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Abstract
Image segmentation is considered as one of the most fundamental tasks in image processing applications. Segmentation of
magnetic resonance (MR) brain images is also an important pre-processing step, since many neural disorders are associated with
brain’s volume changes. As a result, brain image segmentation can be considered as an essential measure toward automated
diagnosis or interpretation of regions of interest, which can help surgical planning, analyzing changes of brain’s volume in
different tissue types, and identifying neural disorders. In many neural disorders such as Alzheimer and epilepsy, determining the
volume of different brain tissues (i.e., white matter, gray matter, and cerebrospinal fluids) has been proven to be effective in
quantifying diseases. A traditional way for segmenting brain images involves the use of a medical expert’s experience in
manually determining the boundary of different regions of interest in brain images. It may seem that manual segmentation of
MR brain images by an expert is the first and the best choice. However, this method is proved to be time-consuming and
challenging. Hence, numerous MR brain image segmentation methods with different degrees of complexity and accuracy have
been introduced recently. Our work proposes an optimized thresholding method for segmentation of MR brain images using
biologically inspired ant colony algorithm. In this proposed algorithm, textural features are adopted as heuristic information.
Besides, post-processing image enhancement based on homogeneity is also performed to achieve a better performance. The
empirical results on axial T1-weighted MR brain images have demonstrated competitive accuracy to traditional meta-heuristic
methods, K-means, and expectation maximization.
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Textural feature

Introduction

Image segmentation is a process of separation of an image into
distinct homogenous regions [1]. Quality of image segmenta-
tion directly affects success of analyzing and interpreting im-
ages. Segmentation of MR brain images is a critical task in
clinical diagnosis [2], surgical planning [3], and treatment
procedure [4]. However, an accurate segmentation is a persis-
tent problem, mainly due to low tissue contrast and unclear
boundaries caused by partial volumes. Manual segmentation
of brain images is a process of determining by hand drawing
the borders of different regions of interest straightly onto the

raw images which is often performed by medical experts.
Meanwhile, manual segmentation of MR images is labor-inten-
sive, is time-consuming, and is prone to errors because of poor
hand-eye coordination and operator interpretation [5]. The no-
ticeable advantage of an accurate automatic segmentation of
MR brain images lies in the elimination of human error during
this procedure. Therefore, automatic segmentation of MR brain
images according to tissue types of white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) has become an ac-
tive area of research nowadays. Moreover, volumetric analysis
of different regions of the brain may bring valuable information.
In particular, volume calculation of gray and white matter is of
major interest, such that brain tissue classification is vital in
study of neurodegenerative disorders for instance Parkinson,
Alzheimer, or post-traumatic syndrome [6].

Thresholding is a process of providing binary images out of
grayscale ones by setting pixels with intensity below a known
threshold to zero and pixels above that to one. Due to its
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simple comparison technique and computational efficiency,
thresholding is considered to be one of the most popular tech-
niques in performing image segmentation. In an image, if
target and background are markedly distinct, histogram of
the image will be bimodal and then valley bottom of histo-
gram can be easily chosen as a threshold point. However, in
most real images, there is not a noticeable mark between the
target and the background. In this paper, a novel scheme of ant
colony optimization (ACO) algorithm has been introduced to
effectively obtain optimal threshold. Our proposed algorithm
takes advantages of textural feature to define different direc-
tion probabilities. In order to enhance the accuracy, a two-
stage post-processing based on homogeneity values is also
implemented. To the best of our knowledge, it is the first work
in segmentation of MR brain images by the use of meta-
heuristic algorithms, which distinguishes between thalamus
and white matter. The proposed method is tested on a set of
MR brain images, and results are compared to K-means and
expectation maximization (EM) and other meta-heuristic al-
gorithms including artificial bee colony (ABC) [7] and parti-
cle swarm optimization (PSO) [8].

In this paper, an improved segmentation method of MR
brain images by the use of ACO algorithm is presented.
Firstly, a review of related work and an introductory presen-
tation of ACO algorithm are given. Then, the proposed algo-
rithm and its novelty are presented. Afterward, experimental
results and performance evaluation are discussed in detail.
Finally, the paper is concluded and possible further measures
to alleviate image segmentation are discussed.

Related Work

Over the last decade, there has been an increasing attention in
automatic image segmentation and numerous algorithms have
been introduced. Advances made by automated segmentation
methods decrease the time devoted to this process and make such
methods practical [9]. Among these methods, thresholding is one
of themost important tools in image segmentation.As the number
of levels required increases, the computational time and complex-
ity of thresholding problems impose significant challenge [10].

Thresholdingmethods can be classified into parametric and
non-parametric types. In parametric approaches, the probabil-
ity density function of each class is assumed to be a Gaussian
distribution. Therefore, the objective is performing an efficient
estimation of the parameters for having a best fit to the given
histogram. It occasionally drives to a non-linear optimization
problem, which is time-consuming to solve [11]. On the other
hand, non-parametric approaches find an optimal threshold
based on some discriminating criteria such as entropy, mini-
mum error, and between class variance. Non-parametric
methods are easier to implement and computationally more
efficient [10].

Among non-parametric approaches, popular Otsu’s
method [12] chooses the optimal threshold by maximizing
the between-class variance and Kapur [13] finds the best
thresholding using the entropy of histogram. These
methods are capable of being easily implemented for mul-
tilevel thresholding, but their inefficient formulation makes
these methods very time-consuming [10]. In medical im-
ages, intensity distribution of regions is usually very com-
plex, and therefore, thresholding methods are challenging.
Mostly, a combination of thresholding method with other
methods such as fuzzy sets [14], recursive algorithms [15],
and graph cuts [16] is employed. Meanwhile, to improve
efficiency, heuristic methods have become better alterna-
tive ways.

Genetic algorithm (GA) is an evolutionary algorithm
based on evolution theory. GA has been widely employed
in solving hard combinatorial optimization problems. GA
mainly uses two operators named crossover and mutation to
evolve toward an ideal solution and employs fitness func-
tion to measure the quality of solutions [17]. GA, as a fast
scheme for optimal thresholding, has been proposed by Yin
[18]. The reported results were satisfactory and competitive
to results of property-based algorithms. Then, Chang and
Yan [19] introduced a thresholding technique by using a
conditional probability entropy (CPE) based on Bayesian
theory. In their work, GA has been employed to maximize
the CPE in order to select the optimal thresholds. Tao et al.
[20] applied GA in order to find the optimal combination of
all the fuzzy parameters by maximizing the fuzzy entropy.
To do that, membership functions of different parts of the
image were described by fuzzy parameters. The optimal
parameters are then used to define threshold values. In
2002, Fan et al. [21] proposed a parallel GA-based active
model method and used it to segment the lateral ventricles
in MR brain images. In their work, parallel GA is imple-
mented to optimize the dynamic model-based object func-
tion. In order to segment T2-weighted MR brain images,
Manikandan et al. [22] used real coded GAwith simulated
binary crossover and polynomial mutation-based multilevel
thresholding.

PSO simulates the social behavior of bird flocking. PSO
is composed of a population and member of the population
called swarm and particles respectively. Initially, a popula-
tion of random solution is generated and a random velocity
is assigned to each particle. Each particle adjusts and up-
dates the position regarding itself and its neighborhood. It
has the ability to explore globally and locally [8]. To extend
the effect iveness of Otsu’s method in multi level
thresholding, Zahara et al. [23] applied Otsu’s method with
PSO and Nelder-Mead simplex search. Fan et al. [24] used
a mixture Gaussian model to approximate the histogram.
The Gaussian’s parameters were iteratively calculated by
combining PSO with EM algorithm. Nakib et al. [25]
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proposed an MR brain image segmentation method. Their
introduced method was based on two-dimensional survival
exponential entropy and PSO. 2D histogram provided the
means to benefit from spatial information, and PSO algo-
rithm is applied to solve the problem of high computational
time.

The artificial bee colony is an algorithm based on the
behavior of honeybees. ABC consists of the three types of
bees: employed bees, onlooker bees, and scout bees.
Employed bees randomly explore food sources and return
with estimation of nectar quantity. This explorative search
information is shared with onlooker bees. The onlooker
bees evaluate this information and select the food sources.
Meanwhile, the scout bees perform a random search to find
the new possible food sources [7]. ABC has been consid-
ered as an important area of research interests in multilevel
thresholding. Cuevas et al. [26] explored the use of artificial
bee colony algorithm to compute threshold selection for
image segmentation. Histogram of an image was approxi-
mated through a Gaussian mixture model whose parameters
were estimated by the ABC algorithm. Hancer et al. [27]
introduced a novel image segmentation method based on
ABC to separate brain tumors fromMR brain images. To do
that, artificial bee colony-based clustering method is cho-
sen to segment the image. Then, thresholding is employed
to extract tumor.

K-means is an unsupervised learning algorithm. This
method intends to minimize an objective function which
can be a chosen distance between a data point and the clus-
ter center. In order to separate tumor objects in MR images,
Wu et al. [28] applied histogram clustering and K-means
clustering. The key feature of their proposed method is K-
means with color-based segmentation algorithm that trans-
formed grayscale MR images into a color image. Ng et al.
[29] used K-means clustering and improved watershed al-
gorithm for segmentation of medical images. Firstly, a pri-
mary segmentation is done by the use of K-means algo-
rithm. Then, improved watershed segmentation algorithm
is employed.

The EM is an iterative algorithm to find the maximum
likelihood estimations for model parameters in the presence
of incomplete or missing data. A method is introduced in [30]
that used K-means and EM to provide CT image segmenta-
tion, which divided the brain into three different clusters in-
cluding brain matter, CSF, and abnormal regions. Moon et al.
[31] introduced an atlas-based segmentation technique. They
used atlases to give a probabilistic tissue model. In the next
step, the probabilistic tissue model and EM are employed to
segment brain tumor by adjusting an atlas with patient-
specific information about the position of tumor from different
MRI modalities.

Homogeneity is largely associated with the local informa-
tion obtained from an image and reveals the uniformity of a

region. It plays a significant role in image segmentation
since the output of image segmentation would be a few
homogeneous regions [32]. Haralick et al. [33] introduced
a classical attitude to describe textural features for image
classification. Co-occurrence (C) matrix is the source of
the homogeneity value. The gray value co-occurrence ma-
trix is the two-dimensional histogram of the co-occurrence
of gray values in an image. As a result, an image with 256
different intensity values has a co-occurrence matrix with
2562 elements. The matrix element cij (p) is the abun-
dance of the co-occurrence of gray value i and gray value
j in the image I defined as follows:

p Ix1;y1 ¼ i; Ix2;y2 ¼ j j x2; y2ð Þ ¼ Nk x1; y1ð Þ� � ð1Þ

where Nkindicates a fixed geometric relationship between
image pixels such as the left horizontal neighbor. Next, 14
textural features were extracted and the angular second mo-
ment was chosen as a measure of texture homogeneity.

Cheng et al. [32] defined homogeneity as a composition of
standard deviation and discontinuity of pixel intensities.

Standard deviation illustrates the contrast within a local
region and discontinuity is a measure of sudden changes in
gray levels and could be obtained by applying edge detectors
to the corresponding region. In their work, Sobel operator was
applied to calculate discontinuity. To achieve computational
consistence, the standard deviation and discontinuity values
were also normalized.

The homogeneity is shown as follows:

H gij;w
1ð Þ
ij ;w 2ð Þ

ij

� �
¼ 1−E gij;w

2ð Þ
ij

� �
� V gij;w

1ð Þ
ij

� �
ð2Þ

where gij is the intensity of a pixel pij at the location (i, j)

and w 1ð Þ
ij and w 2ð Þ

ij are the windows centered at (i, j) that used
for the computation of variation and discontinuity respective-
ly. E(i, j) is the magnitude of the gradient at location (i, j), and
V(i, j) is the standard deviation of pixel pij. Homogeneity for
any pixel of image has a value in the range of 0 to 1.

Ma et al. [34] proposed an innovative scheme for texture
segmentation based on ACO for automatic IRIS image recog-
nition. They defined different kinds of direction probability
for artificial ants. They assumed direction probability vector
that consist of three parts as follows:

pdir ¼ pi
1 þ pi

2 þ pi
3 ð3Þ

Here, p1i is the predefined weight for all directions, which is
attributed according to the distortion between the candidate
direction and the original direction. p2i is the set to accentuate
the difference between gray levels of the ith cell f(i) and the
center cell f(i). The third one, p3i , is also given by difference
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between the ith sub-image w(i) and the center sub-image w(0)

as follows:

p2i ¼
1

1þ f ið Þ− f 0ð Þ
��� ���β

ð4Þ

p3i ¼
1

1þ d w ið Þ:w 0ð Þ
� ��� ��γ ð5Þ

Ant Colony Algorithm

In the early 1990s, ant colony optimization as a novel meta-
heuristic algorithm for solving hard combinatorial problems
was introduced by Dorigo et al. [35]. ACO is a member of
meta-heuristic classes, which demonstrate satisfactory solu-
tions to hard optimization problems in reasonable computa-
tional time.

The inspiring source of ACO is the observation of real ants’
behavior in the food searching process. According to biolo-
gists’ point of view, real ants have rudimentary visual sensory
organs and communication skills and an individual ant may
have a poor probability of longevity. However, ant colonies
are able to perform complex task, which is far exceeding the
capability of a single ant. Performing complex task is a proof
of a highly structural social organization [36, 37].

A chemical substance called pheromone mediates an indi-
rect form of communication between ants. The concentration
of pheromone can accumulate or become weaker due to

evaporation. When ants want to move in a search space, they
tend to choose a path with a greater pheromone concentration.
The more time it takes for an ant to travel a path, the more time
it needs for pheromone to evaporate. As a result, the phero-
mone trails evaporate in longer path while pheromone con-
centration in a short path remains high. Pheromone concen-
tration in shorter path accumulates faster as it evaporates. In
the initial stage, ants are not directed by pheromone.
Therefore, ants explore the space in a random manner. In
further stages, with the direction of pheromone, the probabil-
ity that an ant chooses the shorter path is significantly higher
than that of a longer path. Finally, the process forms a positive
feedback, such that almost all the ants choose the shortest path
[38–40].

The pheromone model, as a probabilistic model, is a center
core of an ACO algorithm. When artificial ants move in the
search space, they use the pheromone model to generate so-
lutions to the problem. During run time, pheromone values are
updated based on the value of previously generated solutions.
The aim of pheromone updating is concentrating the search
procedure on the area with a high probability of containing a
potential optimal solution. The procedure repeats until stop-
ping criteria are reached [10, 35].

ACO has been already applied successfully to different
combinatorial optimization tasks such as traveling salesman
problem (TSP) [41], scheduling problem [42], vehicle routing
problem [43], data mining [44], and face recognition [45].
Here, a novel scheme of ACO for segmenting MR brain im-
ages is presented.

Proposed Brain Image Segmentation Based
on ACO

Since texture segmentation is an important area in pattern rec-
ognition, in this paper, a novel method for texture segmentation
based on ACO is proposed. This method takes advantage of
combining ACO and textural features. Between-class variance
maximization is employed as proposed objective function. The
details of the proposed algorithm are introduced as follows:

Step 1: Preprocessing and Extracting Textural
Features

Preprocessing

In MR brain images, skull stripping is the method of separat-
ing brain from non-brain tissues and is considered to be one of
the pre-processing steps in MR brain segmentation. Skull
stripping is a challenging task, because of intensity similarities
of brain and non-brain tissues and brain shape. To eliminate
background, histogram analysis is performed. Then, a mask
introduced by the use of morphological operation and two

Fig. 1 Results of skull stripping. a Original image. b Brain after
removing the skull

Table 1 Position of I(i1, j1) in different directions

Direction I(i1, j1) Direction I(i1, j1)

0∘ (i, j + 1) 180∘ (i, j − 1)
45∘ (i − 1, j + 1) −45∘ (i + 1, j + 1)

90∘ (i − 1, j) −90∘ (i + 1, j)

135∘ (i − 1, j − 1) −135∘ (i + 1, j − 1)
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seeds of non-brain and brain regions were automatically de-
termined. Based on general anatomy information, these seeds
with two-dimensional region growing algorithm are expanded
[46]. Figure 1 shows the result of skull stripping.

Extracting Homogeneity

In order to calculate homogeneity of a pixel, (i, j), wij is used as a
3 × 3 window centered at (i, j) and wi1 j1 is a 3 × 3 window

centered at (i1, j1), where (i1, j1) is one of the eight nearest neigh-
bors of (i, j). Table 1 shows position of (i1, j1) in different
directions.

Firstly, all possible gray values in the target area are nor-
malized and mapped to the interval [0, 1]. Secondly, the aver-
age of all mapped difference values is calculated as follows:

H ¼
∑
3

i¼1
∑
3

j¼1
1− wij−wi1 j1j j

ymax

� �z	 


9
ð6Þ

Table 2 Percentage of false
positive and false negative rates
and mean accuracy of different
brain segmented regions using
our proposed ACO algorithm,
ABC, PSO, K-means, and EM

Brain
tissue
type

Method FPR FNR Accuracy

GM WM CSF GM WM CSF

GM Proposed
ACO

4.830** 64.74 35.26 6.589** 56.34 43.57 94.605*

ABC 5.885** 57.79 42.21 5.223** 61.61 38.39 94.018
PSO 4.667** 59.91 40.09 7.272** 60.55 39.45 94.494
K-means 6.275** 53.02 46.98 8.719** 70.36 29.63 92.734
EM 6.826** 82.1 17.9 8.312** 68.17 31.83 92.551

WM Proposed
ACO

99.81 2.700** 0.19 88.97 7.079** 11.03 95.407*

ABC 99.96 2.293** 0.04 86.09 8.078** 13.91 95.237
PSO 99.97 3.141** 0.03 82.72 6.776** 17.28 95.298
K-means 99.93 4.380** 0.07 79.87 5.753** 20.13 95.029
EM 100 1.892** 0 85.51 9.053** 14.49 95.027

CSF Proposed
ACO

77.71 22.29 1.799** 99.81 0.19 9.481** 97.015*

ABC 62.81 37.19 1.549** 99.98 0.02 13.380** 96.535
PSO 69.94 30.06 1.996** 99.96 0.04 9.858** 96.727
K-means 67.87 32.13 1.849** 99.94 0.06 10.717** 96.710
EM 80.45 19.55 3.438** 100 0 4.423** 96.401

*indicates the algorithm with highest accuracy in different brain tissues

**indicates total FPR and FNR of different algorithms in different tissue types

Table 3 Percentage of false
omission and false discovery rates
and mean precision of different
brain segmented regions using
our proposed ACO algorithm,
ABC, PSO, K-means, and EM

Brain
tissue
type

Method FOR FDR Precision

GM WM CSF GM WM CSF

GM Proposed
ACO

3.164** 56.42 43.58 9.894** 64.73 35.27 90.106

ABC 2.510** 61.59 38.41 11.777** 57.79 42.21 88.223
PSO 3.487** 60.57 39.43 9.628** 59.97 40.03 90.372
K-means 6.002** 71.44 28.56 9.103** 52.95 47.05 90.897*
EM 5.810** 68.07 31.93 9.822** 82.05 17.95 90.178

WM Proposed
ACO

88.98 5.263** 11.02 99.81 3.681** 0.19 96.319

ABC 86.07 5.835** 13.93 99.97 3.207** 0.03 96.793
PSO 82.77 5.002** 17.23 99.95 4.312** 0.05 95.688
K-means 79.87 4.322** 20.13 99.95 5.814** 0.05 94.186
EM 85.59 6.501** 14.41 100 2.713** 0 97.287*

CSF Proposed
ACO

99.77 0.23 1.744** 77.79 22.21 9.764** 90.236

ABC 99.96 0.04 2.572** 62.6 37.4 8.374** 91.626*
PSO 99.95 0.05 1.925** 69.85 30.15 10.186** 89.814
K-means 99.9 0.1 2.086** 67.83 32.17 9.595** 90.405
EM 100 0 0.894** 80.49 19.51 15.596** 84.404

*indicates the algorithm with highest accuracy in different brain tissues

**indicates total FPR and FNR of different algorithms in different tissue types
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The maximum possible gray value difference in target area
is denoted by ymax. The exponent z controls the importance of
certain difference values.

Besides, Hmin and Haverage are defined as follows:

Hmin

¼ min H0∘; ;H45∘ ;H90;H135∘ ;H180∘ ;H−45∘ ;H−90∘ ;H−135∘ð Þ
ð7Þ

H average

¼ ∑ H0∘; ;H45∘ ;H90;H135∘ ;H180∘ ;H−45∘ ;H−90∘ ;H−135∘ð Þ
8

ð8Þ

Step 2: Initialization

Generating Initial Solution

Firstly, a small memory is introduced to store the best solution.
Then, two random gray values in the intensity range of target
area are chosen and stored as best-so-far solution. For each ant
in each iteration, the cost of the obtained result by the use of
objective function is calculated and compared to the best-so-
far solution.

Pheromone Distribution

The range of pheromone values is restricted to [φmin,φmax].
However, to serve the purpose of focusing ant’s energy in a

target area, the amount of pheromone attributed to background
and skull is zero. In each iteration, the best-so-far solution and
candidates are allowed to deposit pheromones.

In order to allocate pheromone, a ramp function is
employed. Based on a specific step in a pre-determined inter-
val’s length, the pheromone is settled to pixels. Obviously, the
closer the pixel’s intensity is to the value of best-so-far solu-
tion, the more pheromone is assigned. At the beginning, the
pheromone of each pixel in the target area is assigned to a
fixed value.

During every iteration, pheromone quantity reduces by a
constant rate. Pheromone evaporation is defined by the fol-
lowing equation:

φ tþ1ð Þ ¼ 1−ρð Þφ tð Þ ð9Þ

where ρ is the evaporation rate. The amount of pheromone
of pixels with intensity equals to best solution or its adjacent
intensities increases by the use of a ramp function.

In the proposed algorithm, memory is not allocated to an
individual ant, but a map is employed which indicates the
class membership of each pixel. This approach sets the stage
for a significant reduction in the number of iterations and
number of ants. As a result, less computational time is
required.

In this paper, four classes are assigned to make a distinction
between three different types of brain tissues and background.
In every iteration, all pixels are associated with a class label.

Initializing Ant Distribution

At the beginning, each ant is randomly placed on a pixel (x, y)
in the target area with at most one ant on each pixel.

Step 3: Transition Probability Rule

When an ant moves, it selects a pixel in the eight nearest
neighbors by considering two aspects: global pheromone dis-
tribution and homogeneity. In case, all neighboring pixels
have the identical label as ant’s label or background; the ant
starts to move randomly until placing in a pixel that at least
one of the eight nearest pixels has a different label. This strat-
egy improves the ability of ant’s exploration. In other words,
in each iteration, all ants provide a competitive solution. The
transition probability is given by Eq. 10:

ρij ¼
ταij ηβij

∑ταijη
β
ij

if i; jð Þ∈I
0 Otherwise

8><
>: ð10Þ

Here, I presents the set of neighboring pixels. τij and ηijare
the intensity of pheromone and homogeneity respectively.α
and β are positive control parameters.

Table 5 Mean precision, sensitivity, accuracy, and F1 score of tumor
detection algorithm by the use of our proposed ACO algorithm, ABC,
PSO, K-means, and EM

Method Precision Sensitivity Accuracy F1 score

Proposed ACO 87.570* 93.087* 97.388* 0.89952*

ABC 87.486 90.808 97.046 0.88616

PSO 82.658 93.115 96.487 0.87001

K-means 81.528 92.304 96.170 0.85918

EM 85.340 94.182 97.159 0.89372

*indicates algorithms with highest precision, sensitivity, accuracy and F1
score in tumor detection process

Table 4 Mean F1 score of different tissue types by the use of our
proposed ACO algorithm, ABC, PSO, K-means, and EM

F1 score ACO ABC PSO K-means EM

GM 0.91729* 0.91383 0.91535 0.91089 0.90927

WM 0.94589* 0.94295 0.9444 0.94217 0.9401

CSF 0.90377* 0.89053 0.89978 0.8984 0.89644

*indicates algorithms with highest F1 score in different brain tissues

J Digit Imaging (2019) 32:162–174 167



Step 4: Solution Construction

The intensity of current location and chosen pixels are candi-
dates to be selected as optimal threshold. According to the
nature of the problem, ants examine thresholds between these
classes GM-WM, GM_CSF, and WM-CSF. In first two cases
(i.e., GM-WM, GM_CSF), the intensity range of these classes
is close. Hence, two possibilities are provided. The intensity of
each pixel is assumed to be the optimal threshold and value of
the generated solution is calculated. If pixels belong to WM
and CSF, another possibility occurs. The other possibility is to
consider intensities of both pixels as new solution for the
problem. In each iteration for each ant, the value of the com-
puted solution is compared to the best-so-far solution.

Step 5: Post-processing

Post-processing based on homogeneity values is performed in
two stages. In both cases, if I(i, j) meets the homogeneity
threshold criterion, wij is a 3 × 3 window centered at (i, j).

In the first stage, the pixels whose minimum homogeneity
is more than a pre-defined high threshold (T) are recognized.
Because of high homogeneity, it is expected that all pixels in
wij are assigned to the same class; if not, the mode of wij

classes will be allocated to any pixels inwijwith different class
labels.

In the second stage, the average homogeneity of pixels is
analyzed. Pixels whose average homogeneity is less than a
min(Haverage) + ω × min(Haverage) are taken into account.
These candidates are probable to be weak edges with low
homogeneity that are prone to errors. To make a distinction
between weak and strong edges, a number of pixels in wij

that their intensity difference with I(i, j) is less than a thresh-
old are counted. In case it is more than four, the class of I(i, j)
will be changed to the mode of the window. The major dif-
ference between these two stages is that in the first stage with
high homogeneity candidates, the mode of label of wij is
applied to all members of wij, while in second one with
low homogeneity candidates, only the class of central pixel
might be altered.

Fig. 3 Results of brain segmentation extracting WM. Figures consist of a original image, b our proposed ACO, c ABC, d PSO, e K-means, and f EM

Fig. 2 Results of brain segmentation. a Original image. b Divided to WM. c GM. d CSF using the proposed ACO algorithm
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Thresholding methods are faced with some limitations.
Deep graymatter, particularly thalamus, is visible in some real
patient axial T1-weighted MR brain images. However, seg-
mentation of MR brain images into three segments is not
capable of detecting thalamus and recognizes it as WM. On
the other hand, increasing the number of thresholds or
segmenting WM to two classes leads to lower accuracy in
other regions and over-segmentation. To solve this problem,
the segmentation process performs two times. Firstly, a MR
brain image is segmented into three regions and next, it is
segmented into four classes, so in this case, the thalamus can

be included as a member of an individual class. Then, based
on anatomy information and location of thalamus in the cen-
tral part of our MR brain images, a window in segmented MR
brain image with four classes is defined to contain thalamus.
The size of the window should be large enough to contain
thalamus. However, by increasing the size of the window,
the overall accuracy of the segmentation method decreases.
In the next step, the window is mapped into the result of image
that segmented with three classes. In the next step, the addi-
tional class, which contains thalamus, is labeled as gray mat-
ter. In order to evaluate the necessity of performing this

Fig. 4 Results of brain segmentation extracting GM. Figures consist of a original image, b our proposed ACO, c ABC, d PSO, e K-means, and f EM

Fig. 5 Results of brain segmentation extracting CSF. Figures consist of a original image, b our proposed ACO, c ABC, d PSO, e K-means, and f EM
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procedure, comparing the standard deviation and mean inten-
sity values of white matter located in the window and rest of it
can be taken as decision factors.

Pseudo-code of the proposed algorithm is brought here:

In the proposed ACO algorithm, a different direction by the
use of textural feature has been introduced. Since ants should
provide a competitive solution in every iteration, under certain
circumstances, they can move and not to be limited to eight
nearest neighbors. As a result, capability of ant’s exploration
has increased. Due to movement of ants on real image rather
than solution space, the possibility of choosing a pixel with
specific intensity correlates to its intensity frequency indirect-
ly. To put in another way, the probability of choosing pixels
which are more effective in results is higher. This issue sets the
stage for higher convergence rate. Moreover, in this work, in
case of necessity, thalamus detection is also performed to pre-
vent misclassification of thalamus to WM.

To investigate the capability of the proposed algorithm, it is
employed in more challenging dataset, which aims to extract
tumor. The basic principles in the proposed algorithm

remained unchanged. However, in the first step, an MR brain
image segmented into five regions consists of background,
WM, GM, CSF, and tumor. The method in [47] is used to
obtain asymmetry. Then, asymmetry coefficient is computed
for all regions. Obviously, the area with higher asymmetry
value has the higher probability of being a tumor region.
Since the target area is the tumor region, the image is convert-
ed in the binary format and morphological operations are ap-
plied on it. These fundamental operations are erosion and
dilation that are described in terms of intersection and union
of structuring element and an image.

Validation of MR Brain Image Segmentation

In medical image analysis, a grand truth is required to make a
quantitative comparison and to validate different segmenta-
tion methods. Segmentation of real patient MR images is usu-
ally done by expert physicians. However, this method is high-
ly subjective and depends on the operator so that even an
expert may have difficulties to reproduce the same segmented
images. Moreover, this method is very time-consuming and
prone to errors. As a result, alternative validation methods
have been introduced to tackle this problem. Phantoms and
software simulations can be evolved to validate the accuracy
of segmentation methods [48]. A realistic digital brain phan-
tom or BrainWeb designed by Collins et al. [49] is one of the
most favorite simulated brain databases. These databases con-
tain a set of realistic MRI data volumes produced by an MRI
simulator. T1-weighted images of 20 anatomical models of the
normal brain were used with specific parameters: SFlash se-
quence with TR = 22 ms, TE = 9.2 ms, flip angle 40°, and 1-
mm isometric voxel size. Each anatomical model consists of a
fuzzy tissue membership volume. The proportion of tissue
types presented in the voxel is in the range of [0, 1] and is
demonstrated by voxel values [50].

The performance of the proposed algorithm in tumor de-
tection has been assessed by the use of BRATS2012 training
dataset, which contains skull-stripped multimodal MR images
of low- and high-grade gliomas from simulated and real

Fig. 7 Results of thalamus detection and brain segmentation. Figures consist of a original image, b ACO using two thresholds, c ACO using three
thresholds, and d combination of those two methods

Fig. 6 Magnification of key areas demonstrating the effects of post-
processing in our proposed algorithm
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patient images. In order to compare results with BRATS grand
truth, necrotic and edema were combined to form the tumor
label and all other labels were ignored [51, 52]. To make
quantitative comparison, 20 T1-weighted axial MR images
of high-grade gliomas from simulated images are employed.

In order to evaluate efficiency of algorithms, the following
parameters are computed:

FPR ¼ FP

FPþ TN
ð11Þ

FNR ¼ FN

FNþ TP
ð12Þ

Accuracy ¼ TPþ TN

FPþ TNþ FNþ TP
ð13Þ

Sensitivity ¼ 1−FNR ¼ TP

FNþ TP
ð14Þ

Specificity ¼ 1−FPR ¼ TN

FPþ TN
ð15Þ

False discovery rate FDRð Þ ¼ FP

FPþ TP
ð16Þ

Positive predictive value PPVð Þ ¼ 1−FDR ¼ TP

FPþ TP
ð17Þ

False omission rate FORð Þ ¼ FN

FNþ TN
ð18Þ

Negative predictive value NPVð Þ ¼ 1−FOR

¼ TN

FNþ TN
ð19Þ

F1 ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity

� �
ð20Þ

where FP, FN, TP, and TN stand for false positive, false
negative, true positive, and true negative respectively. True
positive and true negative are the number of pixels correctly
assigned as desirable and undesirable subsequently. False pos-
itive and false negative are the number of pixels incorrectly
assigned as desirable and undesirable respectively. Sensitivity
computes the proportion of desired pixels that are correctly
identified. Since sensitivity does not consider false positive,
results of a high-sensitive test are reliable when it is negative.
Specificity measures the fraction of undesired pixels that are
correctly classified. Specificity does not take into account
false negative. False discovery rate (FDR) is the ratio of FP
in all detected pixels of a specific region. False omission rate
(FOR) is the proportion of FN to all pixels detected as unde-
sirable. Negative predictive (NPV) and positive predictive
(PPV) values are the complements of FOR and FDR respec-
tively. PPV is also called precision.

The F1 score is a weighted average of the precision and
sensitivity. As a result, this score considers both false positives
and false negatives. F1 score is in the range of [0, 1], and it
reaches its best value at 1 and worst at 0.

Experimental Results

In the post-processing stage, parameters are defined as T =
0.95 and ω = 0.1. These numbers are chosen in consider-
ation of targeting only remarkable homogeneous and low-
level homogeneous pixels in two stages post-processing
procedure. Table 2 shows the mean accuracy, false positive
rate (FPR), and false positive rate (FNR) of different tissue
types segmented by the use of the proposed ACO

Fig. 8 Results of tumor detection
in different stages. Figures consist
of a original image, b
segmentation of tumor by the use
of ACO algorithm, c erosion, d
dilation, e tumor region in original
image, and f grand truth
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algorithm, ABC, PSO, K-means, and EM. Moreover, the
percentages of FPR and FNR that belong to other classes
have been determined. The obtained results indicate that the
overall performance of the proposed algorithm is better
than that of other current algorithms. For each segmented
tissue, our algorithm performs better in terms of accuracy
and F1 score and somehow is comparative to other methods
in terms of precision and sensitivity. Meanwhile, ACO has
a number of strength points in comparison with other algo-
rithms such as inherent parallelism, positive feedback ac-
counts for rapid discovery of good solutions, ability to be
used in dynamic applications, and simplicity in implemen-
tation. Therefore, it is advantageous to use ACO compared
to other brain image segmentation methods. In the proposed
algorithm for each ant in each iteration, a feasible solution
is provided. In all algorithms, the CSF region has the
highest accuracy and the lowest accuracy that belong to
GM sector. In comparison with GM and WM, CSF gains
the maximum FNR and minimum FPR values in most of the
algorithm. Hence, the lowest sensitivity and the highest
specificity attribute to it. Predictably, significant proportion
of FNR of the CSF region is due to misclassification into
GM. Because of considerable overlapping in intensity
values across GM and two other regions, GM has the
highest FPR. Table 3 demonstrates the mean precision,
FDR, and FOR of different tissue types by the use of the
proposed ACO algorithm, ABC, PSO, K-means, and EM.
Besides, the percentages of FDR and FOR that belong to
other classes have been detected. Among these three differ-
ent tissue types, WM has the minimum FDR and maximum
FOR values that leads to the highest precision and lowest
NPV. No single algorithm has the highest precision for all
tissue types. Table 4 shows the F1 score of different tissue
types by use of different algorithms. The proposed

algorithm has the highest F1 score for all tissue types.
Table 5 depicts the mean precision, sensitivity, accuracy,
and F1 score of different algorithms in tumor detection.
The proposed algorithm has the highest precision, accuracy,
and F1 score, although EM algorithm gains the maximum
sensitivity. In Tables 2, 3, 4, and 5, cells with the highest
amount of accuracy, precision, sensitivity, and F1 score for
each tissue type are indicated by ‘**’. Besides, in Tables 2
and 3, to avoid misunderstanding, cells that show total
FNR, FPR, FOR, and FDR are indicated by ‘*’.

Figure 2 shows results of segmentation ofMR brain images
into white matter, gray matter, and cerebrospinal fluid.
Figures 3, 4, and 5 show the segmentation of white matter,
gray matter, and CSF achieved by the ACO algorithm as com-
pared with PSO, ABC, K-means, and EM. To demonstrate the
effects of post-processing, key areas have been magnified and
the results are illustrated in Fig. 6. Figure 7 shows the obtained
results of an example with thalamus detection. Different
stages of tumor detection are displayed in Fig. 8. In Fig. 9,
final results of tumor detection by the use of different algo-
rithms are shown.

Conclusion

Image segmentation is a critical step in a wide range of med-
ical applications involving computer-aided measurements and
diagnosis. This paper presents a new approach based on ACO
for brain MR image segmentation. In the proposed ACO al-
gorithm, textural feature for different direction probabilities
has been introduced. Ant movement is not restricted to eight
nearest neighbors. Therefore, ant’s exploration capability has
increased. Moreover, in case of necessity, thalamus detection
is also performed. Promising results of the proposed algorithm

Fig. 9 Final results of tumor detection by the use of different algorithms. Figures consist of a original image, b our proposed ACO, cABC, d PSO, eK-
means, f EM, and g grand truth
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over PSO, ABC, K-means, and EM in healthy MR brain im-
ages and tumor detection were proven. In our future work, we
intend to extend our approach on three-dimensional MR brain
images.
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