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Abstract The purpose of this study was to investigate the po-
tential of using clinically provided spine label annotations stored
in a single institution image archive as training data for deep
learning-based vertebral detection and labeling pipelines.
Lumbar and cervical magnetic resonance imaging cases with
annotated spine labels were identified and exported from an im-
age archive. Two separate pipelines were configured and trained
for lumbar and cervical cases respectively, using the same setup
with convolutional neural networks for detection and parts-based
graphical models to label the vertebrae. The detection sensitivity,
precision and accuracy rates ranged between 99.1–99.8, 99.6–
100, and 98.8–99.8% respectively, the average localization error
ranges were 1.18–1.24 and 2.38–2.60 mm for cervical and lum-
bar cases respectively, and with a labeling accuracy of 96.0–
97.0%. Failed labeling results typically involved failed S1 detec-
tions or missed vertebrae that were not fully visible on the image.
These results show that clinically annotated image data from one
image archive is sufficient to train a deep learning-based pipeline
for accurate detection and labeling of MR images depicting the
spine. Further, these results support using deep learning to assist
radiologists in their work by providing highly accurate labels that
only require rapid confirmation.
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Introduction

Deep learning [1–3], a form of machine learning where neural
networks with multiple hidden layers are trained to perform a
certain task, has gained a widespread interest from a large
number of disparate domains over the last few years, includ-
ing radiology. Deep learning has repeatedly been shown to
outperform other approaches. A popular deep learning appli-
cation is object recognition [4, 5], i.e., when a network is
trained to determine whether an image depicts a certain class
of objects or not. Within radiology, deep learning has been
shown useful for both text and image analytics [6–9].

A challenge associated with deep learning is the need for a
large number of data samples to be used during the training
phase. For example, the popular Mixed National Institute of
Standards and Technology (MNIST) dataset used for training
algorithms to classify handwritten digits contains 60,000 data
samples for training, i.e., approximately 6000 samples per
class. The need for large amounts of training data poses a
challenge for deep learning within radiology, as large datasets
with accurate annotations are rarely directly available. Hence,
most deep learning-based projects within radiology will re-
quire a substantial manual effort to produce the data needed
before training can commence. Consequently, access to rele-
vant training data limits development and roll-out of applica-
tions based upon deep learning within radiology [10].
However, if one takes readily available clinical annotations
from, for example, a picture archiving and communication
system (PACS) as training data, then the required manual
work would decrease substantially. One such set of available
clinical annotations from a PACS are spine labels, i.e., text
annotations providing a location and label of each vertebra
visible in a spine image.

Most vertebrae in the human spine have a very similar
shape (except C1, C2, and sacrum), especially when

* Daniel Forsberg
daniel.forsberg@sectra.com

1 Sectra, Teknikringen 20, 583 30 Linköping, SE, Sweden
2 Department of Radiology, Case Western Reserve University and

University Hospitals Cleveland Medical Center, 11100 Euclid
Avenue, Cleveland, OH 44106, USA

J Digit Imaging (2017) 30:406–412
DOI 10.1007/s10278-017-9945-x

http://orcid.org/0000-0003-0908-9470
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-017-9945-x&domain=pdf


comparing the vertebrae within each spine segment (cervical,
thoracic, and lumbar) with each other. Consequently, a con-
scious identification of each vertebra is a necessity during the
review of images depicting the spine to ensure that the correct
levels of the spine are referenced when describing various
findings. Further, since image studies of the spine typically
consist of multiple image series, a radiologist will frequently
manually annotate each vertebra with a label in a sagittal im-
age to provide navigational support as the radiologist shifts
focus among the different image series. This allows the radi-
ologist to know the identity of all vertebrae without having to
re-identify them each time another image series is viewed.

Detection and labeling of image data depicting the spine
has already been considered by a number of research groups,
both for computed tomography (CT) and magnetic resonance
(MR). However, several of these have required training data in
the form of fully segmented vertebrae [11–14], others with
annotations in the form of bounding boxes [15–17] and just
a few requiring only the position of each vertebra [18, 19].
Further, only some of the most recent works have considered
deep learning [20–22] but none using clinically generated an-
notations as training data.

In this study, we investigate the feasibility of using clini-
cally provided annotations of spine labels stored in a single
PACS archive as training data for a deep learning-based pipe-
line capable of detection and labeling of vertebrae as depicted
in sagittal MR images.

Materials and Methods

The conducted study was a retrospective study using already
performed image studies. As such, the study was ruled exempt
by the local institutional review board and informed consent
was waived.

Image Data and Annotations

The local PACS was queried for spine labels of recent MR
cases depicting the lumbar or the cervical spine. Once identi-
fied, associated image data and spine labels were exported

with subsequent HIPAA compliant de-identification. As the
annotated spine labels were initially provided for navigational
support, their placement was not always accurate or consis-
tent. Hence, a manual quality assurance step was necessary to
ensure that any retained cases would have all spine labels
placed within the corresponding vertebrae and be consistently
placed. Figure 1 contains examples of both retained and
rejected cases. In total, 475 lumbar and 245 cervical cases
were retained, containing 465/438 and 223/221 T1−/T2-
weighted image series, and 3456 and 2321 spine labels, re-
spectively. Note that not all cases contained both T1- and T2-
weighted images and that the number of labeled vertebrae per
case varied, although all contained at least L1-L5 and C2-C7
for the lumbar and cervical cases, respectively. Since the typ-
ical user scenario for spine labeling involves placing spine
labels in a single image (typically the mid-slice within a sag-
ittal image series), only the mid-sagittal slices from each im-
age series were used. This design choice somewhat limits the
applicability of the proposed pipelines, for example, in the
case of scoliosis. However, in an actual implementation this
can easily be handled as shown in [16]. The image data was
resampled to a 1 × 1 mm2 resolution to ensure a uniform
resolution across all images. Finally, the data was randomly
split into three sets, training, validation, and test (60%/20%/
20%), per spine region and MR sequence.

Detection and Labeling Pipeline

Two separate detection and labeling pipelines were construct-
ed, one for the lumbar and one for the cervical cases.
However, both pipelines were configured in the same manner,
each with two convolutional neural networks (CNNs) for de-
tection of potential vertebrae (one general lumbar/cervical ver-
tebra detector and one specific S1/C2 vertebra detector, re-
spectively) followed by a parts-based graphical model for
false positive removal and subsequent labeling. The general
vertebrae detectors would also detect any thoracic vertebrae
that were depicted in the images. Figure 2 provides a schemat-
ic overview of the used pipeline for cervical cases.

All CNNs had similar network architecture with two
convolutional (C) layers followed by a max-pooling (MP)

Fig. 1 Examples of cervical and lumbar cases with spine label annotations considered as inaccurate (label not correct or marker not in a centered
position), (a) and (b), and accurate, (c) and (d), respectively
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layer, another two C layers followed by aMP layer and finally,
two fully connected (FC) layers before the subsequent output
layer. All layers, except the output layer used a leaky rectify
function as activation function and where the output layer
used a soft-max function. The C and MP layers all used
3 × 3 receptive fields.

The size of the image patches and field-of-view differed
somewhat between the CNNs, primarily depending on the
approximate size of the relevant vertebrae. The patch sizes
were 24 × 24 and 32 × 32 for the lumbar, respectively, the
S1 CNNs, with a spatial resolution of 2 × 2 mm2. The cervical
and C2 CNNs had a patch size of 32 × 32 with a spatial
resolution of 1 × 1 mm2.

The CNNs would, unfortunately, provide a number of false
positive detections in addition to any true positive detection,
both for the general and the specific vertebra detectors. Hence,
there was a need to find the most likely combination of detec-
tions among all the possible detections representing either the
lumbar or the cervical spine. A parts-based graphical model,
similar as in [16] (based upon [23]), was used for this purpose.
The parts-based graphical model combines available detec-
tions and labels them to provide a configuration of detections
and labels that best resembles earlier seen configurations of
spine labels based upon label order and spatial locations.

All positive detections from each CNNwere grouped using
connected component analysis, and where the centroid and the
area (normalized against the maximum area of all connected
components for that particular image) of each connected com-
ponent were returned as output from the detection step. Hence,

providing a location xi and probability pi for each vertebra
detection i.

A layered (one layer for each expected vertebrae to label)
graph G = (V, E) with vertices vi,l ∈ V for every vertebra detec-
tion, i ∈ (1, ..., N) and expected vertebrae to label, l ∈ (1, ..., L)
was constructed, with the layers in a stack according to the ana-
tomical order of the vertebrae labels and only allowing edges
between adjacent layers. The distance function of each edge
δ(vi,l,vj,l + 1) was defined as dl(xi,xj) = (yi,j − μl)

TΣ−1(yi,j − μl) ×
1/(pi×pj) if yi,j ∈ Rl and 0 otherwise, where yi,j = xj − xi. The
variables μl, Σl, and Rl are inferred from the training data and
correspond to the mean displacements (μ1, ..., μL−1), the covari-
ance matrices of the displacements (Σ1, ..., ΣL−1) and the
allowed ranges for the displacements (R1, ..., RL−1) between ev-
ery pair of adjacent vertebrae. Hence, finding the shortest path
while including as many labels as possible, will provide the
optimal configuration of vertebrae as given by all vertebra detec-
tions. The shortest path itself is easily found using e.g., Dijkstra’s
algorithm [23].

Training Data

Since the spine labels only correspond to a single point for
each vertebra, there was a need to increase the number of
image patches that could be used for training, both for positive
(vertebra) and negative (non-vertebra) data samples. The
pixels of each image, based upon the provided spine label
locations, were coarsely split into four categories: vertebra
center regions, intervertebral disk regions, vertebral edge

Fig. 2 Setup of the detection and labeling pipeline for cervical vertebrae.
Image patches are extracted from the original image and fed to both the
general cervical and the specific C2 CNNs, providing positive pixel-wise
detections for image patches corresponding to a vertebra. After connected

component analysis of the detection maps, the centroids of the detections
are retained and fed to a parts-based graphical model, which discards false
positive detections and labels the remaining detections. This provides the
final output of a set of annotated spine labels
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regions and background (Fig. 3). The vertebra center regions
were determined as smaller circular regions around each spine
label location; the intervertebral disk regions as the intersec-
tion of two circular regions centered in two adjacent vertebrae,
respectively, with a radius corresponding to 65% of the dis-
tance between the two; the vertebral edge regions as larger
circular regions around each spine label location but comple-
mentary to the vertebra center and intervertebral disk regions.
Everything else was set as background.

For training and validation, all image patches correspond-
ing to the vertebra center regions were kept as positive sam-
ples whereas image patches from the other regions were ran-
domly selected to have the same number of samples as the
positive samples from each of the three categories. Hence, in
the end, the data consisted of approximately equal amounts of
samples from all four categories. However, note that only data
samples from the first category was used as (positive) vertebra
samples whereas all other were used as (negative) non-
vertebra samples, i.e. the data set was somewhat unbalanced.
To avoid further unbalancing of the training data while at the
same time maximizing the amount of training data was the
initial reason for having two separate CNNs per pipeline, one
for general vertebrae and one for specific vertebrae.

Training and Implementation Details

The training data was used for training the CNNs and building
the parts-based graphical model per spine region and imaging
sequence, whereas the validation data was used for finding a
suitable CNN configuration along with determining optimal
hyper parameters for the training. Both the CNNs and the
parts-based graphical model were implemented in Python,
where the CNNs were implemented using the freely available
Lasagne library (https://github.com/Lasagne/Lasagne), which
in turn is based upon the popular deep-learning library Theano
[24]. During the training of the CNNs, the FC layers used 50%
drop-out and the categorical cross-entropy was used a cost

function. A stochastic gradient descent approach with a
Nestorov momentum was used to minimize the cost function.
Note that the CNNs were all trained from scratch that is no
transfer training was employed.

Evaluation

The two proposed vertebra detection and labeling pipelines
were evaluated using the test data set and in terms of detection
sensitivity, precision, accuracy, localization error and labeling
accuracy. For the detection metrics a true positive vertebra
detection corresponded to a detection located within a verte-
bra, a false positive detection to a detection located outside a
vertebra and a false negative to any missed vertebrae, except
the most superior or inferior vertebra for the lumbar and cer-
vical spine sections, respectively, when not fully visible. Note
that the detections refer to the final detections given as output
from the complete pipeline and not the initial pixel-wise de-
tections provided from the CNNs. Localization error was eval-
uated in the form of mean and standard deviation of the dis-
tances between the true positive detections and the centroids
of the corresponding vertebrae. Given the inaccurate and in-
consistent positioning of the clinically annotated spine labels,
it was necessary to manually place these vertebra centroids
(only used for evaluation purposes). For labeling accuracy, a
true positive label corresponded to a detection located within a
vertebra and with the correct label, and where all other labels
were considered as false positives or false negatives.

Results

The numerical results from the performed evaluation are given
in Table 1 and visualizations of some complete detection and
labeling results are provided in Fig. 4. No noticeable differ-
ences in the detection results were observed between either
lumbar or cervical cases or between T1 or T2 images. Failed

Fig. 3 Example of coarse pixel
classification for cervical (a) and
lumbar (b) cases, respectively.
Pixels within the inner circular
(yellow) regions are considered as
vertebra center pixels, within the
ellipsoid-like (green) regions as
intervertebral disk pixels, within
the outer circular (red) region as
vertebra edge pixels and remain-
ing as background pixels

J Digit Imaging (2017) 30:406–412 409

https://github.com/Lasagne/Lasagne


detections results were either associated with missed detec-
tions caused by pathology or by partly hidden vertebrae (for
example when the scan orientation is not aligned with spine
orientation and some vertebrae are not visible in the mid-
sagittal image), or associated with failed S1 detections (either
S1 wasmissed or S2 was mistaken as S1) for the lumbar cases.
Examples of failed detections are provided in Fig. 4j–l. The
localization error for the cervical cases, 1.18–1.24 mm, is
about half the size for the lumbar cases, 2.38–2.60 mm. This
is primarily explained by the substantially smaller cervical
compared with the lumbar vertebrae, and thus, the variation
in localization is bound to be smaller. The labeling accuracy of
96.0–97.0% is the expected given that incorrect labels are a
direct consequence of failed detections. As such, a one-step
shift of the labels, e.g., S1, L5, ..., L1, T12→ L5, L4, ..., T12,
T11, would in most cases be sufficient to adjust the labels and
is easily implemented in a PACS. Examples of this scenario
are given in Fig. 4k, l.

For comparison purposes, we include Table 2, which pro-
vides details on the results reported by the earlier referenced
works on spine detection and labeling.

Discussion

The results show that two successful detection and labeling pipe-
lines for cervical and lumbarMR cases have been configured and
trained based upon clinically annotated spine labels as training
data. These results suggest that clinically annotated image data
can indeed be used as training data for image analysis pipelines
including deep learning. However, the clinically provided anno-
tations needed a quality assurance step to ensure the accuracy,
since as initially observed in this study; the annotations might not
always be sufficient or consistently placed. The needed effort
was minimal though and only required a few seconds per case.
This can be compared to performing a full manual annotation,
which required 5–15 s per case. Although the overall saved time
in this scenario is modest, the potential benefit for more complex
annotations is obvious. Note that the detection and labeling pipe-
line has only been applied to a single 2D image (the mid-sagittal)
for each case and still very good results were achieved. Some of
themissed detections likely could have been identified ifmultiple
images were processed. These results show the potential for an
increased usage of already existing image archives, where

Fig. 4 Example results from the trained detection and labeling pipelines
for cervical and lumbarMR images. Successful results are given in (a)–(i)
and failed detections with subsequent failed labeling are given in (j)–(l).

Labels (+) on the anterior side correspond to clinically annotated spine
labels and the labels (x) on the posterior side correspond to the spine
labels as annotated by the trained pipelines

Table 1 Results from the evaluation of the two detection and labeling pipelines for lumbar and cervical MR cases, with results on a per vertebra/label
level

Case type Imaging
sequence

Detection [%] Localization
error [mm]

Labeling
accuracy [%]

Sensitivity Precision Accuracy

Lumbar T1-weighted 99.7 (740/742) 99.9 (740/741) 99.6 (740/743) 2.38 ± 1.47 96.5% (716/742)

Lumbar T2-weighted 99.7 (739/741) 99.6 (739/742) 99.3 (739/744) 2.60 ± 1.57 97.0% (719/741)

Cervical T1-weighted 99.1 (421/425) 99.8 (421/422) 98.8 (421/426) 1.18 ± 0.81 96.0% (409/426)

Cervical T2-weighted 99.8 (408/409) 100 (408/408) 99.8 (408/409) 1.24 ± 1.01 96.6% (394/408)
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archived images and associated annotations (typically rarely
accessed) can provide additional value as a source of training
data for deep learning.

Our presented results are on par with previously reported re-
sults, and surpass many of them, especially in measured localiza-
tion errors. The localization errors vary substantially among the
reported results with the largest localization errors for CT data sets
covering the whole spine but also arbitrary partial sections of the
spine [11, 18–21]. This comes as no surprise since the task of
detection and labeling of arbitrary partial spine sections is much
more difficult than the corresponding task for a specific complete
spine section, e.g., the cervical or lumbar spine. For the localization
error it should be noted though that our results are reported based
upon 2D distanceswhereas some results in Table 2 are based upon
3D distances, which can be expected to be slightly larger.

An interesting comparison can bemade between the clinically
provided annotations and crowdsourcing. Crowdsourcing is of-
ten referred to as a process in which a crowd of people, usually
online, is voluntarily engaged to either perform a certain task or
to provide a monetary support for a project. This has for instance
been used to provide large amounts of training data for deep
learning [4]. Crowdsourcing has also been successfully
employed within medical imaging to provide ground truth data
[25]. As such, the clinically provided annotations can be consid-
ered as a type of crowdsourced training data, although provided
by the radiologists as normal work effort. In other future learning
situations, generation of training data could be established as part
of the clinical routinework performed by the radiologists or other
medical professionals. For example, if PACS vendors and radi-
ologists together identify tasks that today aremanually performed

by the radiologists but that would be possible to automate given
sufficient available training data, then they could jointly devise a
strategy to allow radiologists to establish the needed training data
integrated in their routine work. Then over time and with little
additional effort, a tool that fully or partially automates the pre-
viously manual tasks could be released later.

Another option to handle the issue of limited access to
training data is to utilize transfer learning. In transfer learning,
a pretrained CNN is trained on a new, but limited, data set
where only a few of the last layers may be updated during
training. Thus far, transfer learning has been shown to provide
promising results [26, 27].

A limitation of the presented approach for detection and la-
beling is that in its current configuration it cannot handle cases
where both the C2 or S1 vertebrae are not present, for example,
as in cases with covering primarily the thoracic vertebrae. True
though that this too is most difficult to obtain manually as well,
and most often requires comparison with a larger field of view
image obtained specifically to enable counting and labeling, that
does include one or other end of the vertebral column.
Alternatively, to handle these situations, additional CNNs are
needed, trained for the detection of the C7/T1 and T12/L1 tran-
sitions, and most likely multiple 2D images need to be consid-
ered or even 3D image volumes that include ribs. Another lim-
itation of the provided results is that the amount data used for the
evaluation of the success of the automated vertebral detection
and labeling was approximately 100 lumbar and 50 cervical
cases. Further corroboration on data frommore patients and from
other institutions remains to prove further the robustness, consis-
tency, and transferability.

Table 2 Results reported by
other research groups on their
implemented methods for spine
labeling

Work Data Detection rate
[%]

Localization error
[mm]

Labeling rate
[%]

Huang et al.
[15]

Cervical/lumbar MR 97.9/98.1 – –

Klinder et al.
[11]

Whole-spine and partial CT 92 – 95

Glocker et al.
[18]

Whole-spine and partial CT – 9.50 81

Glocker et al.
[19]

Whole-spine and partial CT – 7.0–14.3 62–86

Major et al.
[13]

Disks in whole-spine CT – 4.5 99.0

Oktay et al.
[12]

Lumbar MR – 2.95–3.25 97.8 (disks)

Lootus et al.
[16]

Primarily lumbar MR – 3.3 84.1

Cai et al. [17] Whole-spine and partial
CT/MR

– 2.08–3.44 93.8–98.2

Chen et al. [20] Whole-spine and partial CT – 8.82 84.16

Suzani et al.
[21]

Whole-spine and partial CT – 18.2 –

Zhan et al. [14] Cervical/lumbar MR 98.0/98.8 3.07 (whole-spine) –

Cai et al. [22] Lumbar MR – 3.23 98.1
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