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Abstract Deep learning techniques are being rapidly applied
to medical imaging tasks—from organ and lesion segmenta-
tion to tissue and tumor classification. These techniques are
becoming the leading algorithmic approaches to solve inher-
ently difficult image processing tasks. Currently, the most crit-
ical requirement for successful implementation lies in the need
for relatively large datasets that can be used for training the
deep learning networks. Based on our initial studies of MR
imaging examinations of the kidneys of patients affected by
polycystic kidney disease (PKD), we have generated a unique
database of imaging data and corresponding reference stan-
dard segmentations of polycystic kidneys. In the study of
PKD, segmentation of the kidneys is needed in order to mea-
sure total kidney volume (TKV). Automated methods to seg-
ment the kidneys and measure TKV are needed to increase
measurement throughput and alleviate the inherent variability
of human-derived measurements. We hypothesize that deep
learning techniques can be leveraged to perform fast, accurate,
reproducible, and fully automated segmentation of polycystic
kidneys. Here, we describe a fully automated approach for
segmenting PKD kidneys within MR images that simulates
a multi-observer approach in order to create an accurate and
robust method for the task of segmentation and computation
of TKV for PKD patients. A total of 2000 cases were used for

training and validation, and 400 cases were used for testing.
The multi-observer ensemble method had mean ± SD percent
volume difference of 0.68 ± 2.2% compared with the refer-
ence standard segmentations. The complete framework per-
forms fully automated segmentation at a level comparable
with interobserver variability and could be considered as a
replacement for the task of segmentation of PKD kidneys by
a human.
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Introduction

Aparticular section ofmachine learning, known as deep learn-
ing, is currently enjoying its renaissance in the area of artificial
intelligence [1]. For computer vision tasks, the primary moti-
vation of deep learning techniques is the biomimicry of the
human visual system, allowing computers to learn from expe-
rience and formulate an understanding in terms of a hierarchy
of concepts. In the field of medical image processing, deep
learning approaches are providing computational solutions to
a wide range of automation and classification tasks [2]. For
instance, deep learning techniques have been used in organ [3]
and tumor segmentation tasks [4], as well as tissue and tumor
classification [5, 6]. The fundamental difference of deep learn-
ing methods is that they take a unique approach to solving
classical image processing tasks by allowing the computer to
identify image features of interest. This is in contrast to tradi-
tional machine learning that requires predefining the features
of interest (e.g., image edges, intensity, and/or texture). Based
on the successes of deep learning techniques, we sought to
explore their potential in solving the difficult task of
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segmenting the kidneys of patients affected by autosomal
dominant polycystic kidney disease (ADPKD).

In ADPKD, these phenotypic differences include renal size
(e.g., renal volumes can vary from ~200 ml to more than
7000 ml), shape, and composition (e.g., appearance of the
border of the kidneys in MR images has highly variable signal
intensities resulting from whether the border is composed of
simple and/or complex cysts, varying degrees of fibrosis, or
healthy renal parenchyma). The natural course of ADPKD is
highly variable and is characterized by progressive enlarge-
ment of cysts within the kidneys and is a leading cause of end-
stage renal disease (ESRD) [7–10]. Total kidney volume
(TKV) has become the main image-based biomarker for fol-
lowing ADPKD progression at early stages of the disease
[11–15]. Imaging methods such as ultrasound (US), computed
tomography (CT), and magnetic resonance imaging (MRI) are
employed to diagnose, monitor, and predict outcomes for pa-
tients affected by ADPKD [16–19]. MRI has become the im-
aging modality of choice due to its superior soft tissue con-
trast, non-ionizing radiation, and accuracy. Current methods to
manually measure TKV using MR images include volume
calculation by the ellipsoidal method [20], stereological ap-
proaches [21], and planimetry tracings [22, 23].

Due to the large time requirement of manual tracing, auto-
mated approaches to segment kidneys are desirable. However,
segmentation of ADPKD kidneys is challenging due to a
number of factors. For instance, the shapes of the kidneys
are highly irregular, and the contrast at the border of the kid-
ney is highly variable at the interface of several different tissue
types including fluid-filled cysts, calcified cysts, renal paren-
chyma, and fibrotic tissue. In addition, MR acquisition param-
eters vary widely from institution, requiring a robust approach
which can handle not only the wide range of disease presen-
tations but also the drastic difference in tissue contrast due to
how the images were acquired.

We previously developed both semi- and fully automated
segmentation approaches to allow accurate and reproducible
measurement of TKV in ADPKD patients [24, 25].
Fortunately, these developments have allowed for the creation
of a database of thousands of reference standard segmenta-
tions by which we have been able to explore novel, next-
generation image processing techniques in order to finally
and fully address the problem of segmentation of the PKD
kidney in order to accurately and reproducibly derive TKV.

We have developed a deep neural network model that can
capture both local and global context within the image. This
model is based on a convolutional neural network (CNN)
approach that performs a series of downsampling (i.e., max
pooling operations which select the maximum value from a
patch of features which help to reduce the data dimensionality)
and upsampling procedures (similar to autoencoders [26],
which allow classification to be made at the voxel level).
The network also incorporates skip connections (similar to a

CNN architecture known as U-Net [27] which connect layers
at the same resolution and allow the networks to retain spatial
information). The network is a cascade of layers that start by
learning low-level features (e.g., edges and lines) and higher-
level features (which combine this information to learn what is
or is not the kidney). In summary, building a network with
these components allows the network to (i) learn both low-
and high-order features, (ii) learn both local- and entire image-
level context, and (iii) perform voxel-wise classification (i.e.,
decide whether a voxel belongs to the kidneys or not).

Method

MRI Data

Institutional review board approval was obtained for this
study. All subjects were appropriately consented for use of
bio-sample data for the purpose of identifying methods for
improving ADPKD diagnosis and management. De-
identified DICOM image data from the TEMPO study [28]
was transferred to our institution and converted to the NIFTI
file format by the dcm2nii software. The images have a recon-
structed matrix size of 256 × 256 × Z (with Z large enough to
cover the full extent of the kidneys within the imaged vol-
ume). Image voxel sizes are most commonly on the order of
1.5 mm in-plane with typically 3–4 mm slice thicknesses.

Reference Standard TKV

The pycysticimage viewer toolkit was used by a trained med-
ical imaging analyst, and the MIROS application was used to
create initial kidney segmentations [24]. Afterwards, the seg-
mentations were quality checked and manually corrected
when needed. These segmentations were then used with the
automated follow-up segmentation approach [25] to generate
segmentations for all patient follow-up examinations. These
segmentations were also quality checked and manually
corrected when needed. The finalized segmentations were
used as the reference standard segmentations by which we
judged the accuracy of the fully automated approach.

Deep Learning Model

We developed a convolutional neural network architecture
that is based on a semantic segmentation approach. All algo-
rithms were written in Python, with the Keras library and
Theano backend. For developing, training, and testing the
neural network models, a high-performance GPU workstation
(Exxact Corp., Fremont, CA) with 128 Gb of RAM and 4×
NVIDIA GeForce GTX 1080, 8 Gb GPUs was used. The
network architecture was first optimized on a small subset of
the data (N = 200 cases). This optimization consisted of
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extracting 150 cases for training and validation, and then test-
ing on the remaining 50 cases. Exhaustive grid search was
then performed to test a range of networks that were shallower
and deeper (in terms of layers), thinner and wider (in terms of
number and size of kernels), as well as different activation
functions (ReLU, tanh). Each network was run for 50 epochs.
Based on the best performing network, 11 separate networks
were trained (on different data subsets) in order to create an
artificial multi-observer deep neural network for fully auto-
mated segmentation of polycystic kidneys in MR images.
For training and validation, 2000 cases were randomly select-
ed and the networks were each trained on different subsets of
the data (80% training, 20% validation split). After training,
the remaining 400 cases from those not used for training and
validation were used for testing the automated segmentation
approach.

Segmentation Post-processing

Following the segmentation map generated by the deep learn-
ing network, a routine to extract the two largest connected
components was performed (i.e., the right and left kidneys).
This was followed by an active contour and edge detection
method in order to finalize the segmentation [24].

Evaluation of Automated Approach

Comparison statistics were generated from the reference stan-
dard segmentations and those made by the automated ap-
proach. These comparison statistics included voxel-by-voxel
correlation-based metrics and comparison of total volume dif-
ferences. For the voxel-by-voxel comparisons, a number of
commonly used segmentation metrics were calculated.
These include the Dice coefficient (or similarity index) that
is defined as:

Dice ¼ 2 � TP
2 � TPþ FPþ FN

ð1Þ

where TP is true positives (i.e., both reference standard and
automated approach classified voxel as being the kidney), FP
is false positives (i.e., automated approach falsely classified
voxel as being the kidney), and FN are false negatives (i.e.,
automated approach falsely classified voxel as not being a part
of the kidney), and the Jaccard coefficient (or overlap ratio),
which is defined as:

Jaccard ¼ TP

TPþ FPþ FN
ð2Þ

Both of these indices vary within the range 0 to 1, where a
value closer to 1 indicates a closer similarity between the two
segmentations. Sensitivity, specificity, and precision are also
reported based on voxel level statistics and the average

maximum distance between the borders of the two segmenta-
tions was calculated (Dmean). In addition, percent error of
TKVas measured by the different approaches was calculated,
and Bland-Altman analysis was performed to compare the
automated measurement method to the reference standard.

Results

Optimized Network Performance

The optimal deep learning network architecture is graphically
depicted in Fig. 1 and had a training Dice coefficient of 0.97
and a validation Dice coefficient of 0.96. Shown in Fig. 2 are
the training and validation curves for the Dice coefficient cal-
culated at each epoch.

Artificial Multi-observer Network

Next, 11 of these networks used the 2000 cases for training
and validation. Each network was trained on a different subset
of the cases. Each network was run for 100 epochs, and the
best model was saved based on Dice coefficient. These 11
networks were then used in a majority voting scheme to test
their ability to accurately segment the 400 test cases not seen
during training and validation.

Visualization

Visual examples of the result of the multi-observer ensemble
method are shown in Fig. 3 along with the reference standard
segmentation.

Similarity Metrics

Table 1 summarizes the similarity statistics for the automated
approach compared with the reference standard segmenta-
tions. The multi-observer ensemble method had an average
percent volume error of 0.68%, a standard deviation of percent
volume error of 2.2%, and worst case min = −8.1%, and
max = 7.0%. In addition, similarity statistics were as follows:
Jaccard = 0.94 ± 0.03, Dice = 0.97 ± 0.01, sensitivi-
ty = 0.97 ± 0.02, specificity = 0.99 ± 0.01, and preci-
sion = 0.98 ± 0.02 for the unseen test cases.

Automated Measurement of TKV

Shown in Fig. 4 are the Bland-Altman analysis results for an
individual network, and the multi-observer ensemble method.
For the individual network and the multi-observer ensemble
method, the m ± SD for the percent volume difference was
−1.42 ± 2.75 and −0.65 ± 2.21, respectively.
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Discussion

Implications for Research and Clinical Trials

High accuracy was obtained by the automated segmentation
approach and performance on a level comparable to two dif-
ferent people performing segmentations (interobserver vari-
ability) was achieved (comparing the automated approach to
the results generated manually). The combination of high ac-
curacy without the necessity of human interaction is an impor-
tant advance for both the clinical practice and research trials.

In the case of research trials, the ability to efficiently and
objectively detect small changes reduces the cost of
performing a study and results in a much more rapid decision
about a drug’s effectiveness. This current study can work har-
moniously with our previous work for establishing a baseline
measurement [24, 25], and automatically performing a reread
of subsequent scans in the same patient [24, 25].

Our automatic segmentation approach offers a fast and
accurate method to measure the TKV imaging biomarker
for patients with diseased kidneys. This automation al-
lows for robust study repeatability and removal of user
bias in segmentations and measurement of TKV. The au-
tomatic segmentation has useful clinical applications such
as following progression of the disease as well as judging
the effectiveness of interventions. Once the network is
trained, the automated approach segmentations are com-
puted in the matter of minutes, whereas manual segmen-
tations take 45–90 min. Thus, our method could enable
the routine clinical use of TKV data.

An important strength of the developed approach is the
success that was observed in terms of accurately handling
liver cysts and major vasculature (e.g., renal artery and vein).
This differentiation is a difficult task for humans and it appears
that there are clearly identifiable imaging features that were
derived that allowed the automated approach to successfully

Fig. 1 Optimized network architecture consisting of a series of
downsampling, upsampling, and skip connections. Each block consists
of a series of convolutions (3 × 3 kernels, ReLU activation) and dropout
layers (0.35). Both max pooling layers and upsampling layers are of size

2 × 2. The final convolutional layer is a 1 × 1 kernel with sigmoid
activation, resulting in classification of each voxel of the input (size
256 × 256)

Fig. 2 Training and validation curves for the optimized network.
Training and validation Dice coefficients of 0.97 and 0.96 were
obtained, respectively. Network weights were monitored and saved
based on the best performance on validation set
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differentiate not only the liver from the kidney but also adja-
cent liver cysts from those pertaining to the kidney.

Lastly, having the ability to accurately and reproduc-
ibly segment the PKD kidney not only allows for

measurement of TKV but also allows characterization of
additional imaging biomarkers, such as calculating cystic
burden or describing the Bclass^ of cystic distribution
[29], calculating imaging texture features [30], or

Fig. 3 Examples of segmentations obtained for three different patients.
Shown in the left column are the MR images, the second column are the
reference standard segmentations, the third column are the automated
segmentations, and the right column are the segmentations overlaid on
one another. Reference standard segmentations are shown in red, and
automated segmentations are shown in blue. Regions of overlap are
purple. Shown in the top row is an average example from the dataset,
which had a Dice coefficient of 0.96. Shown in the second row is the

worst-performing case, which had a Dice coefficient of 0.92. The
difficulty in this case is the rarer (in terms of this particular dataset) T2-
weighted acquisition (a FISP image) which suffers from image artifacts
(particularly banding artifacts resulting from intravoxel dephasing).
Shown in the final row is an example of a patient with significant
polycystic liver disease. Notice how the automated approach does not
classify the liver, or the liver cysts, as kidney

Table 1 Summary statistics for
the automated approach
compared with the gold standard.
Shown are the results for an
individual network, as well as the
multi-observer approach

Statistic m ± SD [min/max] Individual Multi-observer

Jaccard 0.93 ± 0.03 [0.78/0.98] 0.94 ± 0.03 [0.85/0.98]

Dice 0.96 ± 0.02 [0.88 0.99] 0.97 ± 0.01 [0.92 0.99]

Sensitivity 0.96 ± 0.02 [0.79/0.99] 0.96 ± 0.02 [0.89/0.99]

Specificity 0.99 ± 0.01 [0.99/1.00] 0.99 ± 0.01 [0.99/1.00]

Precision 0.97 ± 0.02 [0.83/1.00] 0.97 ± 0.02 [0.88/1.00]

Dmean 0.57 ± 0.46 [0.18/4.45] 0.49 ± 0.36 [0.17/3.69]

Volume difference % −1.42 ± 2.75 [−18.90/15.72] −0.65 ± 2.21 [−8.06/7.04]
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measuring parameters derived from quantitative MRI ac-
quisitions [31].

Limitations

While the developed approach appears very promising,
there exist some limitations that may still require a final
quality check by a trained imaging analyst. For instance,
renal pelvis delineation appears highly variable. This we
attribute to the known high variability of human readers
in performing this task. Fortunately, the fact that an auto-
mated approach will come to the same conclusion every
time will be a helpful step towards improving the repro-
ducibility of TKV measurements. In addition, being able
to simulate the results obtained from multiple people
performing the segmentations removed outlier cases and
resulted in a much more consistent and reproducible mea-
surement of TKV.

Conclusion

We obtained high-quality segmentations of severely diseased
organs matching human performance with a fully automated
computer algorithm which simulates a multi-observer major-
ity voting scheme. This method should be further explored for
its utility in research studies and the clinical practice.
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