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Abstract Pretreatment risk stratification is key for personal-
ized medicine. While many physicians rely on an Beyeball test^
to assess whether patients will tolerate major surgery or chemo-
therapy, Beyeballing^ is inherently subjective and difficult to
quantify. The concept of morphometric age derived from
cross-sectional imaging has been found to correlate well with
outcomes such as length of stay, morbidity, and mortality.
However, the determination of the morphometric age is time
intensive and requires highly trained experts. In this study, we
propose a fully automated deep learning system for the segmen-
tation of skeletal muscle cross-sectional area (CSA) on an axial
computed tomography image taken at the third lumbar vertebra.
We utilized a fully automated deep segmentationmodel derived
from an extended implementation of a fully convolutional net-
work with weight initialization of an ImageNet pre-trained
model, followed by post processing to eliminate intramuscular
fat for amore accurate analysis. This experiment was conducted
by varying window level (WL), window width (WW), and bit
resolutions in order to better understand the effects of the pa-
rameters on the model performance. Our best model, fine-tuned

on 250 training images and ground truth labels, achieves
0.93 ± 0.02 Dice similarity coefficient (DSC) and
3.68 ± 2.29% difference between predicted and ground truth
muscle CSA on 150 held-out test cases. Ultimately, the fully
automated segmentation system can be embedded into the clin-
ical environment to accelerate the quantification of muscle and
expanded to volume analysis of 3D datasets.

Keywords Muscle segmentation . Convolutional neural
networks . Computer-aided diagnosis (CAD) . Computed
tomography . Artificial intelligence . Deep learning

Introduction

Image segmentation, also known as pixel-level classification, is
the process of partitioning all pixels in an image into a finite
number of semantically non-overlapping segments. In medical
imaging, image segmentation has been considered a fundamen-
tal process for various medical applications including disease
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diagnosis, prognosis, and treatments. In particular, muscle seg-
mentation on computed tomography (CT) for body composi-
tion analysis has emerged as a clinically useful risk stratification
tool in oncology [1–3], radiation oncology [4], intensive care
[5, 6], and surgery [7–10]. Cadaver studies have established
muscle cross-sectional area (CSA) at the level of the third lum-
bar (L3) vertebral body as a surrogate marker for lean body
muscle mass [11, 12]. These studies applied semi-automated
threshold-based segmentation with pre-defined Hounsfield unit
(HU) ranges to separate lean muscle mass from fat. However,
segmentation errors require manual correction based on visual
analysis by highly skilled radiologists [13]. As a result, semi-
automated body composition analysis on large datasets is im-
practical due to the expense and time required. Thus, there is a
role for automated tissue segmentation in order to bring body
composition analysis into clinical practice.

Adipose tissue segmentation on CT images is a relatively
straightforward process as fat can be thresholded with a con-
sistent HU range [−190 to −30] [14]. Muscle segmentation is
less straightforward as muscle and neighboring organs have
overlapping HU values [−29 to 150]. Few published strategies
exist for automated muscle segmentation with various ap-
proaches. A series of publications by Kamiya et al. [15–17]
focused on segmentation of a single muscle (psoas major) at
L3. Popuri et al. have studied the segmentation of all skeletal
muscles visible at the L3 [18] and T4 levels [19, 20]. Their
approach involves a deformable shape model based on the
ideal muscle appearance with fitting based on a statistical de-
formation model (SDM). Another study [21] attempted to
segment a 3D body CT dataset with seven segmentation clas-
ses including fat and muscle by classifying each class using
random forest classifiers when given 16 image features ex-
tracted from statistical information and filter responses. All
these attempts require sophisticated hand-crafted features to
define knowledge-based parameters and select constraints for
well-formed statistical shape and appearance models. As a
result, these approaches cannot be generalized.

Deep learning has demonstrated enormous success in im-
proving diagnostic accuracy, speed of image interpretation,
and clinical efficiency for a wide range of medical tasks, rang-
ing from the interstitial pattern detection on chest CT [22] to
bone age classification on hand radiographs [23]. Particularly,
a data-driven approach with deep neural networks has been
actively utilized for several medical image segmentation ap-
plications, ranging from segmenting brain tumors onmagnetic
resonance images [24–26], organs of interest on CT [27, 28],
to segmenting the vascular network of the human eye on fun-
dus photography [29]. This success is attributed to its capabil-
ity to learn representative and hierarchical image features from
data [30], rather than relying on manually engineered features
based on knowledge from domain experts.

In this study, we propose a fully automated deep segmenta-
tion system for the segmentation of muscles on an axial CT

slice taken at L3 using the improved fully convolutional net-
work (FCN) [31] and post processing. This system enables real-
time segmentation of muscle and possibly fat tissue, facilitating
clinical application of body morphological analysis sets.

Method

Dataset

Data Acquisition and Characteristics

IRB approval was obtained for this retrospective study. Four
hundred patients with an abdominal CT and lung cancer treat-
ed with either surgery or systemic therapy between 2007 and
2015 were identified in an institutional database. The surgical
cohort (tumor stages I, II, and III) represented a cross section
of all patients who underwent lung cancer resection at our
institution, while the medical cohort were patients who re-
ceived chemotherapy (tumor stage IV). Only examinations
with intravenous contrast were included to ensure consistency
of HU values. Four hundred examinations of 200 females and
200 male patients were included in the study, as detailed in
Table 1. A test subset of 150 cases was created for evaluating
the algorithm performance by taking 25 cases from each BMI
category per gender, as explained in BData Categorization.^

Images were acquired for routine clinical care as detailed in
Table 2. Scanners were calibrated daily using manufacturer-
supplied phantoms to ensure consistency in attenuation

Table 1 Patient characteristics of the entire cohort (n = 400) and the test
subset (n = 150)

Patient characteristics n = 400 (entire
cohort)

n = 150 (test
subset)

p values

Age, mean (SD) (years) 63 (12) 62 (11) 0.31

Gender, no. (%) 1
Female 200 (50) 75 (50)

Male 200 (50) 75 (50)

Height, mean (SD) (cm) 168 (10) 168 (10) 0.70

Weight, mean (SD) (kg) 77 (18) 79 (19) 0.16

Lung cancer treatment,
no. (%)

0.78

Systemic therapy 227 (57) 86 (57)

Surgery 173 (43) 64 (43)

Lung cancer stage, no.
(%)

0.84

I 102 (26) 38 (25)

II 33 (8) 10 (7)

III 38 (10) 16 (11)

IV 227 (57) 86 (57)

Note that there is no statistically significant difference between the entire
cohort and the test subset
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measurements in accordance with manufacturer specifica-
tions. Full resolution 512 × 512 pixel diagnostic quality CT
examinations were loaded onto a research workstation run-
ning OsiriX without downsampling (Pixmeo, Bernex,
Switzerland). Segmentation maps of skeletal muscle CSA at
the level of L3 were created on a single axial image using
semi-automated threshold-based segmentation (thresholds
−29 to +150 HU). Analyzed muscles included the transversus
abdominis, external and internal abdominal obliques, rectus
abdominis, erector spinae, psoas major and minor, and
quadratus lumborum. A research assistant (initials [JM])
blinded to all other data created the segmentation maps. All
cases were reviewed and corrected as necessary by a
fellowship-trained board-certified radiologist (initials [FJF]
with 8-years of experience). A subset of the images were ran-
domly selected and then re-analyzed by a second research
assistant (initials [GF]) with an inter-analyst agreement of
0.998. These muscle segmentation maps were used for ground
truth labeling during training, testing, and verification.

Data Preparation

We reformatted the manually tuned muscle segmentation
maps created by domain experts as described previously into
acceptable input for convolutional neural networks (CNN). As
shown in Fig. 1, the axial images and their corresponding
color-coded images served as original input data and ground
truth labels, respectively. The main challenge for muscle seg-
mentation is the accurate differentiation of muscle tissue from
neighboring organs due to their overlapping HU ranges. We
manually drew a boundary between organs and muscle, set-
ting the inside region as additional segmentation class
(BInside^) in an effort to train the neural network to learn
distinguishing features of muscle for a precise segmentation
from adjacent organs. The color-coded label images were
assigned to pre-defined label indices, including 0 (black) for
BBackground^, 1 (red) for BMuscle^, and 2 (green) for
BInside^, before passing through CNNs for training as pre-
sented in Fig. 1.

Data Categorization

We hypothesized that differences in body habitus could rep-
resent a confounding feature if the network was to be present-
ed unbalanced examples, particularly because prior work has
demonstrated that obese patients have higher image noise
[32]. To minimize this possibility, the patients were catego-
rized into eight groups based on gender and body mass index
(BMI) (Fig. 2). We randomly selected 25 male and 25 female
patients from the groups with normal weight, overweight, and
obese in order to create a subset of 150 cases to bewithheld for
testing. All underweight cases were included in the training
dataset without being used for testing due to their small num-
ber. The other 250 cases were used for training. We chose the
best model out of several trained models by selecting the last
model after the loss became converged for a sufficiently long
period of training time, approximately 500 epochs. The best
CNN was evaluated using the held-out test datasets to deter-
mine howmuch the predicted muscle regions overlap with the
ground truth. In order to make a fair comparison, we used the
same seed value for the random selection from the test dataset
for each experiment.

System Architecture

Our proposed fully automated deep segmentation system for
muscle segmentation includes grayscale image conversion
using the best combination of window settings and bit depth
per pixel with post processing to correct erroneous segmenta-
tion (Fig. 3).

Segmentation AI: Fully Convolutional Network

Several state-of-the-art deep learning algorithms have been
validated for natural image segmentation applications [31].
We chose to develop our muscle segmentation model based
on a fully convolutional network (FCN) for three reasons:
First, a set of convolutional structures enables learning highly
representative and hierarchical abstractions fromwhole-image
input without excessive use of trainable parameters thanks to
the usage of shared weights. Second, fine-tuning the trainable
parameters of the FCN after weights that are initialized with a
pre-trained model from a large-scale dataset allows the net-
work to find the global optimum with a fast convergence of
cost function when given a small training dataset. Third, the
FCN intentionally fuses different levels of layers by combin-
ing coarse semantic information and fine appearance informa-
tion to maximize hierarchical features learned from earlier and
later layers. As shown in Fig. 4, FCN-32s, FCN-16s, and
FCN-8s fuse coarse-grained and fine-grained features and
upsample them at strides 32, 16, and 8, for further precision.
Prior implementations of FCN describe further fusion of ear-
lier layers beyond pool3; however, this was not pursued in

Table 2 Image acquisition parameters

Imaging system n = 400 (entire cohort) n = 150 (test subset)

Tube current, mA (SD) 360.78 (124.10) 363.41 (126.85)

kV, (SD) 120.85 (5.68) 120.67 (5.85)

Oral contrast, no. (%) 191 (48) 70 (47)

Manufacturer, no. (%)

Siemens 141 (35) 92 (35)

GE 241 (60) 52 (61)

Philips 17 (4) 6 (4)

Toshiba 1 (0) 0 (0)
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their implementation due to only minor performance gains
[31]. However, we decided to extend to FCN-4s and FCN-
2s (highlighted in red in Fig. 4) by fusing earlier layers further
because muscle segmentation requires finer precision than
stride 8.

Image Conversion: HU to Grayscale

Medical images contain 12 to 16 bits per pixel, ranging from
4096 to 65,536 shades of gray per pixel. A digital CT image
has a dynamic range of 4096 gray levels per pixel (12 bits per

pixel), far beyond the limits of human perception. The human
observer can distinguish many hundred shades of gray, and
possibly as high as 700–900, but substantially less than the
4096 gray levels in a digital CT image [33]. Displays used for
diagnostic CT interpretation support at most 8 bits per pixel,
corresponding to 256 gray levels per pixel. To compensate for
these inherent physiologic and technical limitations, images
displayed on computer monitors can be adjusted by changing
the window level (WL) and window width (WW), followed
by assigning values outside the window range to minimum (0)
or maximum (2BIT-1) value, as described in Fig. 5a. The

Fig. 2 Patients stratification
based on gender and body mass
index (BMI). For each gender, 25
cases were randomly selected
from normal, overweight, and
obese weight categories for the
testing cohort. Underweight cases
were excluded. One hundred fifty
total cases were withheld for
algorithm testing. The remaining
cases were used to train the
segmentation convolutional
neural network

Fig. 1 Examples of (a) axial images and (b) ground truth labels used for
training and testing the segmentation convolutional neural network
(CNN). (c) Superimposed images demonstrate the target output by the

CNN. Note that BInside^ corresponds to the entire region surrounded by
muscle, including organs, fat, and vertebra
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WL—the center of the window range—determines which HU
values are converted into gray levels. The WW determines
how many of HU values are assigned to each gray level,
related to the slope of the linear transformation shown in
Fig. 5a. BIT, the available number of bits per pixel, determines
how many shades of gray are available per pixel. The effects
of the three configurations on image appearance are demon-
strated with four examples images in Fig. 5b. The optimal
window setting configuration is dependent on the HUs of
the region of interest (ROI) and the intrinsic image contrast
and brightness. These settings are ultimately workarounds for

the constraints of human perception. However, computer vi-
sion does not necessarily have these limitations.

Most prior investigations have converted CT images to
grayscale with the commonly used HU range for the target
tissue or organ without studying the effect of window settings
on the performance of their algorithms. While recent work has
identified that image quality distortions limit the performance
of neural networks [34] in computer vision systems, the effect
of window setting and bit resolution on image quality is often
overlooked in medical imaging machine learning. Therefore,
we evaluated the effects of window and BIT settings on

Fig. 4 Overview of the proposed fully convolutional network (FCN). FCN-32s, FCN-16s, and FCN-8s appeared in the original FCN implementation
[31]. The red-rimmed FCN-4s and FCN-2s are our extended version of FCN required for more detailed and precise muscle segmentation

Fig. 3 Overview of proposed
fully automated deep
segmentation system for muscle
tissue segmentation. HU
Hounsfield units
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segmentation performance by sweeping different combina-
tions of window configurations and bit depth per pixel.

Comparison Measures

The primary comparison measure utilizes the Dice similarity
coefficient (DSC) to compare the degree of overlap between
the ground truth segmentation mask and the FCN-derived
mask, calculated as Eq. 1.

DSC ¼ 2� ground truth∩predictj j
groiund truthj j þ predictj j ð1Þ

An additional comparison measure was the cross-sectional
area (CSA) error, calculated as Eq. 2. This represents a standard-
ized measure of the percentage difference in area between the
ground truth segmentation mask and the FCN-derived mask.

CSA error %ð Þ ¼ ground truth−predictj j
ground truth

� 100 ð2Þ

Intramuscular Fat Post Processing

Muscle tissue HUs do not overlap with adipose tissue HUs.
As a result, a binary image of fat regions extracted using HU
thresholding can be utilized to remove intramuscular fat in-
correctly segmented as muscle.

Validation and Quality Control

Subsequent to post processing, the results of the test subset
were visually analyzed by a research assistant together with a
fellowship-trained board-certified radiologist (initials [FJF],

8 years of experience). Common errors were identified and
occurrence was noted for each image.

Training

We trained the models by a stochastic gradient descent (SGD)
with a momentum of 0.9 and with a minibatch size of 8 to
achieve full GPU utilization. As performed in [31, 35], we
utilized a fixed, tiny learning rate and weight decay because
training is highly sensitive to hyperparameters when
unnormalized softmax loss is used. We empirically found that
a learning rate of 10−10 and a weight decay of 10−12 were
optimal for our application to obtain stable training conver-
gence at the cost of convergence speed. Since training losses
eventually converged if the models were trained for sufficient
period of epochs, all models in this paper were trained for 500
epochs and the last model was selected without a validation
phase to evaluate performance on our held-out test subset. All
experiments were run on a Devbox (NVIDIA Corp, Santa
Clara, CA) containing four TITAN X GPUs with 12GB of
memory per GPU [36] and using Nvidia-Caffe (version
0.15.14) and Nvidia DIGITS (version 5.1).

Statistical Analysis

Descriptive data were presented as percentages for categorical
variables and as means with standard deviation (SD) for con-
tinuous variables. We used two-tailed statistical tests with the
alpha level set at 0.05. We performed Student’s t test for nor-
mally distributed values. Dichotomous variables were com-
pared using the Mann Whitney U test and ordinal variables
were compared using the Kruskal Wallis test. Inter-analyst
agreement was quantified with intraclass correlation coeffi-
cients (ICC). All statistical analyses were performed using

Fig. 5 (a) The relationship between gray level and Hounsfield units (HU) determined by window level (WL), window width (WW), and bit depth per
pixel (BIT). (b) The effect of different WL, WW, and BIT configurations on the same image
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STATA software (version 13.0, StataCorp, College Station,
TX).

Experiments

Fully Convolutional Network

To identify the best performing fully convolutional network,
five models of increasing granularity—FCN-32s, FCN-16s,
FCN-8s, FCN-4s, and FCN-2s—were trained and evaluated
using the test dataset at 40,400 and 8 bits per pixel by mea-
suring the DSC and CSA error between ground truth and
predicted muscle segmentation. These results were compared
to the HU thresholding method, selecting HU ranging from
−29 to 150 to represent lean muscle CSA.

Image Conversion: HU to Grayscale

Subsequently, we compared the performance of the best FCN
model (FCN-2s) with seven different combinations of window
settings for each bit depth per pixel—(40,400), (40, 240),
(40,800), (40,1200), (−40,400), (100,400), and (160,400)
expressed in WL and WW and 8, 6, and 4 bit resolutions per
pixel. The selected window ranges cover the HU range of lean
tissue [−29 to 150] for a fair comparison to see if partial image
information loss degrades model performance. These window
settings contain extremewindow ranges as well as typical ones.
For example, the window setting (40,240) has a range of −80 to
160 HU values, which corresponds to almost the HU range of
lean muscle, while the configuration (40,1200) converts all HU
values between −560 and 1240 into shades of gray resulting in
low image contrast.

Results

FCN Segmentation Performance

The five different FCN models were compared to the previ-
ously described HU thresholding method. Performance was
evaluated using the DSC and muscle CSA error and detailed
in Fig. 6. Even the most coarse-grained FCN model (FCN-
32s) achieved 0.79 ± 0.06 of DSC and 18.27 ± 9.77% of CSA
error, markedly better than the HU thresholding method with-
out human tuning. Performance increased as the number of
features of different layers was fused. The most fine-grained
FCNmodel achieved DSC of 0.93 and CSA error of 3.68% on
average, representing a 59% improvement in DSC and an
80% decrease in CSA error when compared to the most
coarse-grained model. The representative examples are de-
tailed in Fig. 7 to visually show the performance of FCN-2s
segmentation.

Effect of Window and Bit Settings on Segmentation
Performance

Results of the systematic experiment comparing seven dif-
ferent combinations of window settings for each bit depth
per pixel are presented in Fig. 8. The DSC and CSA error
were not meaningfully influenced by changes in window
ranges as long as 256 gray levels per pixel (bit8) were
available. When 6-bit depth per pixel was used, perfor-
mance was similar compared to the results of 8-bit cases.
However, model performance deteriorated when 8-bit
pixels were compressed to 4-bit pixels.

Fig. 6 Comparison of the HU thresholding method and five different FCNs. (a) Dice similarity coefficient (DSC) and (b) cross-sectional area (CSA)
error between ground truth manual and predicted muscle segmentation areas. All numbers are reported as mean ± SD
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Deployment Time

Segmentation was performed using a single TITAN X GPU.
Segmentation took 25 s on average for 150 test images, cor-
responding to only 0.17 s per image.

Statistical Analysis of Model Segmentation Errors

In the majority of cases (n = 128), FCN CSAwas smaller than
ground truth CSA, while only few cases resulted in
oversegmentation (n = 22; p < 0.0001). Review of incorrectly

Fig. 7 Six examples of the better segmented CT images for six groups
according to gender and BMI. Dice similarity coefficient (DSC) is
marked on each segmented image above. Oversampled regions are

colored in blue, undersampled areas are colored in yellow, and correctly
segmented areas are colored in red

Fig. 8 Performance of FCN-2s when input images are generated with different window settings (WL, WW) for each bit depth per pixel (BIT). The
selected window settings were (40,400), (−40,400), (100,400), (160,600), (40,240), (40,800), and (40,1200)
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segmented images identified three main errors: incomplete
muscle segmentation (n = 58; 39% of test cases), incorrect
organ segmentation (n = 52; 35%), and subcutaneous edema
mischaracterized as muscle (n = 17; 11% of test cases).
Representative examples of these errors are demonstrated in
Fig. 9.

Obesity

To evaluate the influence of obesity on the performance of the
segmentation algorithm, segmentation results of patients with
BMI >30 kg/m2 were compared to those of patients with BMI
<30 kg/m2. The average DSC was 0.93 in non-obese patients,
but only 0.92 in obese patients, a statistically significant dif-
ference (p = 0.0008). The incorrect inclusion of subcutaneous
soft tissue edema into muscle CSA was more common in
obese patients than in non-obese patients (p = 0.018).
However, inclusion of adjacent organs into muscle CSA
(p = 0.553) and incomplete muscle segmentation (p = 0.115)
were not significantly associated with obesity. There was no
statistically significant association between obesity and CSA
error (p = 0.16).

Oral Contrast

Forty-eight percent of the cohort received oral contrast in ad-
dition to intravenous contrast. The ratio was the same in the
training and testing datasets. There was no statistically signif-
icant association between the presence or absence of oral con-
trast and segmentation performance measured as DSC
(p = 0.192) or CSA error (p = 0.484), probably because the
network became invariant to its presence in the balanced
cohorts.

Discussion

We have developed an automated system for performing mus-
cle segmentation at the L3 vertebral body level using a fully
convolutional network with post processing at a markedly
faster deployment time when compared to conventional
semi-automated methods.

Our model was derived from a highly granular fully
convolutional network and compared to the semi-automated
HU thresholding method which requires tedious and time-

Fig. 9 Segmentation errors most
commonly presented as muscle
partly excluded (a), organs partly
included (b), and edema
mischaracterized as muscle (c).
Oversampled regions are colored
in blue, undersampled areas are
colored in yellow, and correctly
segmented areas are colored in
red
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consuming tuning of erroneous segmentation by highly
trained human experts. When compared to the HU
thresholding method without human tuning, even the coarsest
FCN had markedly better performance. It is not surprising as
HU thresholding is so inaccurate, as it includes overlapping
HU ranges between organs and muscle. However, by combin-
ing hierarchical features and different layers of increasing
granularity, our model was able to extract semantic informa-
tion, overall muscle shape, fine-grained appearance, and mus-
cle textural appearance. These results persisted even when
varying theWL andWWinto ranges unsuitable for the human
eye. Changes in WW had greater effects on segmentation
performance than WL, particularly when the number of gray
shades was small (bit6 and bit4). These results imply that this
network’s performance depends mostly on image contrast and
possibly due to the number of HU values assigned to a single
gray level, rather than inherent image brightness. It also im-
plies that preserving image information using the original 12-
bit resolution with 4096 shades of gray could provide consid-
erable performance gains by allowing the network to learn
other significant identifying features of muscle which are lost
in the conversion to 8 bits. These results are consistent with
other published findings that CNNs are excellent at textural
analysis [37, 38].

Deployment Time

Accurate segmentation of muscle tissue by the semi-
automated HU thresholding method requires roughly 20–
30min per slice on average [18]. Algorithms proposed inmost
prior works [16, 18, 19] required between 1 and 3 min per
slice. More recent works have reported that their algorithms
require only 3.4 s [21] and 0.6 s per image on average. To the
best of our knowledge, our model is the fastest reported seg-
mentation algorithm for muscle segmentation and needs only
0.17 s per slice on average. Segmenting 150 test images can be
performed in 25 s. This ultra-fast deployment can allow real-
time segmentation in clinical practice.

Clinical Applications

Muscle CSA at L3 has been shown to correlate with a wide
range of posttreatment outcomes. However, integration of
muscle CSA measurements in clinical practice has been lim-
ited by the time required to generate this data. By dropping the
calculation time from 1800 to 0.17 s, we can drastically speed
up research into new applications for morphometric analysis.
CT is an essential tool in the modern healthcare arena with
approximately 82 million CT examinations performed in the
USA in 2016 [39]. In lung cancer in particular, the current
clinical paradigm has been on lesion detection and disease
staging with an eye toward treatment selection. However, ac-
cumulating evidence suggests that CT body composition data

could provide objective biological markers to help lay the
foundation for the future of personalized medicine. Aside
from preoperative risk stratification for surgeons, recent work
has used morphometric data to predict death in radiation on-
cology and medical oncology [4]. Our system has the great
advantage of not requiring a special protocol (other than intra-
venous contrast) and could derive muscle CSA from routine
CT examinations near-instantaneously. This would enable
body composition analysis of the vast majority of CT
examinations.

Limitations

While the system has great potential for accelerating calcula-
tion of muscle CSA, there are important limitations. The net-
work statistically tends to underestimate muscle CSA. This is
probably due to a combination of overlapping HUs between
muscle and adjacent organs and variable organ textural ap-
pearance. On the other end of the spectrum, segmentation is
also confused by the radiographic appearance of edema par-
ticularly in obese patients, which has a similar HU range to
muscle, leading to higher CSA than expected. Extensive ede-
ma tends to occur in critically ill patients, leading to potential-
ly falsely elevated CSA in patients actually at higher risk for
all interventions.

The average age of our cohort is 63 years. While this is
representative of the lung cancer population, it may limit the
generalizability of our system for patients with different dis-
eases and age groups. Further training with data from a wider
group of patients could enable the algorithms to account for
these differences. In addition, the network should be trained to
segment CT examinations performed without intravenous
contrast and ultra-low radiation dose.

Future Directions

The muscle segmentation AI can be enhanced further by using
the original 12-bit image resolution with 4096 gray levels
which could enable the network to learn other significant
determinants which could be missed in the lower resolution.
In addition, an exciting target would be adipose tissue seg-
mentation. Adipose tissue segmentation is relatively straight-
forward since fat can be thresholded within a unique HU range
[−190 to −30]. Prior studies proposed creating an outer muscle
boundary to segment HU thresholded adipose tissue into vis-
ceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT). However, precise boundary generation is dependent
on accurate muscle segmentation. By combining our muscle
segmentation network with a subsequent adipose tissue
thresholding system, we could quickly and accurately provide
VAT and SAT values in addition to muscle CSA. Visceral
adipose tissue has been implicated in cardiovascular outcomes
andmetabolic syndrome, and accurate fat segmentation would
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increase the utility of our system beyond cancer prognostica-
tion [40]. Ultimately, our system should be extended to whole-
body volumetric analysis rather than axial CSA, providing
rapid and accurate characterization of body morphometric
parameters.

Conclusion

We have created an automated, deep learning system to auto-
matically detect and segment the muscle CSA of CT slices at
the L3 vertebral body level. This system achieves excellent
overlap with hand-segmented images with an average of less
than 3.68% error while rapidly accelerating segmentation time
from 30 min to 0.17 s. The fully automated segmentation
system can be embedded into the clinical environment to ac-
celerate the quantification of muscle to provide advancedmor-
phometric data on existing CT volumes and possible expand-
ed to volume analysis of 3D datasets.
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