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Abstract The goal of this study is to evaluate the efficacy of
deep convolutional neural networks (DCNNs) in differentiat-
ing subtle, intermediate, and more obvious image differences
in radiography. Three different datasets were created, which
included presence/absence of the endotracheal (ET) tube
(n = 300), low/normal position of the ET tube (» = 300), and
chest/abdominal radiographs (n = 120). The datasets were
split into training, validation, and test. Both untrained and
pre-trained deep neural networks were employed, including
AlexNet and GoogLeNet classifiers, using the Caffe frame-
work. Data augmentation was performed for the presence/
absence and low/normal ET tube datasets. Receiver operating
characteristic (ROC), area under the curves (AUC), and 95%
confidence intervals were calculated. Statistical differences of
the AUCs were determined using a non-parametric approach.
The pre-trained AlexNet and GoogLeNet classifiers had per-
fect accuracy (AUC 1.00) in differentiating chest vs. abdom-
inal radiographs, using only 45 training cases. For more diffi-
cult datasets, including the presence/absence and low/normal
position endotracheal tubes, more training cases, pre-trained
networks, and data-augmentation approaches were helpful to
increase accuracy. The best-performing network for classify-
ing presence vs. absence of an ET tube was still very accurate
with an AUC of 0.99. However, for the most difficult dataset,
such as low vs. normal position of the endotracheal tube,
DCNNSs did not perform as well, but achieved a reasonable
AUC of 0.81.
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Introduction

One of the goals of a trained radiologist is to accurately de-
scribe the presence and position of an endotracheal (ET) tube
on chest radiography [1]. There are important consequences of
ET tube malposition—a low insertion of the tube into the main
stem bronchus can lead to hyperinflation of one lung and
pneumothorax, and atelectasis, and hypoxemia of the contra-
lateral non-ventilated lung [2]. Increased mortality and pneu-
monia have also been reported with low positioning of the
tube into the bronchi [3]. As such, there has been interest in
using computer-aided detection (CAD) methods to facilitate
detection of ET tubes [4—6]. Recent studies using feature ex-
traction and classification with support vector machines have
resulted in area under the curves (AUC) of 0.88 and 0.94,
respectively, for detection of ET tubes [5, 6].

Given the recent success of deep convolutional neural net-
works (DCNNs) in regard to image classification [7, 8] on the
ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [9], there has been interest and some early success
in applying them to medical imaging, including cardiomegaly
and pleural effusion assessment on chest radiography, lymph
node detection on CT, brain segmentation, and assessing dia-
betic retinopathy [10—14]. Thus, one of the goals of this study
is to evaluate its efficacy in assessing the presence and loca-
tion of ET tubes on chest radiographs.

However, regarding radiography datasets, the number of
images needed to train a deep learning algorithm to achieve
a reasonable accuracy appropriate for clinical use is still in
question. For example, Cho et al. [15] used the GoogleNet
[8] convolutional neural network to classify different axial


mailto:Paras.lakhani@jefferson.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-017-9980-7&domain=pdf

J Digit Imaging (2017) 30:460-468

461

regions on CT (e.g., head, neck, chest, abdomen, and pelvis),
and estimated that about 5000 annotated images per class are
required to train a deep neural network to achieve a high
(99.5%) target accuracy. However, this number may depend
on the difficulty of the training set.

Thus, in this study, we evaluate the efficacy of DCNNs in
differentiating subtle, intermediate, and more obvious image
differences in radiography. For subtle, we chose ET tube po-
sition on single-view chest X-rays—that is, to distinguish be-
tween a satisfactory and a low abnormal position. For inter-
mediate, we distinguish between the presence and absence of
an ET tube. For more apparent differences, we simply distin-
guish between chest and abdominal radiographs.

Methods

This was an IRB-approved, retrospective study using de-
identified HIPAA-compliant images obtained from our
Picture Archive and Communication System (PACS). Using
a search engine that leverages the PACS’s API, multiple sets
of images were obtained for this study. This included (a) 300
unique single frontal radiographs that indicated either pres-
ence (n = 150) or absence of an endotracheal tube (n = 150),
(b) 300 radiographs indicating a low (n = 150) or satisfactory
position (n = 150) of an endotracheal tube, and (c) 120 radio-
graphs consisting of normal chest (» = 60) and normal abdom-
inal radiographs (n = 60).

Regarding tube position, a low position was defined as a
tube near or below the level of the carina. A satisfactory po-
sition was defined as the tube tip 3—7 cm above the carina [1].
High positions of the ET tube were not assessed in this study.
All the datasets were verified by two board-certified radiolo-
gists, including the author of the radiology report, and by a
separate cardiothoracic radiologist (P.L.) after looking at the
images independently.

The chest radiographs were saved in Portable Networks
Graphics (PNG) format. For classification of chest vs. abdom-
inal radiographs, and presence vs. absence of an endotracheal
tube, the entire chest radiograph was used (image size range
2428 x 18104238 x 3480 pixels). However, for classification
of tube position (low vs. normal), the images were manually
cropped to a smaller size that included the supraclavicular
region to the mid-heart, and extended bilaterally to the mid-
clavicular line. Most of the cropped images ranged from 400
to 600 pixels in either dimension.

The grayscale radiographic images were resized to a
256 x 256 matrix. The images were loaded onto a computer
running Ubuntu 14.04 loaded with the Caffe deep learning
framework [16], with CUDA 7.5 and cuDNN dependencies
for GPU acceleration. The computer contained an Intel i5
3570 k 3.4 gHz processor, 2 TB hard disk space, 32 GB
RAM, and an Nvidia GeForce GTX Titan X Maxwell

graphics processing unit (Nvidia Corporation, Santa Clara,
CA).

The following deep convolutional neural networks were
used to classify the images: AlexNet Untrained (AlexNet U),
AlexNet Pre-trained on ImageNet (AlexNet T), GoogLeNet
Untrained (GoogLeNet U), and GoogLeNet Pre-trained on
ImageNet (GoogLeNet T) [7, 8]. Pre-trained networks were
acquired from the Caffe Model Zoo (http://caffe.
berkeleyvision.org/model zoo.html, BVLC, Berkeley, CA).
Training was performed for 90 epochs, with a base learning
rate of 0.01 for untrained models, and 0.001 for the trained
models, using stochastic gradient descent, with binary cross-
entropy loss using the softmax function as the last layer.
Ninety epochs were determined to be sufficient enough for
the training and validation loss to stabilize based on multiple
trial runs with half the data for all models. For untrained net-
works, the initial layer was set to random initialization of
weights. For the pre-trained networks, the last fully connected
layer was set to random initialization of weights. All the other
layers were not frozen, but learned at a slower base learning rate
0f 0.001 as detailed above.

For the datasets, the images were split into training, valida-
tion, and test. The training data were used to teach the artificial
neural network, validation data for model selection, and test to
assess model accuracy on unforeseen cases. For all of the
datasets, 60 cases were held out for test, which was estimated
to provide reasonable 95% confidence intervals. For presence
vs. absence of the ET tube, 180/300 (60%) images were used
for training, 60/300 (20%) for validation, and 60/300 (20%)
for test. Similarly, for low vs. normal position of the ET tube,
180/300 (60%) images were used for training, 60/300 (20%)
for validation, and 60/300 (20%) for test. For abdominal vs.
chest radiography, 45/120 (37.5%) images were used for train-
ing, 15/120 (12.5%) for validation, and 60/120 (50%) for test.

Additional Data Augmentation

All the training datasets underwent random cropping
(227 x 227 pixels) and horizontal flipping for data augmenta-
tion, which were pre-built options into the Caffe framework.
No additional augmentation was performed on the chest vs.
abdominal radiography dataset. However, the following addi-
tional augmentation techniques were used on the presence/
absence and low/normal ET tube training datasets: (a)
contrast-adaptive limited histogram equalization (CLAHE);
(b) rotations of 90, 180, and 270°; (¢) rotations of + 5°; and
(d) affine transformation with rotation of pixels into a different
location in both the x and y directions (“SWIRL”). CLAHE
augmentation was performed using Imagel version 1.50i
(National Institutes of Health, USA). Rotated images and af-
fine transformation was performed using XnConvert 1.73
(XnSoft Corp., Reims, France). The additional augmentations
for the presence/absence and low/normal ET tube images

@ Springer


http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html

462

J Digit Imaging (2017) 30:460-468

increased the size of these datasets 12-fold, resulting in 2160
images for training and 720 images for validation. No aug-
mentation was performed on the validation or test datasets.

Statistical Analysis

All statistical analysis was performed using the pROC pack-
age, version 1.7.3, within The R programming language, ver-
sion 3.3.1 (The R Foundation, Vienna, Austria). Receiver op-
erating characteristic (ROC), area under the curves (AUC),
and 95% confidence intervals were determined [17-20]. The
DeLong non-parametric method was used to assess for statis-
tical differences among the AUCs. A P value of less than 0.05
was considered statistically significant.

Results

For classification of radiographs (abdominal vs. chest), the
AUCs are Alexnet U (0.996), GoogLeNet U (0.959),
Alexnet T (1.000), and GoogLeNet T (1.000) (Table 1). No
statistically significant differences were present between these
models.

For presence vs. absence of the ET tube, the AUCs are
Alexnet U (0.675), GoogLeNet U (0.650), Alexnet T
(0.856), and GoogLeNet T (0.989) (Table 1). The pre-
trained models for AlexNet and GoogLeNet performed better
than the untrained models (P = 0.02 and P < 0.001, respec-
tively). The best-performing GooglLeNet T model also per-
formed better than the best-performed AlexNet T model
(P < 0.007).

For ET tube position (satisfactory vs. low), the AUCs are
Alexnet U (0.741), GoogLeNet U (0.748), Alexnet T
(0.791), and GoogLeNet T (0.809) (Table 1). No statistically
significant differences were present between these models.

The best-performing GoogLeNet T model for presence/
absence of ET tube (AUC 0.989) was significantly more ac-
curate than the best-performing GooglLeNet T model for low/
normal ET tube position (AUC 0.809), P = 0.002.

A comparison of the AUCs of the models without addition-
al augmentation is provided in Table 2. The extra-
augmentation resulted in greater AUC values for both
AlexNet and GooglLeNet on the ET presence/absence and

ET low/normal datasets, but this was only statistically signif-
icant for the pre-trained GoogLeNet T model for ET tube
presence/absence dataset (P < 0.0001). A comparison of aug-
mentation with shallow and quadrilateral rotations is provided
in Table 3. ROC curves for the best-performing models for
each of the three datasets are provided in Fig. 1.

A training curve for the AlexNet T model is provided in
Fig. 2 with a base learning rate of 0.001. Figure 3 is the same
pre-trained model but with a higher base learning rate of 0.01,
which is the same as untrained networks.

Figure 4 demonstrates the AUCs of the pre-trained net-
works for the ET presence/absence dataset, using 25, 50, 75,
and 100% of the available training data. Using 100% of the
training data resulted in higher AUCs for GoogLeNet T and
AlexNet T than 25% of the data (P = 0.015 and P < 0.001,
respectively).

Discussion

Deep convolutional neural networks are a type of artificial
neural network that utilizes multiple hidden layers.
Convolutional neural networks have been shown to be highly
accurate with image classification, which may be due to its
ability to represent images at different layers, including edges
and blobs at earlier layers, parts of objects at intermediate
layers, and whole objects at later layers.

In this study, we explored three datasets with varying levels
of difficulty. For example, with the easiest dataset—differen-
tiation of chest vs. abdominal radiographs—both the pre-
trained networks AlexNet T and GoogLeNet T achieved
100% accuracy, with only 45 training cases and no additional
data-augmentation techniques. Moreover, even the untrained
networks achieved very high accuracy (Table 1). On the other
hand, four times as many training cases and data-
augmentation techniques were used for the presence/absence
and low/normal ET tube position datasets, resulting in 2160
training images, which is 48 times the number of that used by
the chest/abdominal radiography dataset. However, despite
this, the best-performing presence/absence and low/normal
ET tube models were still not as accurate the chest/
abdominal model (Table 1).

Table 1 AUCs of the classifiers
for the three different datasets

Chest/abdomen X-rays

ET tube presence/absence ET tube low/normal

Untrained AlexNet 0.996 (0.987-1.000) 0.675 (0.537-0.813) 0.741 (0.612-0.870)
Untrained GoogLeNet 0.959 (0.905-1.000) 0.650 (0.505-0.795) 0.748 (0.623-0.873)
Pre-trained AlexNet 1.000 (1.000-1.000) 0.856 (0.758-0.954) 0.791 (0.672-0.910)

Pre-trained GoogLeNet

1.000 (1.000-1.000)

0.989 (0.970-1.000) 0.809 (0.697-0.921)

The numbers in parentheses represent the 95% confidence intervals
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Table 2

Comparison of models with augmentation and without

augmentation for the ET presence/absence and ET low/normal datasets

ET tube presence/
absence

ET tube low/
normal

AlexNet T No Aug
AlexNet T Aug
Significance

GoogLeNet T No Aug

GoogLeNet T Aug
Significance
AlexNet_U No Aug
AlexNet_U with Aug

0.771 (0.647-0.895)
0.856 (0.758-0.954)
P=0.245

0.636 (0.494-0.778)
0.989 (0.970-1.000)
P <0.0001

0.669 (0.531-0.807)
0.675 (0.537-0.813)
P=0933

0.763 (0.640-0.886)
0.791 (0.672-0.910)
P =0.487
0.713 (0.584-0.843)
0.809 (0.697-0.921)
P=0.141
0.613 (0.461-0.766)
0.741 (0.612-0.870)
P =0.063

Significance
GoogLeNet U No Aug
GoogLeNet U with Aug
Significance

0.491 (0.334-0.642)
0.650 (0.505-0.795)
P=0216

0.657 (0.513-0.800)
0.748 (0.623-0.873)
P=0.328

AUCs and corresponding P values are provided

This may be explained by the rich set of differences be-
tween chest and abdominal radiographs which can be appre-
ciated in almost any aspect of the image. There is also a stark
difference in contrast between the lungs, which have a high
number of darker pixels, compared to that of the abdomen,
which have a larger number of relatively brighter pixels. As
such, with datasets containing more ostensible differences,
fewer training examples may be needed to develop an accurate
model.

On the other hand, differentiating presence and absence of
an ET tube can be considered more difficult [21]. This may be
because the proportion of the image that changes with the
presence or absence of the ET tube is smaller (Figs. 5 and
6), whereas with chest and abdominal radiographs, there are
many aspects of the image that are different. However, using
pre-trained networks and data augmentation, an AUC of 0.989

was obtained with the best-performing GoogLeNet-T model
(Table 1 and Fig. 1). The most challenging dataset was deter-
mining low vs. normal position of the ET tube. One explana-
tion is that the carina can sometimes be difficult to identify on
portable antero-posterior (AP) chest radiographs, which are
often degraded by image noise and have less contrast resolu-
tion compared to PA radiographs [21]. This classification task
requires assessment of the tube tip as well as the position of
the carina. To help the neural network classifiers, these images
were manually cropped and centered on the trachea including
the bifurcation region (Figs. 7 and 8). One of the limitations is
that manually cropping was performed in this study; however,
automated cropping centered around the carina would be
needed for an automated implementation. Another limitation
was that a “high” position of the ET tube was not assessed for
this study, which would be worthwhile to consider in future
research. The best-performing dataset was a pre-trained
GoogLeNet model with an AUC of 0.809 (Table 1 and Fig. 1).

Overall, GoogLeNet performed better than AlexNet for the
ET presence/absence and low/normal datasets (Table 1).
GoogleNet or Inception V1 is a relatively newer architecture
compared to AlexNet, and had a better accuracy on ImageNet
(top-5 error rate of 6.7% compared to 15.4% for AlexNet) [7,
8]. This may be explained by the extra depth of GoogleNet,
which is 22 layers deep, compared to AlexNet, which is 8
layers deep. The GoogLeNet architecture was able to achieve
a deeper architecture and reduce the computational cost of
such at the same time by use of the “inception” module.
This consisted of smaller 1 x 1 convolutions in parallel to
reduce the number of features, before more computationally
expensive larger 3 X 3 and 5 x 5 convolutions, sometimes
referred to as a “bottleneck” design. As such, GoogLeNet is
considered one of the most efficient neural network architec-
tures. This design also provides a mixture of smaller, interme-
diate, and larger convolutions, which may help integrate in-
formation from a wider portion of the image.

Table 3  Augmentation with +£5° and £90° rotations and corresponding AUC values and P values

Model AUC

Model AUC

AlexNet_T (£5°)
AlexNet_T (£90°)

0.762 (0.635-0.889)
0.727 (0.596-0.858)
P=0.615

0.810 (0.699-0.921)
0.736 (0.608-0.864)

GoogLeNet T (£5°)
GoogLeNet T (+£90°)

P=0.163
GoogLeNet T (£5°) CLAHE & SWIRL 0.834 (0.732-0.935)
GoogLeNet T (£90°) CLAHE & SWIRL 0.989 (0.970-1.000)
P =0.004

AlexNet U (+5°)
AlexNet U (£90°)

0.688 (0.551-0.824)
0.671 (0.534-0.801)
P=0.787

0.642 (0.498-0.785)
0.603 (0.455-0.752)

GoogLeNet U (£5°)
GoogLeNet U (£90°)

P =0.668
AlexNet T (+5°) CLAHE & SWIRL 0.781 (0.661-0.901)
AlexNet T (£90°) CLAHE & SWIRL 0.856 (0.756-0.955)
P=0325

The bottom rows also include other augmentation methods, including CLAHE and “swirl” (non-rigid transformation)
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Fig.1 ROC curves of the best-performing classifiers for the three differ-
ent datasets. The AUC of the chest/abdomen model was the highest at
1.000 (solid black line), followed by the presence/absence at 0.989
(dashed black line), and low/normal at 0.809 (dotted black line)

It is possible that down-sampling the data to 256 x 256
pixels—which is commonly performed in other deep learning
studies [7, 8]—reduced the classifier’s accuracy for both the
ET presence and localization tasks. Of the two, the ET tip
localization is more dependent on spatial resolution informa-
tion, and better preservation of resolution may be needed for
accurate models. Of course, higher-resolution images require

Fig.2 With reduced learning rate
0f0.001, there is fast convergence
using pre-trained weights on the
AlexNet model. Both training and
validation loss reduce over the
course of training, with accuracy
on the validation dataset reaching
approximately 99% at 90 epochs

Loss

more GPU memory, which may be a limiting factor for some
depending on the depth and memory constraints of the neural
network. Further research using higher-resolution images
would be worthwhile to perform.

Transfer learning using networks pre-trained on non-
medical images (ImageNet) performed better than untrained
networks (Table 1), in keeping with prior studies [10, 11, 13].
This was only shown to be statistically significant for the
presence/absence GoogLeNet Tand AlexNet T models com-
pared to their untrained counterparts. The first layer of well-
trained networks tends to have general features comprised of
edges and blobs, as shown with multiple neural network ar-
chitectures regardless of the type of training data [22]. On the
other hand, the last layers are thought to be specific to the
training data—in this case, chest radiographs. As such, it
makes sense that leveraging pre-trained weights of the initial
layers of a well-formed neural network and training mostly on
the last layer (set to random initialization of weights) should
improve accuracy. In this study, all of the layers were not
frozen, but rather set to learn at a slower rate. Rajkomar
et al. demonstrated that pre-training with grayscale images
from ImageNet resulted in better accuracy than pre-training
with color images, when using transfer learning for training
with grayscale chest radiographs [11]. However, this case was
only true if all the layers were frozen, except for the last layer.
Moreover, that study also demonstrated that similar high ac-
curacy can be obtained using models pre-trained on color
images if the layers are not frozen (fine-tuning of all layers),
and using a reduced learning rate as in the case of this study.
Figures 2 and 3 show training curves for the pre-trained
AlexNet networks for ET presence/absence using base learn-
ing rates of 0.001 and 0.01. The curves show that lower base

Accuracy (%)
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Fig. 3 With higher learning rate
0f 0.01, there is no convergence

after 90 epochs using pre-trained
weights on the AlexNet model,
likely due to large gradients that
impact the learning process. The
training and validation loss re-
mains high with accuracy con-
stant at 50%

Loss

Accuracy (%)

learning rates (e.g., 0.001) are important when utilizing trans-
fer learning, as the pre-trained weights are already well opti-
mized, and higher rates (e.g., 0.01) may result in slower or no
convergence.

For the ET presence/absence and low/normal datasets, ad-
ditional augmentation was done using pre-processed images,
which included contrast enhanced with CLAHE, non-rigid
deformation, and quadrilateral rotations (90, 180, and 270°).
This was to increase the size of the dataset as well as provide
more variation in the images to mitigate overfitting. Overall,
models with augmentation resulted in higher AUCs compared
to those without, although this was only statistically

Fig. 4 Effect of number of
training cases on AUCs for the
pre-trained models for the ET
presence/absence dataset. Using
100% of training cases resulted in
statistically significant higher
AUCs than with 25% of the data
(P=0.015and P < 0.0001, for
AlexNet T and GoogLeNet T,
respectively)

09

0.8

AUC

0.7

0.6

05

M loss (train) M accuracy (val) M loss (val)

significant for the GoogLeNet T model (Table 2).
Quadrilateral rotations were chosen because occasionally ro-
tated images are accidentally sent by the modality to the read-
ing worklists, and we wanted the DCCNs to handle that po-
tential variation. In addition, it seems more intuitive that shal-
low rotation angles (e.g., £5°) would aid training of the net-
work and preempt overfitting, because of relative similarity to
original image. However, when combined with other augmen-
tation strategies (CLAHE and non-rigid deformation), and
using pre-trained networks, augmentation with quadrilateral
rotations had greater accuracy (Table 3), although this was
only statistically significant for the GoogLeNet T model. It

—o— AlexNet_T
GoogLeNet_T

25% 50% 75%

Percentage of Training Cases
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PORTABLE

Fig. 5 Chest radiograph with ET tube present (white arrow)

is possible that quadrilateral rotations provide a greater differ-
ence in the image, potentially reducing overfitting on the test
data. However, more research is needed to see if this is true
with other datasets.

Deep neural networks can be thought of as functional black
boxes, because of the tremendous number of parameters that
these networks have. For example, AlexNet has approximate-
ly 60 million different parameters and GoogLeNet has 5 mil-
lion [7, 8]. However, there are strategies to inspect a network
and determine the parts of an image that are being activated
[23]. One method involves creation of a saliency map, which
highlights parts of the network that contribute most to the
prediction label, by carrying out an optimization using gradi-
ent ascent [23]. Figure 9 is a saliency map for the ET tube
presence/absence task, derived from the GoogLeNet T mod-
el. Figure 10 is a saliency map for the ET tube position clas-
sification task, also from the GoogLeNet T model. The maps

Fig. 6 Follow-up chest radiograph on the same patient after ET tube has
been removed. The white arrow depicts the absence of the ET tube

@ Springer

Fig. 7 Cropped chest radiograph image centered on the carina. The ET
tube tip is low at the orifice of the right main stem bronchus (white arrow)

were created using one back-propagation pass through the
DCNN. In these examples, the black parts of the image con-
tribute most to the prediction of the network, as opposed to the
light gray background. In Fig. 9, the area of the endotracheal
tube at the level of the thoracic inlet has a visible contribution

Fig.8 Cropped chest radiograph image shows that the ET tube tip (white
arrow) is in satisfactory position 4 cm above the carina
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Fig. 9 Saliency map on the /left
with corresponding radiograph on
the right, where an ET tube is
present. The saliency map
highlights parts of the images that
contribute most to the prediction
class. The black arrows points to
the location of the ET tube, which
has a visible contribution to the
prediction label. However, there
are other parts of the image,
including edges of ribs and the
aortic knob that also contribute to
the score for this image. While the
network had high accuracy, there
is still room for improvement

to the prediction class, which lends credence to the model as it
is appropriately assessing the correct region. However, there
are rib edges and an overlying unrelated catheter that also
contribute. Therefore, one could infer that the network has
room for improvement. In Fig. 10, the ET tube, enteric tube,
and an overlying catheter a// have contributions to the predic-
tion class, indicating that the network is not as well-formed
and is inferring from parts of the image (enteric tube and
overlying catheter) that are not relevant to the ground-truth
label (ET tube is low). The enteric tube and overlying catheter
have similar features with a linear appearance and brighter
pixel intensities, which may be confusing the model. It is
likely that more training cases could improve this.

One would expect that increasing the number of cases for
training should improve accuracy, as deep neural networks
have been shown to perform better with larger sample sizes
[15]. For example, Fig. 4 shows the AUCs of the pre-trained
AlexNet T and GoogLeNet T classifiers for the presence/
absence data, using 25, 50, 75, and 100% of the total training
data. Training with the full dataset resulted in higher AUCs for
GoogLeNet T and AlexNet T than 25% of the data for ex-
ample (P = 0.015 and P < 0.001, respectively; Fig. 4).

To further improve these results, one could consider differ-
ent types of deep artificial neural networks, pre-processing
steps, pre-training on a large sample of radiology images (rath-
er than non-medical images), higher matrix sizes, working

Fig. 10 Saliency map on the /eft with corresponding radiograph on the
right with low position of ET tube in the right main stem bronchus. On the
saliency map, the black arrows point to the location of the ET tube. The
white arrows point to an unrelated overlying catheter and an enteric tube.
From the saliency map, the ET tube, enteric tube, and overlying catheter

all have contributions to the prediction class, indicating that the network is
not as well formed and is inferring from parts of the image (enteric tube
and overlying catheter) that are not relevant to the prediction label (ET
tube is low). This may explain the lower accuracy of this network
compared to the others
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with DICOM files directly, or using a combination machine
learning techniques.

Conclusions

Deep convolutional neural networks perform rather well in
distinguishing images that have many obvious differences,
such as chest vs. abdominal radiographs (AUC = 1.00), and
require only a small amount of training data. For more difficult
datasets, such as the presence/absence or low/normal position
of an endotracheal tube, using pre-trained networks, more
training cases and data augmentation can increase accuracy.
The best-performing model for classifying presence vs. ab-
sence of an ET tube was still very accurate with an AUC of
0.99. However, for the most difficult dataset, such as low vs.
normal position of the endotracheal tube, DCNNs did not
perform as well, but achieved a reasonable AUC of 0.81.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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