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Abstract
Combining imaging biomarkers with genomic and clinical phenotype data is the foundation of precision medicine research efforts.
Yet, biomedical imaging research requires unique infrastructure compared with principally text-driven clinical electronic medical
record (EMR) data. The issues are related to the binary nature of the file format and transport mechanism for medical images as well
as the post-processing image segmentation and registration needed to combine anatomical and physiological imaging data sources.
The SiiMMachine Learning Committee was formed to analyze the gaps and challenges surrounding research into machine learning
in medical imaging and to find ways to mitigate these issues. At the 2017 annual meeting, a whiteboard session was held to rank the
most pressing issues and develop strategies to meet them. The results, and further reflections, are summarized in this paper.
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Introduction

The mission of the SiiM Machine Learning Committee (SiiM-
MLC) is to educate, promote, and advance the state of the art in
medical imaging research. To be sure, there are many issues to
be addressed in the arena of machine learning (ML) applica-
tions in medical imaging, and many of them are not unique to
the field. For example, anyone performing medical research on
humans in the US must be:

(1) in compliance with HIPAA, HITECH, and institutional
review board (IRB) requirements [1]

(2) capable of defining inclusion criteria in alignment with
hypothesis-driven research

(3) capable of locating relevant data sets to perform research
on

(4) able to design, execute, and report reproducible results of
experiments

(5) publish articles with data and analytics in a reproducible
and unbiased manner.

The members of the SiiM-MLC havewell over a century of
combined experience in the technical issues surrounding med-
ical imaging research, but are also well aware that in addition
to the research concerns, new challenges arise when transla-
tion from lab to bedside is contemplated. Legal and ethical
questions must be asked and answered which often requires
education of lawmakers. Lawmakers, in turn, rely on the reg-
ulatory agencies to ensure that the new technology is deployed
in safe and efficacious forms. Finally, non-experts in the field
must be educated and licensed in the safe use of the new tools
on patients.

While ML is very data hungry and requires new tools op-
erating at new scales, protected health information (PHI) re-
quirements continue to get more stringent. Given these chal-
lenges, some of the authors met with other practitioners at the
Research Whiteboard session at SiiM 2017 to chart a course
through the ML minefield from novice to expert and identify
key obstacles. It was made abundantly clear that while the
tools used may differ, the desires are nearly the same.

The remainder of this work sets forth an exposition of
technical challenges to be addressed and mitigations to meet
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them. To put some structure on this discussion, we will break
these areas into goals, challenges, and strategies.

Goals

To appreciate the issues that complicate research, it is helpful
to contrast it with the normal clinical workflow. Clinical
workflow is driven by medical need, that is, the clinician does
not have a choice of what cases will arrive for care. Rather, the
scenario is event driven on a first come, first served (subject to
triage) sequence of uncorrelated cases. The resulting radiolo-
gy clinical workflow (simplified) looks like this:

– Radiology clinical workflow

(1) Patient arrives and is registered at medical center
(2) A clinician orders a new exam for a patient
(3) The interpreting radiologist reviews the order and deter-

mines the relevant protocol to address the clinical
question

(4) The night before patient arrival (or immediately if ad
hoc), relevant compares are fetched for the patient from
vendor neutral archive (VNA) to picture archiving and
communication system (PACS)

(5) New exam is acquired
(6) Post-processing and/or QA occurs
(7) Priors and QA’ed new exam are sent to radiologist on

PACS for interpretation
(8) Radiologists read new studies in comparison to priors,

makes measurements, and reports case
(9) Reported exam is archived to VNA

Now, in contrast with the above, the steps and workflow
required for retrospective research are different. The research-
er wants to find patients or exams that are relevant to their
question, have low barriers (in money and person hours) to
access data needed to start their research, have the means to
duplicate their results, and ideally have the option to collabo-
rate with others. For example, a researcher may be trialing a
new therapy in which case they need to find patients with that
disease. Another researcher may want to find a training set for
a new diagnostic machine learning algorithm aimed at diag-
nosing a specific disease—in which case, the search is for
prior studies (labs, imaging, etc.) that have a known state
(positive or negative) for those disease findings. Broadly, the
workflow steps look like this:

– Research workflow (retrospective)

(1) Define the scope of the issue to be studied (i.e., inclusion
criteria)

(2) Perform cohort discovery (against patient or exam results
databases as appropriate for inclusion criteria)

(a) Often by a research administrator acting as an honest
broker who is allowed to see PHI

(b) Grouping of imaging studies temporally (i.e., lesion
tracking) or combining multi-modalities

(c) De-identify the cohort members (ideally done prior
to the being seen by the principal investigator (PI)
(i.e., blinded with only the research administrator
having the PHI-de-identified key)). This point is es-
sential if incidentalomas are discovered during the
trial and the PI needs to report the finding back to
the patient’s care team

(3) Assemble the de-identified cohort and perform random-
ized trials

(a) If a therapy trial, on the patients
(b) If a diagnostic trial, on the new analytic and runtime

platform
(4) Perform measurements and analysis
(5) Record results to another database
(6) As a bonus, be able to compare results with others and/or

collaborate on algorithm improvements

As many have commented (and as was shared by the
whiteboard attendees), points 2–3 tend to be the first large
barriers to overcome for sites beginning a research pro-
gram, particularly, since such searches tend to be on free
text and not machine-discoverable [2]. It may also be the
case that image studies are scattered across numerous ar-
chives, requiring multiple searches [3]. Even for single-site
institutions, the tools generally available are not flexible
enough to perform these queries and other related tasks
(e.g., data aggregation). In particular, a given site may have
to span queries across multiple systems with multiple pa-
tient and exam identifiers in order to perform cohort iden-
tification. Also, everyone struggles with de-identification
and it was acknowledged as an ongoing issue. So a sim-
plifying question was asked for those sites just beginning
their research programs, BDo you require access to your
own site’s data or if a sufficiently rich and curated public
dataset (meta-tagged to enhance cohort discovery) were
available, would that be an acceptable alternative?^

In many cases, it turns out the answer to the above question
was Byes.^

Among sites with established research programs, the next
pain points were related to the costs and complexity of main-
taining an array of ITsystems of various types to host different
analysis tools. For example, some analytics can scale across
compute clusters and benefit from something like LUA pipe-
lines or grid engines [4, 5]. Other sites more involved with
finding patterns in textual data (e.g., big data) require database
clusters that scale across database nodes [6]. And of course,
practitioners looking for patterns in image data require spe-
cialized ML knowledge in software Bstacks^ that layer ML
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learning engines with python or R (for analysis) and graphics
processing unit (GPU) libraries for runtime [7–9].

Finally, the workflow inherent in bringing a new analytic to
clinical practice needs addressing, i.e., the translational prob-
lem. There are really two steps in this; first, demonstrating the
new tool is efficacious during a proof-of-concept pilot, then
(assuming success) expanding the pilot to normal clinical
workflow.

– Translation to practice workflow (prospective)

(1) Patient is scheduled for an imaging study.
(2) At protocoling time, case is reviewed for possible inclu-

sion in the IRB project
(3) If suitable, patient is consented and study is Btagged^ for

both the standard of care workup and the new research
workup.

(4) In post-study acquisition, the two workups are de-
identified and presented to expert observers to assess
efficacy.

(5) Assuming success (and legal hurdles met), the new tool is:

(a) commissioned into the current standard of care
armamentarium

(b) and guidelines (or automated systems) are created to
route candidate studies to the new tool as in the nor-
mal clinical workflow and

(c) patients benefit.

Challenges

The following issues were identified in the whiteboard ses-
sions as impediments to productive research in diagnostic im-
aging analytics. A casual inspection reveals that the majority
of issues (four of five) are related to the availability of rele-
vant, de-identified, and curated datasets.

(I) Cohort discovery

& Insufficient or inaccurate meta-tagging to comprehensive-
ly locate all potential participants that match the inclusion
criteria:

(a) Inclusion criteria span multiple systems (labs, pa-
thology, radiology, surgical notes)

(b) Inclusion criteria elements are unstructured (i.e., free
text not amenable to SQL queries) necessitating an
NLP query tool of radiology reports and/or electron-
ic health record (EHR) data

Most clinical systems in imaging have not been designed in
a way to locate all the potential participants that match inclu-
sion criteria for a particular machine learning cohort. Inclusion

criteria may be imaging-based findings (e.g., pulmonary nod-
ules for lung cancer screening CTstudies) which are mostly in
radiology reports, or the criteria may be more complex (e.g.,
sarcoidosis with imaging and clinical features) with data in
both radiology reports and in the EHR. Currently, most radi-
ology reports and EHR notes are still free text, even though
they may have structured headings, and would necessitate
some sort of NLP query for it to be effective.

(II) Dataset sparsity

a) Insufficient samples to represent all the stages of a
disease

b) Insufficient samples for the statistical power needed
by a trial or training set

For the current DL algorithms to be effective in delivering
good ‘Narrow AI’ results, they need have reasonably large
number of examples of a particular disease finding—typically
several hundred or several thousand samples. For many dis-
eases, dataset sparsity can be a big issue. There may be insuf-
ficient samples to represent all the stages of a disease or insuf-
ficient samples for the statistical power needed by a trial or
machine learning training set, even given different data aug-
mentation techniques. Data sparsity may ultimately limit the
kinds of machine learning problems that one can work on.

(III) De-identification

a) Assuring all PHI (including in image bitmaps) is
aliased, hashed, blanked, or offset as per applicable
government regulations [10]

b) While achieving the above do so without destroying
(in the case of DICOM images) private tags that may
be required by analytics

c) Assuring all data relating to a given real patient is
mapped to the same alias

d) Liability concerns if all PHI is not scrubbed.

Like any research project, robust de-identification of any
machine learning dataset is required before use. All PHI (in-
cluding in images) should be aliased, hashed, blanked, or off-
set as per applicable government regulations, while preserving
some private tags that may be required by analytics. De-
identification mechanisms will be required for ensuring all
data relating to a given real patient is mapped to the same alias.

(IV) Unintended reidentification of datasets

Black hats can reconstruct patient’s faces (or other features)
from high-resolution CT or MR and run those facial images
against public databases to identify patients. To mitigate this
threat, there is so called defacing software to prevent these
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types of reidentification [11]. It should also be stressed that
such mitigations should be pursued as close to the source
systems as possible to reduce the chances of man-in-the-
middle compromises [12].

(V) Building, populating, and maintaining the runtime
platform

a) Servers (CPU, GPU, grid)
b) Storage
c) Orchestrating workflow steps on the runtime platform

(a) Bringing the correct inputs to the runtime platform
(b) Performing computations
(c) Passing results to the required downstream

analytics
(d) Validating execution of all workflow steps
(e) Storing results back to the database(s)

Delaying V for now, it is useful to address the remaining
above points. Let us consider items III and IV first. There are
many publicly funded open datasets [13]. While perhaps not
perfectly de-identified, these resources at least remove prima-
ry liability from the individual researcher for any de-
identification issues. Points I and II (data set sparsity and
cohort discovery) require more discussion. Data set sparsity
has several facets: a relatively acute disease that is not well
represented in the archive vs. more chronic diseases whose
state evolves over time. The former can be addressed with
synthetic methods of data augmentation on a base dataset
[14, 15]. The latter requires a systematic effort to find exam-
ples of all disease states that have significant impacts on im-
aging findings [16].

Cohort discovery is perhaps the most important issue to be
solved. At several recent meetings, it was noted that while
open archives (i.e., the Cancer Imaging Archive (TCIA))
may have many thousands of studies, it is not easy to find
studies relevant for a given research project [17]. In particular,

it was suggested that there are two major shortcomings in
today’s open archives with respect to automated
discoverability: meta-tagging with a standard ontology and
an API that allows automated mining by programmable
agents. {Note: While TCIA does have a RESTful API, a re-
searcher would have to brute force search through the archive
and open at least each series to search for relevant studies
based on the normal DICOM tags (i.e., for anatomy, or series
description). Without standard terms that encode the study
findings or acquisition parameters, however, this approach
would still require further processing by the researcher to de-
termine applicability [18]}. Others have made similar obser-
vations [19]. These points will be addressed in the next
section.

Strategies

Many of the points listed in the BChallenges^ section are re-
lated to the issues surrounding ML retrospective research.
However, the final issue under the BGoals^ section was trans-
lating research to proof of concept, then clinical pilot/FDA
validation, and finally routine clinical care. In this section,
we will develop a hierarchical cognitive model to organize
the requirements/methods needed to address the challenges
laid out above.

As stated in the BIntroduction^ section, the mission of the
SiiM-MLC is threefold:

(a) educate
(b) promote and
(c) advance the state of the art

These words, and how they relate to each other, are
expressed in a concept pyramid in Fig. 1; education is ad-
dressed by levels 1–2 where tools are developed to share code
and data in a portable way among students and early investi-
gators. Promotion occurs at level 3 where new and enhanced

4) Collaborate (or compete) 

1-2) Education
Help newcomers with turnkey
solutions1) Share turnkey ML appliance with bundled datasets

2) Teach how to modify code in 1.

3) expand 1-2) to new models/datasets 

5) Translate to
practice 

3) Promote
expand skills, knowledge

4-5) Advance the art
Collaborate, compete at 
Conferences or persistent
Cloud platforms. Sharing code, 
Data and results.

Fig. 1 Conceptual pyramid of the objectives of the SiiM Machine
Learning Committee (MLC). The committee’s github site has turnkey
solutions (Dockers) to enable newcomers to the ML field get started
without having to master multiple technology dependencies first (level
1–2). Then, as the person grows their knowledge, additional resources

guide them to how to expand those base Dockers to address new prob-
lems (level 3). At the upper levels, the MLC aims to foster guidelines to
conducting reproducible science, provide shared datasets, and foster col-
laborative research
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training data sets become available to broaden the disease
models developed from given software frameworks. Finally,
the state-of-the-art is advanced via collaboration (competi-
tion?) among researchers using different algorithms on the
same data sets in a collaborative environment, and ultimately
translation to clinical use.

(A) Education

SiiM-MLC is addressing basic education issues in ML
through the use of open source tools and open datasets where
possible. A key strategy is to develop turnkey Bappliances^
that get novices up to speed quickly on the tools required for
ML work, without mastering all the underlying technologies
first. Next, novices are pointed to open curated datasets rele-
vant to the appliance they have, to offload the de-identification
chores mentioned previously. As of this writing the MLC has
published:

a) A turnkey ML appliance at the SiiM-MLC github site
[20]. It bundles in a single Docker a combination of
tools (e.g., Keras, Tensorflow, Jupyter) that enable run-
ning ML as an appliance. {Aside from that, for the
novice, a Docker is a Bcontainer^ for a bundle of soft-
ware that runs as if it were its own computer [21, 22].}
The availability of this Docker obviates the need for
the novice to learn at least four different technology
stacks just to start playing with ML. To run a Docker,
one need only install the Docker runtime engine on
one’s computer [23].

b) Use of existing open datasets. Many open imaging
datasets already exist (e.g., TCIA) and SiiM-MLC will
promote the use of those existing datasets when possible.
This approach presents minimal legal risk to SIIM and
where those datasets have already been curated (e.g.,
prostate cancer), it significantly reduces the effort re-
quired for ML researchers to begin work.

(B) Promote

In many cases, there are demonstration data sets suffi-
cient to exercise the ML Dockers which the SiiM-MLC has
published. For these data, the Docker authors are tasked
with bundling (via URL references) the recommended
starter data sets with their published software on the github
site. However, when a researcher wishes to extend a given
ML framework to new diseases, new datasets may be re-
quired. At this point several concerns arise: are sufficiently
deep datasets available, are they de-identified but still use-
ful, and are they curated, annotated, and discoverable by a
researcher? To address these needs, the MLC seeks to part-
ner with industry and academic sites to identify new
datasets, crowdsource curation and meta-tagging using

existing (or to be developed) tools, and share these data
set locations back on the github site [24].

It is also often the case that many ML developers are willing
and eager to share their code and algorithms, but they may have
developed on a platform with specific expertise required. By
encouraging adherence to a common development architecture,
the SiiM-MLC is aiming to reduce impediments to code sharing.

(C) Advance the state of the art

By definition, reproducible science requires being able to
reproduce results. Without access to another researcher’s code
and data, there is no way a third party can duplicate that re-
searcher’s results. Github and Docker vastly lower the learning
curve required to share code and runtime environments—for
those who want to. What they do not address is the common-
ality of datasets.

By providing a collection of respected runtime appliances
at the SiiM-MLC github site, and recommended datasets that
are appropriate for them, much of the learning curve is re-
duced for all but researchers at the bleeding edge of ML in-
vestigations. To address the needs of that group, the MLC is
working in conjunction with the Conference on Machine
Intelligence in Medical Imaging (C-MIMI) and the SiiM
Hackathon committee. Briefly, the current Hackathon site
supports a fast healthcare interoperability resource (FHIR)-
based EMR server, and a DICOM web-based VNA [25].
Together, these servers expose five patient personas of corre-
lated data sets that enable students to develop new applica-
tions with realistic data.

The reader will recall from the last paragraph in the
BChallenges^ section the two major points regarding cohort
discoverability; the first is the lack of a common ontology to
meta-tag studies with and the second is the lack of machine
Bmineable^ interfaces to simplify the tasks of finding relevant
studies for a given use. At C-MIMI 17, there was great interest
among attendees to partner with other agencies to enhance
both these areas. As a result, two new members have joined
the MLC (one from NCI, the other is the chair of the
RADLEX Committee). In cooperation with the SiiM
Hackathon committee, there is a proof of concept effort un-
derway to demonstrate:

a) SiiM-sponsored MLC ontology on Blive^ data
b) crowdsourced meta-tagging of their dataset
c) FHIR-based mining on the ontology

The foregoing addresses many of the challenges. However,
one point has been deferred until now and that is the many
points that need to be considered to address the issues in
BChallenges^ section V.c in a scalable, collaborative, and se-
cure manner. One way to address these needs is a cloud-based
collaborative environment (as shown in Fig. 2) where image
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Fig. 2 Functional requirements
for a cloud-based platform for
conducting reproducible ML
research. a Users upload de-
identified data; the Orchestrator
checks the submission in, holds it
for curation, and crowdsources
meta-tagging. b Another
investigator uploads their model
to try it out on the runtime
platform on the existing datasets.
The Orchestrator checks the code
in and assigns access rights as per
the author’s wishes. c The
investigator locates data relevant
to their project, submits it to their
algorithm, and stores results back
to the system. For greater detail,
see the text
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sets, analytics, and runtime platforms are co-located. The sys-
tem indexes code and data, enforces access controls, and col-
lects runtime results in a single location—obviating the need
to every investigator to pull image sets to their own locations.
Ideally, such a cloud platform should consider the three key
uses cases below and deliver on their requirements:

(A) Uploading new image sets: They need to be de-identi-
fied, curated, tagged for discovery, and optionally
tagged for restricted access. To support these require-
ments, both users and uploaded data have to belong to
one or more groups. Access is regulated to assure a user
can only see images if they are the owner, in the same
group as the image owner, or the image set is tagged as
public. The Orchestrator performs many roles. First, it
assures images are HIPAA compliant. Then, it alerts
curators there are new images to curate. After curation
(and review by a second curator), applied meta-tags are
stored to the database to enable discovery. In this exam-
ple, the site is leveraging the TCIA archive.

(B) Uploading new algorithms: Similar to the above, users
publish their algorithms (possibly in Docker form) to the
site or develop on the site’s cloud-based development
platform. As before, the code is tagged by the owner
with access controls (publicly viewable/usable—or pri-
vate—usable only by members of the same group). The
Orchestrator checks the new code into the site, making it
available as building blocks in workflows for authorized
users

(C) Executing ML experiments: This is where the aforemen-
tioned elements come together. Using a web-based user
interface, users select the image set of interest (assuming
access controls allow it) as an input to a workflow
consisting of one or more analytics. The UI allows users
to manipulate the registered code blocks, collect results,
and publish them back to the site’s database (relational or
not). A simple example could be an investigator who
wishes to try to develop anMLmodel for finding emphy-
sema, steps are:

a. select low-dose thoracic CT studies that are known to
have occurrences for the findings of interest

b. send them to a CT denoising algorithm, then route
output to

c. a segmentation engine to subtract out the lungs, send
the result to

d. a deep learning model that annotates positive cases,
then

e. compare the selected positive cases to the known re-
sults in the database and record the results

f. repeat the above for different ML models to evaluate

To deliver the functions outlined above, there are numerous
implied capabilities:

a) capable de-identification algorithms
b) crowdsourcing tools that interfaces with the Orchestrator

to enable the work of human (or AI based) annotators to
meta-tag data

c) a well-defined API for investigators to query and find
relevant studies for their algorithm

d) well-defined APIs to fetch studies to the runtime environ-
ment, and pass outputs from one processing block to the
next in the workflows hosted by the Orchestrator

Discussion and Conclusions

The members of the SiiM-MLC are dedicated to enumerating
and mitigating (where possible) the challenges in the field. For
new investigators, the learning curve of starting up a runtime
platform and locating initial image sets has been significantly
reduced by the MLC github site.

For intermediate researchers wishing to help advance the
field, the MLC is partnering with open archive sponsors and
ontology experts to drive automatable cohort discovery. The
resulting tooling and ontology standards will be shared back
to the community for broader use and demonstrated on
existing open archives.

Finally, for those who wish to participate in open chal-
lenges, the MLC is investigating sponsors interested in devel-
oping cloud platforms along the architecture outlined in Fig. 2.
Several industry partners have already shown interest in join-
ing the MLC to host datasets and runtime platforms.
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