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Abstract
Inter-pathologist agreement for nuclear atypia scoring of breast cancer is poor. To address this problem, previous studies
suggested some criteria for describing the variations appearance of tumor cells relative to normal cells. However, these criteria
were still assessed subjectively by pathologists. Previous studies used quantitative computer-extracted features for scoring.
However, application of these tools is limited as further improvement in their accuracy is required. This study proposes
COMPASS (COMputer-assisted analysis combined with Pathologist’s ASSessment) for reproducible nuclear atypia scoring.
COMPASS relies on both cytological criteria assessed subjectively by pathologists as well as computer-extracted textural
features. Using machine learning, COMPASS combines these two sets of features and output nuclear atypia score.
COMPASS’s performance was evaluated using 300 images for which expert-consensus derived reference nuclear pleomorphism
scores were available, and they were scanned by two scanners from different vendors. A personalized model was built for three
pathologists who gave scores to six atypia-related criteria for each image. Leave-one-out cross validation (LOOCV) was used.
COMPASS was trained and tested for each pathologist separately. Percentage agreement between COMPASS and the reference
nuclear scores was 93.8%, 92.9%, and 93.1% for three pathologists. COMPASS’s performance in nuclear grading was almost
identical for both scanners, with Cohen’s kappa ranging from 0.80 to 0.86 for different pathologists and different scanners.
Independently, the images were also assessed by two experienced senior pathologists. Cohen’s kappa of COMPASS was
comparable to the Cohen’s kappa for two senior pathologists (0.79 and 0.68).

Keywords Breast . Breast cancer . Microscopy . Nuclear atypia grading . Nuclear pleomorphism grading . Pattern recognition

Introduction

Breast cancer is a heterogeneous disease and different treat-
ment options are available for the women diagnosed with it.
Prognostic factors, which represent the aggressive potential of
the tumor, could provide valuable information for the selec-
tion of a treatment regimen. For example, hormonal treatment
and adjuvant chemotherapy, which are used to increase patient
survival, are expensive and could cause serious side effects,
and hence are only advisable for high-risk patients [1].

Previous studies have shown that the Nottingham modifi-
cation of the Scarff-Bloom-Richardson (NSBR) breast cancer
grading system provides useful prognostic information [2].
However, application of the NSBR score is still limited in
routine patient management due to various reasons. Among
them, the considerable inter-pathologist variability and sub-
jectiveness are major hindrances. In [3], it was shown that
inter-reader variation impacts on a patient’s risk assessment
for hormonal treatment and adjuvant chemotherapy.

The NSBR grading system has three contributing compo-
nents, namely, the magnitude of nuclear pleomorphism, the
degree of gland formation, and the number of mitotic figures
[2]. The overall NSBR score is an average of scores of these
three components. Nuclear pleomorphism (or atypia) score
represents the variations in size, shape, and appearance of
tumor cells relative to normal cells. Although different criteria
have been proposed to compare appearance of the tumor cells
to normal cells, the assessment of these criteria is qualitative
and subject to inter-pathologist discrepancies. In the clinical
practice, with lack of quantitative measurements, the
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pathologist must decide how to categorize a nucleus with
mixed features (for example, small but with an irregular
shape) and that might explain why the agreement among
readers is very poor.

Previous studies investigated the magnitude of inter-
observer variability in NSBR grading and its components.
The percentage agreement among pathologists in previous
studies ranged from 43 to 74%, with Cohen’s kappa ranging
from 0.19 to 0.74 [4–8]. It was also shown that among these
three components, the agreement on the nuclear pleomor-
phism score was the weakest, with percentage agreement of
55–68% and Cohen’s kappa ranging from 0.27 to 0.5 [4, 7].

In addition to be a contributing factor of the NSBR grade,
the nuclear atypia score might be a more useful prognostic
tool compared to the overall NSBR grade for patients with
invasive lobular carcinoma, as mitotic activity and tubule for-
mation vary little in these patients [9]. Due to the importance
of the nuclear atypia grade and the lack of agreement among
pathologists for grading it, recently a few studies aimed at
devising automatic algorithms for nuclear pleomorphism scor-
ing [10]. However, application of these algorithms has been
limited as their accuracy should be further improved.

In this paper, we propose a method for reproducible nuclear
pleomorphism scoring called COMPASS (COMputer-assisted
analysis combined with Pathologist’s ASSessment). Unlike
previous algorithms which aimed at providing an independent
second opinion to the pathologists, COMPASS combines the
pathologist’s assessment of six criteria related to the nuclear
atypia with computer-extracted features and assigns a nuclear
pleomorphism score to the image based on both subjective
scores and objective features. Another novelty of
COMPASS is being a hybrid segmentation-based and
texture-based approach to extract the computer-related fea-
tures from the digitized slides. In the previous automatic nu-
clear grading methods, the features were either extracted from
the segmented nuclei (segmentation-based methods [11]) or
from the entire tissue [12]). However, COMPASS involves a
coarse segmentation to restrict further analysis to a few re-
gions of interest followed by textural feature extraction from
these areas. An additional uniqueness of COMPASS is that,
being a personalized model, it considers each individual’s
unique perceptual pattern, and eliminates systematic over- or
under-estimating of each grader. In [13], it was shown that
some pathologists are prone to under-grading while others
systematically over-grade the cases. Junior pathologists are
target users for COMPASS as in general less experienced
pathologists have lower agreement levels with a consensus
of expert readers [13, 14] and could benefit significantly from
such an algorithm. Unfortunately, due to lack of expert pathol-
ogists with subspecialty training in reading breast biopsies,
many specimens are currently interpreted by less experienced
or general pathologists. This paper aims to investigate the
possibility of improving junior pathologists’ performances to

a level comparable to the expert readers’ performance by
using computer-extracted features combined with a systematic
evaluation of cytological features by the pathologists.

Materials and Methods

Dataset

Three-hundred images were obtained from the Mitosis Atypia
challenge 2014 dataset [15], which is publicly available. Three of
the images were excluded as there was no tumor region present
in them, and hence, no atypia grade was associated with them.

Nuclear pleomorphism scores were given by two experi-
enced senior pathologists. In case of disagreement, a third
pathologist scored the image and the final score was obtained
based on a vote of the majority. Therefore, for each image, a
consensuses-driven ground truth was provided in the data-
base. Based on NSBR, a score of 1 is given to an image when
there is little increase in the size of nuclei in comparison with
normal breast epithelial cells, the outlines of nuclei are regular,
and the nuclear chromatin is uniform. When the cells are larg-
er than normal with visible nucleoli and have open vesicular
nuclei, with moderate variations in size and shape among
cells, a score of 2 is assigned. A score of 3 is appropriate when
nuclei are vesicular with prominent, often multiple nucleoli,
have noticeable variations in shape and size, and large and
bizarre nuclei are present in the sample [2]. All images were
scanned by two different scanners, namely, Aperio Scanscope
XT and Hamamatsu Nanozoomer 2.0-HT. The pathologists
graded images at ×20 magnification, which covered approxi-
mately 0.511 mm2 of tissue. The area located inside tumors
and was selected by an experienced pathologist prior to the
experiment. The nuclear grades were given at ×20 magnifica-
tion level as this level of magnification is mostly used to grade
nuclear atypia in the clinical practice. For each ×20 image, the
database included the scores given by two original senior pa-
thologists and consensuses-driven ground truth.

In addition, three junior pathologists were asked to evaluate
six criteria related to nuclear atypia and give a score from one
to three for each criterion. These criteria were nuclei size,
nucleoli size, anisonucleosis (size variation within a popula-
tion of nuclei), chromatin density, regularity of nuclear con-
tour, and membrane thickness. Some of these criteria (nuclei
size, nucleoli size, and regularity of nuclear contour) are ex-
plicitly mentioned in NSBR grading [2]. These criteria are
also components of some other nuclear grading systems [16]
which try to quantify other factors that contribute the pathol-
ogists’ judgments about nuclear atypia grading. For example,
in Fisher’s modification of Black’s nuclear grading,
anisonucleosis, nuclear membrane, chromatin density, and nu-
cleoli size are taken into account [17], while in Robinson’s
nuclear grading system, which showed high level of
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concordance with NSBR grade [16], nuclei size, nucleoli size,
cell uniformity, regularity of nuclear contour, and membrane
thickness were taken into account [18].

For each image at ×20 magnification, the junior patholo-
gists evaluated the criteria on four sub-images at ×40 magni-
fication (resolution of 0.2455 μm/pixel for Aperio and hori-
zontal resolution of 0.2273 μm/pixel and vertical resolution of
0.2275 μm/pixel for Hamamatsu). The four sub-images
contained the same region in the specimen. For scoring these
criteria, ×40 frames were used as the detailed description of
relevant nuclear atypia criteria; i.e., size of nuclei, size of
nucleoli, density of chromatin, thickness of the nuclear mem-
brane, regularity of nuclear contours, and anisonucleosis (i.e.,
size variation within a population of nuclei) might require a
higher magnification level. Hence, for an image at ×20 mag-
nification, each junior pathologist gave 24 (6 criteria × 4 im-
ages) scores describing criteria relevant to nuclear atypia.

COMPASS

Overview

The steps of COMPASS are depicted in Fig. 1. As shown,
COMPASS consists of two modules. The first module gener-
ates a score based on the pathologist’s assessment of the four
images at ×40 magnification. The images at this magnification
level were used to ensure that the cytological features were
visible to the pathologists. The second module generates
atypia scores based on textural features from the image at
×20 magnification. We assumed that the cytological features
and texture features provide complementary information as
one describes the appearance of individual cells while the
other one describes global appearance of a group cells. In
the last stage of COMPASS, the scores corresponding to each

image from both modules are combined by using an ensemble
of trees for regression and a single score is given to the image.

Computer-Extracted Features

In order to produce the computer-extracted features, the first
ten image patches (or sub-images) containing epithelial cells
were automatically chosen in each image. Then, textural fea-
tures were extracted from these image patches. Their size was
251 × 251 pixels. The nuclear atypia score describes the ap-
pearance of epithelial cells. Therefore, it was desirable that
patches were centered at locations with high density of can-
cerous epithelial cells. To find the centers of the patches, the
stain normalization method suggested in [19] was utilized to
minimize inconsistencies in staining of different images and a
set of image-processing steps (discussed below) was used to
find epithelial cells. Finally, locations contained a high num-
ber of epithelial were determined and used as the center of
patches.

Color deconvolution was utilized to separate H and E chan-
nels of the stained-normalized image [19]. A sample image
along with separated H and E channels are shown in Fig. 2a–c.
The complement of the H channel was then processed with
morphological closing (a dilation followed by an erosion)
using a disk of radius 2. This was followed by filling holes
within the image to generate HP (the processed image). In the
context of greyscale images, holes are areas of dark pixels
surrounded by lighter pixels. Finally, the candidate locations
for epithelial cells are then detected by thresholding HP and
removing the connected components whose areas are less than
30 pixels. The threshold value was found empirically and set
to 80. The HP corresponding to the image shown in Fig. 2a is
shown in Fig. 2 d and the thresholded image (HTh1) overlaid
on the original image using green color is indicated in Fig. 2e.

Fig. 1 The steps of COMPASS. In each iteration of leave-out-out cross
validation, one image (shown as Bnew image^) served as the test image.
The rest of images (database for training COMPASS) served as the training
set for estimating the parameters and hyperparameters of COMPASS.

Training involved estimating the parameters for regression model 1
(RM1), regression model 2 (RM2), and regression model 3 (RM3); 80%
of training data was used to estimate the parameters of RM1 and RM2
while the rest of it was used to estimate the parameters of RM3
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In order to extract appropriate image patches, we needed to
ensure that the imperfect areas (e.g., folded tissues) and areas
with normal epithelial and lymphocyte cells were excluded
from HTh1. To eliminate these areas, three different masks
were generated and subtracted from HTh1. The first mask
was obtained by thresholding the complement of the E image
followed by removing all connected components whose areas
were smaller than 5000 pixels. Next, the holes were filled to
generate Mask1. To generate Mask2, the complement of the H
channel was filtered by a Gabor filter bank with the wave-
length of 20 pixel/cycle and eight equally spaced orientations.
Next, the maximum filter response was recorded for each
pixel. Finally, the maximum response image was thresholded
to Mask2. Mask3 included areas with normal epithelial tissue
and lymphocytes which are darker, smaller in size, rounder,
and without irregularities or broken areas in their membrane.
Therefore, filtering the HP with a Laplacian of Gaussian
(LoG) followed by thresholding of the filtered image was
used. Previously, LoG was utilized to detect epithelial cells
[20] and mitotic figures [21]. The standard deviation of the
filter determines the size of the structure which is detected by
the LoG. Here we found the appropriate size empirically and
set it to 20 pixels. The output of LoG filter was then
thresholded and the connected components with an area
smaller than 2000 pixels were eliminated from Mask3. All
three masks were subtracted from HTh1 to generate HTh2.
As stated previously, we want to find hypercellular areas. To
do so, HTh2 was convolved with a Gaussian filter to generate
HF. Therefore, when multiple cells are present in a neighbor-
hood of a pixel, it will have a high value in HF. Three masks
and HF are shown in Fig. 2f–i. Figure 2j depicts HF if the
masks were not subtracted fromHTh2. As shown, the subtrac-
tion is essential to restrict the analysis to the tumor areas.
Finally, HF was normalized and ten pixels whose intensity

was at least 0.75 were randomly selected from HF. The dis-
tance of the selected points should be greater than 100 pixels
to ensure that most of the image have been sampled by these
image patches (although some amounts of overlap have been
permitted). These ten pixels were selected as the center for ten
patches per each image.

Next, the textural features listed in Table 1 were extracted
from each patch. The textural features [22] were extracted

Fig. 2 a Original image. b, c Outputs of color deconvolution separated H and E channels, respectively. d The H channel image after being processed. e
The thresholded image in the first step. f–h Three masks. i HF. j HF if the masks were not subtracted from the thresholded image

Table 1 Extracted features from each patch

Feature type (feature name)

First-order statistics features

(AVE, STD, 1st, 5th, 25th, 50th, 75th, 95th, 99th percentile of intensity)

Haralick texture features averaged over four directions for d = 3 pixels

(Contrast, correlation, cluster prominence, cluster shade, dissimilarity,
energy, entropy, homogeneity, sum of squares, sum average, sum
entropy, difference variance, difference entropy, information measure
of correlation 1 and 2, inverse difference normalized, inverse
difference moment normalized)

Local binary patterns

(Uniform local binary patterns with number of number of
neighbors = 8)

Features from gray-level run length matrix

(Short-run emphasis, long-run emphasis, gray-level non-uniformity, run
percentage, run length non-uniformity, low gray-level run emphasis,
high gray-level run emphasis)

Gabor-based features

(AVE energy of filtered image using Gabor filter bank in one scale and
six orientations)

Features based on maximum response filters

(AVE energy of in eight filtered images)

AVE and STD are average and standard deviation, respectively
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from H channel, blue-ratio channel, and each one of three
RGB channels. The images were also converted to Lab,
YUV, HSL, and LMS color spaces, and the features were
extracted from each channel of these color spaces.

Regression Models

As shown in Fig. 1, in the intermediate steps of COMPASS,
there are two regression models, namely, regression model 1
(RM1) and regression model 2 (RM2). The inputs of RM1
were the scores given by the pathologists while RM2 relied on
the textural features. Both RM1 and RM2 were ensembles of
trees for regression which comprised of a weighted combina-
tion of multiple regression trees.Pathologists scored six
atypia-related criteria on four images at ×40 magnification
for each image in the dataset. This resulted in a 24-
dimensional feature vector for each image. If bizarre nuclei
were present in one of the four images at ×40 magnification,
the grade of the image is 3, and this does not depend on the
arrangement of the four images. Therefore, for an input image,
all 24 possible combinations of the shuffling of these four ×40
images were generated. Then RM1 assigns a score to each of
these 24 possible permutations, and the final score of the im-
age is the median of these values. For each test image, ten
patches were selected as suggested in 2–2-2. Each one of these
patches was inputted to RM2.

For training RM1 all 24 possible combinations of four ×40
images were generated for each ×20 image in the training set.
This increased the size of the training set by 24 times and
made RM1 invariant to the spatial layout of the structures
within the image. For training RM2, each patch was consid-
ered as an instance, and the grade of the image (from which
the patch was selected) was considered as the grade of the
patch. Hence, the size of the training set for RM2 was ten
times larger than the number of the images.

One of the main challenges in using ensemble models is
setting the hyperparameters of the model because they could
affect the performance of the model. We used Bayesian opti-
mization for hyperparameter tuning [23]. Here the optimiza-
tion searched over the ensemble method, namely, either Bag
(bootstrap aggregation) or LSboost (least squares boosting),
over the number of weak learners, over the learning rate for
shrinkage of the LSBoost method, over the minimum number
of leaf node observations in the template tree, and over the
number of features to select at random for each split in the tree.

Late Decision Fusion

As shown in Fig. 1, the median of 24 values given by RM1 to
24 possible permutations of four ×40 images, along with min-
imum, median, and maximum scores given by RM2 to ten
patches of each image, built the feature vector for RM3.
RM3 was an ensemble of trees for regression as well. In order

to find the cutoff values to threshold the scores from regres-
sion models and produce three-scale atypia grades, two re-
ceiver operating characteristic (ROC) curves were generated,
one for detecting high-grade images (grade 3 against com-
bined grade 1 and 2) and one for low-grade images (grade 1
against combined grade 2 and 3) and their optimal operating
points were found.

For training RM3, the instances from grade 1 and 3 were
upsampled by applying the Synthetic Minority Oversampling
TEchnique (SMOTE) [24]. The numbers of nearest neighbors
to use were set to 3 and 5 for grade 1 and 3, respectively, and
the percentages of SMOTE instances to create were set to
200% and 400%. The hyperparameters of RM3 were also
set by using Bayesian optimization [23].

Evaluation of COMPASS

AsCOMPASS is a personalized tool, first the parameters of the
model should be estimated for each pathologist by asking the
readers to assign scores to six nuclear atypia criteria on the
images for which the expert-consensus derived reference nu-
clear pleomorphism scores are available. After this training
stage, COMPASS can be used to score new images.
Therefore, for evaluating COMPASS’s performance, we need
to first train the model and then test the trained model on
unseen data. As the size of the dataset was small, it was not
possible to perform hold-out validation. Therefore, we used
leave-one-image-out cross validation (LOOCV). Hence, each
time one of ×20 images (and four corresponding ×40 images)
served as the test data and the rest of the images (training data)
were utilized for estimating the parameters of COMPASS. The
percentage agreement and Cohen’s kappa [25] were calculated
for each junior pathologist. The percentage agreement indi-
cates the number of concordance cases divided by the total
number of cases. Cohen’s kappa measures interobserver agree-
ment for categorical items and is a more robust measure than
the agreement rate, as it considers the possibility of the agree-
ment happening by chance. It usually interpreted as follows:
kappa ≤ 0 shows no agreement, 0.01–0.20 as none to slight,
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as sub-
stantial, and 0.81–0.99 as almost perfect agreement [25].

In each iteration of LOOCV, the training data was
partitioned into five subsets with roughly identical size and
roughly the same class proportions as in the original dataset.
Four subsets were utilized to estimate the parameters of RM1
and RM2. Next, the images in the remaining subset were
inputted to RM1 and RM2. As stated earlier, four features
were extracted from the scores given by RM1 and RM2 to
each instance in this subset and used to train RM3. Finally, a
score was given to the test data by the trained model. Figure 3
shows the procedure for training COMPASS. This procedure
was repeated five times; each time one of the subsets was used
to estimate the parameters of RM3, and the rest of them were
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used to estimate the parameters of RM1 and RM2. Therefore,
five scores were given to each test data. The median value of
all these scores was assigned to each image. In order to set the
hyperparameters of regression models, in each of the five
repetitions, ten-fold cross validation was used for Bayesian
optimization. To achieve a result robust to partitioning noise,
at every iteration, the cross validation was repartitioned.

Results

Performance of COMPASS

As described in the BEvaluation of COMPASS^ section,
leave-one-image-out cross validation was used to evaluate
the performance of COMPASS for each scanner. COMPASS
is personalized; hence, it should be trained and tested for each
reader separately. Table 2 shows the confusion matrices of
COMPASS for each scanner and each junior pathologist. In
the table, the upper triangular part of the matrix represents
Bunder-graded instances^ and the lower part represents
Bover-graded instances^ based on COMPASS.

The paired Mann-Whitney U test was used to compare the
grades given by COMPASS when tested on Aperio images with
the given grades for Hamamatsu images. The given grades were

not significantly different (junior pathologist 1: z = − 1.1, p =
0.29; junior pathologist 2: z= 0.48, p = 0.63; junior pathologist
3: z = 0.86, p = 0.39). Also, Spearman’s rank-order correlation
coefficients between the scores (before thresholding it to produce

Fig. 3 The evaluation procedure
of COMPASS

Table 2 Confusion matrices

Pathologist 1
Aperio Scanscope

Pathologist 2
Aperio Scanscope

Pathologist 3
Aperio Scanscope

G1 G2 G3 G1 G2 G3 G1 G2 G3

G1 18 1 0 20 3 0 16 3 0

G2 5 215 5 3 213 6 7 214 8

G3 0 6 47 0 6 46 0 5 44

Pathologist 1
Hamamatsu

Pathologist 2
Hamamatsu

Pathologist 3
Hamamatsu

G1 G2 G3 G1 G2 G3 G1 G2 G3

G1 16 0 0 19 3 0 16 1 0

G2 7 212 5 4 207 5 7 217 5

G3 0 10 47 0 12 47 0 4 47

Columns are true labels (based on the consensuses of pathologists) while
rows are labels from COMPASS. COMPASS’s performance for images
scanned by Aperio scanner Hamamatsu scanner is shown separately. G
stands for grade. COMPASS is a personalized tool, so each performance
was evaluated and reported for each pathologist

The correct predictions are located in the diagonal of the table(shown in bold)
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three scale grades) given to the images from two scanners were
0.74, 0.77, and 0.75 for three junior pathologists.

Comparison of COMPASS With Senior Pathologists

We retrospectively simulated the adoption of COMPASS by
the junior pathologists and compared the performance of
COMPASS to that of senior pathologists. Although in real
clinical practice, COMPASS would provide feedback to a
pathologist, who would give the final score to the case, we
assumed that the junior pathologists would accept the decision
of COMPASS as our data has been retrospectively collected.
The average Correct Classification Rate (CCR) per each grade
is shown in Tables 3 and 4 for all junior pathologists. The
values are an average of the two scanners. Similarly, on the
right side of the table, CCRs are shown for the senior pathol-
ogists. As shown, the overall performance of COMPASS was
comparable to that of the senior pathologists.

Cohen’s kappa was also calculated to measure the magni-
tude of agreement of COMPASS with the ground truth. The
value is calculated for each pathologist and each scanner sep-
arately and shown in Tables 3 and 4. Similarly, Cohen’s kappa
was calculated for the senior pathologists. For nine images of
the databases, one of the senior pathologists could not assign a
grade. As shown the agreement level is almost perfect except
when COMPASS was adopted for the third junior pathologist
and images from Aperio scanner were used. The Cohen’s
kappa value is substantial for this arrangement. For the senior
readers, the agreement level was substantial to almost perfect.

The joint distribution of grades from COMPASS and each
of the senior pathologists was investigated to find the percent-
age of the images that both graded correctly, only one of them
graded correctly, or both graded incorrectly. The result is
shown in Fig. 4. Results for both scanners were combined to
generate the plots. Each row in the plot shows COMPASS as
adopted by one of the junior pathologists, and each column
represents one of the senior pathologists. Amongmisclassified
images, the percentage of images which were graded incor-
rectly by both COMPASS and senior pathologists (orange

areas in the plots) were lower than those which were graded
correctly by one of them. Hence, to some extent, COMPASS
could complement the senior pathologist’s performance.

Computerized tools for providing a second opinion to pathol-
ogists are usually more useful with the difficult cases. We as-
sumed that cases, which were misclassified by one of the senior
pathologists, are more difficult than other cases and investigated
the performance of COMPASS in this subset of images. For
these images, a CCR of 85.7%, 81.6%, and 83.7%was achieved
between COMPASS and the reference nuclear grade for three
pathologists. Therefore, more than 80% of these relatively dif-
ficult cases were correctly classified by COMPASS.

Added Benefits of Textural Features

The added benefit of textural features was investigated by com-
paring the performance of COMPASS against that of two base-
line approaches that only used the scores given by the patholo-
gists to the cytological characteristics of images. The first one
was grading based on the total cumulative score given to all
criteria. Most of the nuclear grading systems produce the final
nuclear grade of each sample by summing up all scores given to
the considered criteria [16]. Hence, we also used this approach
for comparison. The second approach was based on the score
assigned by RM1. One possible benefit of COMPASS is to use a
complex non-linear regression model to associate the scores giv-
en by the pathologists to the nuclear grade. This part is done by
RM1 in COMPASS. Therefore, we compared the performance
of COMPASSwith that of RM1 to investigate the importance of
the added textural features. The boxplots, which display the dis-
tribution of scores among different grades, are shown in Fig. 5.
The plots were generated from two baseline approaches as well
as COMPASS for both scanners. The Kruskal-Wallis test result-
ed in p values < 0.0001 for all approaches and all pathologists,
except for the first approach (sum) when adopted for the first
pathologist, which led to a p value of 0.007 (χ2 (2297) = 5.03).
The rank-based version of Tukey’s HSD (Tukey-Kramer) test
showed that differences between all possible multiple pairs for

Table 3 Cohen’s kappa
and percentage
agreement of senior
pathologists with the
consensuses-driven
ground truth

1 2

I (Cohen's kappa) 0.79 0.68

E (Cohen's kapp) 0.85 0.73

G1 (%) 78.3% 82.6%

G2 (%) 90.1% 91.4%

G3 (%) 98.1% 69.2%

T (%) 90.6% 86.9%

The highest accuracy is shown in bold. I
(E): the cases to which the readers could
not assign a grade were included (exclud-
ed). G and T stand for grade and total

Table 4 Cohen’s kappa and percentage agreement of COMPASS with
the consensuses-driven ground truth

JP1 JP2 JP3

SA (Cohen's kappa) 0.86 0.85 0.80

SH (Cohen's kapp) 0.81 0.81 0.85

G1 (%) 73.9% 84.8% 69.6%

G2 (%) 96.2% 94.6% 97.1%

G3 (%) 90.4% 89.4% 87.5%

93.4% 92.9% 93.3%

The highest accuracy is shown in bold. JP stands for junior pathologist.
SA: Aperio. SH: Hamamatsu Nanozoomer 2.0-HT Scanner
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all approaches were significant (p < 0.05) except for grade 1
against grade 2 for the first and second approacheswhen adopted
by the first reader. The results of the rest of the comparisons are
indicated in the figure.

Also, the AUC for detecting high-grade images (i.e., grade
3) and low-grade images (i.e., grade 1) is reported in Table 5.
As shown, the cumulative score led to the poorest results for
detecting grade 3 for all pathologists; however, the differences

Fig. 5 Boxplots for displaying the distribution of scores given by each
approach among three grades. G1, G2, and G3 represent grades 1, 2, and
3. Each row of plots represents one of the junior pathologists. Numbers

above the arrows in the figure show the p values of Tukey-Kramer test for
each pair. When the p values were not shown between a pair, it means p
value < 001. The red numbers show insignificant differences between a pair

Fig. 4 The percentage of
concordant and discordant cases
for each atypia category based on
scores given by COMPASS and
the senior pathologists. The
values are the average of two
scanners. G1, G2, and G3 indicate
grades 1, 2, and 3, respectively.
Each row represents one of the
junior pathologists
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between AUC of the cumulative score and RM1 were not
significant for the second pathologist. For detecting low grade
(i.e., grade 1) RM1 outperformed the cumulative score for
pathologists 1 and 3 while the two approaches resulted in an
almost similar AUC values for pathologist 2.

JP represents the junior pathologist for whom COMPASS
was trained and tested. SA and SH represent the performance
of COMPASS for Aperio and Hamamatsu scanners. Asterisk
shows that AUC value for cumulative score (sum column) is
significantly lower than the compared AUC. The p values
were calculated based on [26]

Discussion

In this paper, COMPASS, a personalized algorithm for repro-
ducible nuclear pleomorphism grading, was introduced. The
leave-one-out cross validation was used and a percentage
agreement of 93.4%, 92.9%, and 93.3% was achieved be-
tween COMPASS and the reference nuclear grade for three
pathologists. Therefore, the percentage agreement was almost
identical for three junior pathologists. The results also sug-
gested that the performance of COMPASS was approximately
similar for both scanners. However, the CCRs of COMPASS
varied among different nuclear grades. As shown in Tables 2,
3, and 4, CCRs were the highest in grade 2 and the lowest in
grade 1 for all three junior pathologists. Similarly, on average,
senior pathologists achieved the highest CCR in grade 2.

Table 2 represents the magnitude of over- and under-grading
whenCOMPASSwas adopted for three pathologists. In practice,
the nuclear grade is one of the three building components of
breast cancer grade, which is used to recommend an appropriate
treatment pathway for a breast cancer patient. Previously, it was
shown that inter-reader variation of breast cancer grading im-
pacts on a patient’s risk assessment for hormonal treatment and
adjuvant chemotherapy [3]. For example, over-grading might
result in treatingwomenwith lymph node-negative breast cancer
with chemotherapy, hormonal therapy, and/or targeted therapy,
while some of these women are likely to be cured by surgery and
radiotherapy alone [27]. Therefore, these women will be over-
treatedwith the adjuvant therapy. Avoiding over-grading of these
women will prevent unnecessary exposure to the toxicity of
adjuvant therapy. On the other hand, under-grading of lymph

node-negative breast cancer might result in treating women by
surgery and radiotherapy alone while some of these women,
who are under-graded and do not receive adjuvant therapy,might
benefit from this treatment [27]. Given the fact that the agree-
ment on the nuclear atypia score was the weakest among three
components of breast cancer grading system, developments of
reproducible nuclear atypia scoring can reduce inter-pathologist
variation in breast cancer grading, which is used for determining
candidate patients for receiving adjuvant therapy.

Most of the previous algorithms aiming at automatic nuclear
grading segmented the cells within an image and then extracted
features from the segmented areas. COMPASS also detects the
nuclei; however, it does not improve the coarse segmentation
and extracts the textural features from neighborhoods with a
high density of nuclei. Therefore, the impact of segmentation
errors on the features extracted by COMPASS has been com-
pensated to some extent. A recent fully automatic algorithm
based on textural features was proposed in [12]. It achieved
CCRs of 65.22%, 90.09%, and 69.23% for the three nuclear
grades and a Cohen’s kappa of 0.6123 (substantial agreement)
on the same images that we used here. By taking advantage of
scores from pathologists and restricting the analysis to the areas
with high nuclear density, COMPASS obtained average (across
three junior pathologists) CCRs of 76.1%, 96.0%, and 89.1%
for the three nuclear grades and a Cohen’s kappa of 0.83 (al-
most perfect agreement). As shown in Table 5, the scores given
by RM1 (which relies on features from pathologist’s assess-
ment) achieved an average AUC of 77% for detecting high-
grade cases. This shows the higher discriminative ability of
scores given by the pathologists in detecting high-grade images
compared to low-grade images (average AUC of 72%).

Cohen’s kappa ranged from 0.80 to 0.86 for different pa-
thologists and different scanners. The values were comparable
to the Cohen’s kappa for senior pathologists while assessing
the same dataset. Figure 5 shows the percentage of images on
which COMPASS agreed with each one of the senior pathol-
ogists. It should be noted that even two senior pathologists did
not agree with each other on all images. Their agreement rate
was 74%, 84%, and 69% for the three nuclear grades.
Estimating the internal parameters of COMPASS was compu-
tationally expensive, and this procedure should be done for
each pathologist separately. Specifically, this was due to the
fact that we set the hyperparameters of COMPASS by using
Bayesian optimization and repeated the late decision fusion
step five times to avoid partitioning noise. However, the train-
ing step should be done only once and after that COMPASS
can be used to assess new images.

The study has a number of limitations. First, the prevalence
of different grades in the dataset was different from real clinical
practice. Therefore, the agreement rate reported here and
Cohen’s kappa will change if the class proportions change.
However, having a balanced dataset may improve the CCRs
of the grades 1 and 3, as more data will be available for training

Table 5 AUC values for detection of grades 3 and 1

Detection rate for grade 3 Detection rate for grade 1

JP Sum RM1 SA SH Sum RM1 SA SH

1 0.631 0.784* 0.977* 0.941* 0.591 0.638 0.934* 0.888*

2 0.708 0.786 0.975* 0.959* 0.756 0.746 0.948* 0.907*

3 0.635 0.744* 0.963* 0.926* 0.754 0.779 0.935* 0.850
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the model. Here, we dealt with the class imbalance problem by
adopting the SMOTE [24] algorithm for upsampling of minor-
ity classes (i.e., grades 1 and 3); nonetheless, COMPASS could
benefit from larger sample size. Moreover, Mitosis-Atypia da-
tabase is a relatively small database and only included 300
images. The main advantages of using this database were being
publicly available, providing high-quality ground truth based
on the consensus of three pathologists, and including six atypia-
related into the database. Using publicly available databases
makes our study comparable to the previous studies in the lit-
erature and facilitates replicating our work in future studies.
However, it should be noted that the sample size is relatively
small, and availability of certain data types was limited in the
database. Further validation of this preliminary study on a larger
dataset will be required in the future. In addition, with a larger
dataset, the performance of deep-learning-based features to ex-
tract textural characteristics of tissue can be also investigated. In
recent years, deep learning has been used for various tasks in
breast pathology such as benign/malignant classification [28],
detecting mitotic figures [29], and determining different cancer
subtypes [30], and very promising results have been obtained.
Therefore, using deep features as an input of RM2 can be a
potential avenue for future work. Secondly, intra-pathologist
variability in scoring six atypia-related criteria should be inves-
tigated. Thirdly, the reported results were based on 300 images
from 11 patients. Here we used leave-one-image-out cross val-
idation to evaluate the performance of COMPASS. However,
the results would be more realistic if the test images were from
different patients. In the publicly available challenge dataset,
124 test images from different patients were provided; however,
the junior pathologists did not asses those images. Hence,
COMPASS could not be used for grading them.

Fourthly, as the ultimate goal of breast cancer grading is
utilizing it as a prognostic factor in patient management, inves-
tigating the association between the nuclear grade outputted by
COMPASS and patient survival would strengthen the study.
Relating COMPASS’s output to patients’ prognosis could be
a future step of this study. Also, the internal parameters of
COMPASS are estimated based on the current performance of
the junior pathologist. However, the scores given by the junior
pathologists could change as they gain experience. Therefore,
the parameters of the model should be updated on a regular
basis. Investigating paradigm for updating the parameters and
algorithmic considerations (e.g., whether the hyperparameters
should be updated or not) could be a possible avenue for future
work.

Moreover, in the publicly available database utilized in this
study, information regarding the number of years since board
examination of senior and junior pathologists and viewing
condition of images were not provided. Based on the provided
description [15], the pathologists have been recruited from
Pitie-Salpetriere Hospital, Paris, in 2014 and were categorized
as senior or junior. Investigating the added benefit of

COMPASS based on expertise level of pathologist could be
a possible future work.

Finally, COMPASS was tested retrospectively, and we as-
sumed that the junior pathologists would accept the nuclear
grade given by COMPASS. However, in a more realistic set-
up, the junior pathologists would score six atypia-related
criteria and then COMPASS would combine these scores with
the computer-extracted textural features using previously
trained non-linear regression models and output the nuclear
grade to the junior pathologists, who would assign the final
nuclear grade to the image.

As COMPASS is a personalized tool, in order to use
COMPASS in practice, the parameters of three regression
models should be first estimated at the individual level in a
training phase. Therefore, a database of approximately 300
images (i.e., the size of our database) with known nuclear
atypia grade will be required. For each image, the pathologist,
who will be using COMPASS, should score six atypia-related
criteria on four ×40 magnification factor. After the training
phase for personalizing COMPASS to each individual pathol-
ogist, the tool is ready to be used. Moreover, re-estimating
parameters (re-calibrating COMPASS) might be required as
junior pathologists are gaining more expertise as it is well
known in the discipline of medical image perception that per-
ceptual skills [31, 32] and error-making patterns [33, 34]
change with expertise development. For a new test image
and during the training phase, textural features should be ex-
tracted from ×20 magnification level as RM2 was previously
trained based on this magnification factor. For six nuclear-
atypia-related scores, in the database utilized here, scores were
given based on ×40 magnification level. However, one possi-
ble future work could be investigating the effect of different
magnification factor on pathologist’s perception of six atypia-
related criteria and evaluating differences among pathologists
in terms of optimal magnification for scoring these criteria. In
the utilized database, it was argued that detailed features of
nuclei might not be visible at ×20 magnification level.

In summary, COMPASS, which is a personalized tool, po-
tentially can assist junior pathologists in nuclear grading of
breast cancer and achieved a performance that was compara-
ble to that of the senior pathologists. This study has also dem-
onstrated that COMPASS, if it had been adopted by the junior
pathologists, could play the role of the second reader, and it
could also complement the senior pathologist’s performance
to some extent. The findings also underscore the importance
of textural computer-extracted features to supplement the ju-
nior pathologist’s assessment of the case.
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