented (OO) inher-
itance. User-created Views can inherit either from the default
(root) View or from other user-created View. This provides
flexibility and extensibility to the system. The Views support
all previously referred datamanipulations. For supporting this,
the system allows merging a view’s transformations with its
parent’s, thus optimizing the usage of the Dicoogle’s Data
Mining capabilities.

To create new views, three transformations are provided:

& Aggregation: it mimics the SQL group by operation, de-
fining the set of aggregation fields and functions to be
performed. It is possible to provide only one function as
a parameter. In this case, it will be applied to all the fields
that are not part of the aggregation fields. However, this is
rarely the desired output. For this reason, it is also possible
to define one or more functions per column. This possi-
bility is particularly useful for taking into consideration
the Information Entities Hierarchy (Patient, Study,
Series, Image). The allowed functions are cumulative
sum, cumulative product, maximum, minimum, median,
standard deviation, mean, size and sum;

& Subset: it enables the creation of a static subset, defining
the interval of either rows and/or fields (i.e., selection and
projection restrictions);

& Filter: it makes possible to use the above rules, as
transformations.
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The defined transformations can be applied using the
Dicoogle data mining capabilities in two situations. Firstly,
when an Expected Value filter is specified, it is translated
exactly to the Dicoogle’s query language. For instance, a filter
by Modality and PatientSex, and expected values CR and F
respectively, would be translated to BModality:CR AND
PatientSex:F^ in the Dicoogle’s query service.

Secondly, when the fields of a subset transformation are
defined they are also mapped to the Dicoogle’s query in-
terface. For instance, the subset with fields Modality and

Pat ientAge, are t ransla ted to the query’s re turn
fields = [Modality,PatientAge].

Dashboard

The developed solution provides extensive dashboard capa-
bilities. The dashboard enables the development of a fully
customizable client page that may include any of the available
visualization components, each one inserted in a fully
resizable and sortable panel. Visualizations also depend on

Fig. 5 Overview of the Dicoogle BI dashboard

Fig. 6 Sample of rules applied to a view of the dataset
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the defined views. So, the system not only stores the layout of
the dashboard, including every panel’s coordinates and size,
but also the instructions necessary to populate the component
with the desired data.

Given its integration with the underlying Dicoogle PACS,
the proposed system provides real-time analytics capabilities.
This means that the platform is immediately notified when
new data arrives at the archive, avoiding the necessity of cre-
ating repository snapshots, acquired on a periodical basis.
New images are automatically added to the necessary Views
and are properly analyzed by the previously defined rules.
Later, a notification is also sent to the Dashboard with updated
information.

Results

This section demonstrates the content discovery capabilities of
developed framework for extracting knowledge from medical
imaging repositories. This demonstration was based on an
affiliated institution PACS archive with roughly 35 million
files. Dicoogle BI was deployed and used in parallel with
institutional PACS. In the scope of this work, sensitive data
was anonymized using an in-house tool so that it would not be
disclosed.

An overview of the Dicoogle BI dashboard is shown in
Fig. 5, including several widgets. On the top, there are four
informative widgets that count the number of patients
(426700), studies (1270151), series (2979919), and instances
(33070518) in the dataset. Initially, we noticed a discrepancy
between these values and previous values generated by an
earlier and simpler tool. This tool simply performed a count
of the identifier attribute of images (35476975) and patients
(279392).

The discrepancy between the number of images and the
number of instances (identifier) was caused by duplicated
DICOM files in the repository. This can be explained by the
fact that some software platforms make copies of original files
(for instance, produce images with lower resolution for fast
display purpose) without having their SOPInstanceUID

updated, which violates the standard, and caused the previous-
ly overestimation of the number of images in the repository. It
also had an impact on the estimation of the number of the
other stakeholders.

The dashboard includes also two widgets related to
anomalies in the dataset. The first finds unknown
Modalities, i.e., modalities that are not defined in the stan-
dard. For instance, it was identified 235 different series
from a modality called OT (Other). The second widget
identifies duplicated identifiers in the dataset. At the pa-
tient level, it was also identified discrepancies caused by
duplicated identifiers for clearly different records. For in-
stance, the same PatientID was given for images with dif-
ferent (PatientName, PatientBirthDate, PatientSex) tuples.
In this case, over 201,216 cases where identified,4

representing 0.6% of repository instances. Although many
proprietary PACS can work around these inconsistencies,
they do not favor any analytical endeavor that relies on the
quality of the collected data.

Other widgets with statistics were also presented in the
Dashboard. For instance, there is a pie chart summarizing
the contents of the dataset according to the series modality.
There is also a bar chart with the production of series per day.
Notice the reduced productivity on weekends (11th and 12th
July, and 18th and 19th July) compared to regular weekdays.
It is also perceivable the impact of the holidays on the institu-
tion productivity level, and an unexplainable decrement on
Friday compared to the other weekdays.

Lastly, a tag cloud widget with study descriptions was in-
cluded. It is possible to observe that the StudyDescription
attribute has a lack of normalization. The previous statistics
required the aggregation of the dataset by SeriesInstanceUID
and then by Modality before the count function could be
applied.

Figure 6 shows the interface for configuring the rules of
a given view. The sample data shows the duplicated
PatientID records referred in a previous paragraph. The
records are obfuscated by privacy reasons, but a real name

4 The same PatientID was given for records with different PatientName,
PatientBirthDate, PatientSex tuples

Fig. 7 Overview of the Dicoogle BI visualization interface
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will be always replaced by the same obfuscated version.
Thus, you can see clear different PatientNames with the
same identifier. Very suspicious PatientBirthDates can also
be seen, for example, 18581118.

Finally, an overview of the application charting interface is
shown in Fig. 7. The attributes and chart type can be custom-
ized for a given view. The chart itself is interactive, being
possible to resize the visualization window and apply trans-
formations to the axis. The presented graphical functionalities
allow any user to perform DA and BI tasks on their PACS
content even if they do not have programming skills.

The capabilities of the Dicoogle’s BI module can also be
applied to other third-party PACS thanks to the Dicoogle’s
ability of indexing other PACS archives content. Moreover,
it could be used to support these research endeavors in
nonproduction PACS. Although, the benefit of having a real-
time analytical pipeline would be lost in both these cases.

Conclusion

Nowadays, the exploitation of medical imaging laboratories
has become a crucial part of healthcare institutions business
models. Production medical imaging repositories hold a tre-
mendous amount of data. Since this data is derived directly
from the medical practice, it has extreme accuracy for analyt-
ics purposes. Timely exploitation of this data has promised to
improve the efficiency of medical institutions business prac-
tices, as well as the quality of healthcare services. Even though
this importance has already been acknowledged by the com-
munity, the volume and production rate of medical imaging
data makes manual analysis impractical.

The Dicoogle Business Intelligence framework, described in
this document, addresses this problem. It enables the develop-
ment of automated analysis’ workflows performed directly on
top of live institutional repositories without requesting the cre-
ation of dedicated data warehouse. Business managers and
healthcare researchers can automatically derive knowledge
over large repositories, which previously would take simply
too much time. Moreover, it has the capability of improving
the repository quality by using both its complete rule system
that provides all the necessary Data Cleansing functionalities,
as well as the versatile View control. These tools can be
complemented by the provided data analysis components, such
as charts and anomaly detection module. Finally, these compo-
nents can be further combined on the application’s Dashboard,
allowing the operator to further tailor his own workflow.
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