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Abstract For many years, prostate segmentation on MR
images concerned only the extraction of the entire gland.
Currently, in the focal treatment era, there is a continu-
ously increasing need for the separation of the different
parts of the organ. In this paper, we propose an automat-
ic segmentation method based on the use of T2W images
and atlas images to segment the prostate and to isolate
the peripheral and transition zones. The algorithm con-
sists of two stages. First, the target image is registered
with each zonal atlas image then the segmentation is
obtained by the application of an evidential C-Means
clustering. The method was evaluated on a representative
and multi-centric image base and yielded mean Dice ac-
curacy values of 0.81, 0.70, and 0.62 for the prostate, the
transition zone, and peripheral zone, respectively.
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Introduction

One of the latest trends in prostate cancer management is the
concept of focal therapy aiming to target only the subpart of

the glandwith the cancerous lesions. The development of such
techniques needs a precise estimation of the cancer localiza-
tions maps. Multimodality imaging and mainly multi-
parametric magnetic resonance images (mpMRI) are efficient
tools to this end. Computer-aided diagnosis (CAD) software
solutions were widely investigated to help in images analysis.
Many works focused on prostate extraction from the images
and different techniques are now able to automatically seg-
ment the prostate with a sufficient accuracy [1].

On the other side, prostate is a heterogeneous organ formed
by three main areas: the central area, the transition zone, and
the peripheral zone [2]. The transition zone and the central
zone are usually referred as the central gland. Here, we con-
sider them as the transition zone (TZ). The peripheral zone
(PZ) is the area where most prostate cancers grow [3].
Moreover, cancers of these two zones exhibit different behav-
iors [4]. Thus, it appears important to separate them in order to
apply different analysis algorithms. However, oppositely to
the gland segmentation problem, fewer studies focused on this
issue. Indeed, the first study was proposed in 2011 [5]. The
authors combined the mpMR images and incorporated them
into a segmentation process based on the evidential C-Means
classifier. Later on, other works [6, 7] introduced different
techniques also based on mpMRI.

In [8–10], the authors proposed new approaches based only
on the T2-weighted (T2W) MR sequence because these im-
ages are regarded as the cornerstone for prostate morphology
evaluation. However, due to the lack of contrast between the
two zones, the accurate segmentation of the two zones using
only T2W images remains challenging. Additional informa-
tion as a priori information can guide the segmentation pro-
cess. In this study, starting from the initial work [5], we use the
evidential C-Means classifier to segment the PZ and TZ using
only the T2-weighted sequence. A priori information about
the prostate morphology is modelled using an atlas [11], the
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ProstateAtlas (publicly available at the prostateWeb URL
(http://www.medataweb.onco-thai.fr)).

Methods

The global approach is based on two major components; the
first is a registration step aiming to align the target image, i.e.,
the image to be segmented with the atlas image while the
second is a classification step aiming to drive the segmenta-
tion. Figure 1 shows the outline of the proposed method.

Registration

The registration step aims to obtain an automatic initialization.
It is done using the ProstateAtlas. This atlas, described in [11],
was constructed starting from 30 T2-weighted MR images.
The images were selected as representative of the prostate
cancer patients’ population. Patients were selected in term of
age, prostate volume, and prostate appearance. The result is a
mean T2-weighted gray level image and a probabilistic distri-
bution (atlas) image for each zone. These probabilistic distri-
butions model the inter-patient variability.

The atlas mean image is registered using an affine transfor-
mation with the target T2W image, and the obtained optimal
transformation is applied to the two zone atlases in order to
spatially match them with the target image. This matching
allows the labelling of the corresponding voxels of the target
image with their corresponding probabilities to belong to each

zone (class). The labelling is considered as a first solution and
acts as initialization for the clustering process.

Clustering and Segmentation

Starting from the initialization obtained after the registration,
this step consists in a classification process to optimize the
target image voxels labelling. In order to reduce the search
space, a first treatment is applied to extract the prostate from
the image. As it was highlighted in the introduction, prostate
segmentation fromMR images was verywidely discussed and
different efficient algorithms were published. We applied here
one of these methods which was among the first to be pro-
posed [12]. It combines a priori knowledge of prostate shape
and Markov fields modelling to guide an iterative conditional
mode algorithm and to perform a Bayesian classification.

For the zonal segmentation, we chose to adapt the first
applied technique based on evidence theory [5]. Evidential
reasoning, also known as belief functions theory or
Dempster-Shafer theory, provides an advanced modelling of
fusion, conflicts between sources, and outliers.

Evidential Modelling

This modelling associates a data source or sensor S with a set
of propositions, also known as the “frame of discernment.” In
a classification context, the frame of discernment Ω is the
classes set ωi , Ω = {ω1, .., ωk}. If we define P = {P1,.., PN}
as the set of patterns/objects to be assigned to one of the

Fig. 1 Block diagram of the
proposed prostate zonal
segmentation method
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classes of Ω, then evidential reasoning allows to extract a
partial knowledge on this assignment, called “basic belief as-
signment” (bba). A bba is a function that takes values in the
range [0, 1]. For each pattern Pi ∈ P, a bba, that we note mi,
allows to measure its assignment to each subset A of Ω such
as:

X

A⊆Ω
mi Að Þ ¼ 1 ð1Þ

The higher the value of mi (A), the stronger the belief on
assigning Pi to A. Compared to the fuzzy sets model, the
evidential reasoning is then capable of extending the concept
of partial membership by assigning belief not only to classes
but also to unions (disjunctions) of classes.

Using this model, Denoeux and Masson [13] introduced a
new kind of data partition called the “Credal partition.” This
partition could be seen as an extension of the fuzzy partitions
with bbas replacing fuzzy membership functions. Later on,
the authors proposed an evidential version of the C-Means
classifier that uses a credal partition. This evidential classifier,
inspired by the fuzzy C-Means (FCM), is called evidential C-
Means (ECM) [14]. Its principle is to classify the N patterns
into k classes of Ω based on classes’ centers and the minimi-
zation of a cost function. As for fuzzy partitions in FCM, a
credal partition, in which each line is a bba mi associated to a
pattern Pi, is optimized in an iterative process.

From Classification to Segmentation

In the current application, each pattern is a voxel from the MR
T2-weighted image. The classification process classifies the
patterns into two classes: ω1 for the peripheral zone and ω2 for
the transition zone. For each pattern, a bba measures the
amount of belief assigned to:

& class ω1: the pattern is a voxel from the PZ
& class ω2 : the pattern is a voxel from the TZ
& the set {ω1, ω2} all hypotheses hold: the pattern may be a

voxel from PZ or TZ
& the empty set ϕ: pattern is considered as outlier and

rejected

The ECM model extracts and optimizes partial knowledge
on patterns’ assignment. A direct use of the ECM would clas-
sify voxels as independent data objects. However, voxels
neighborhood, as defined by a connexity system, brings valu-
able information. We assume that in a homogeneous region or
class, a bba is a knowledge not only on a pattern but also on its
connected neighbors. Corrupted information, extracted from
outliers/noise patterns, can be relaxed by information from its
neighbors, which is one of the principles of noise-reducing
methods and filters. Thus, introducing neighborhood

information in the ECM modelling would assimilate the
ECM classifier to a region-based segmentation process.

The bba mi of pattern Pi (associated to voxel vi) is relaxed
by combining it with bbas from spatially connected neigh-
bors. Spatial connection is defined by a 26-connexity system.
However, the contribution of each neighbor of to this combi-
nation should be weighted by the distance that spatially sepa-
rates the corresponding voxels. This is particularly relevant in
case of prostate MRI, where voxels are significantly aniso-
tropic. The further the voxel, the less it should contribute to
the combination.

This combination will be used as a relaxation step that
allows correcting the evidential assignment of a voxel based
on information from its neighbors. We propose to introduce
this relaxation into the iterative process of the ECM in the
following way:

mi ¼ 1

26
mi þ

X26

j¼1

mj⋅d j

 !
ð2Þ

Where d j is the Euclidean distance between voxel vi and its
spatial neighbor vj

At the level of bbas extraction and optimization, we mea-
sure belief on the membership of each voxel to one of the
classes ω ∈Ω but we also measure belief on rejection (∅ ),
and disjunctions A ⊆Ωwhich can be interpreted as “doubt” on
the membership of the voxel. A decision still has to bemade to
classify the voxels to one of the classes of Ω. The decision
level can be reached by transforming the bbas mi into a prob-
ability measure. This probability is calculated as:

Prob wið Þ ¼ 1

1−mi ϕð Þ
X

ω∈A
A⊆ Ω

mi Að Þ
Aj j ; ∀ωi∈ Ω ð3Þ

where |A| denotes the number of elements of A. We finally
define the decision rule R by:

R Pi;mið Þ ¼ argmax
ω ∈Ω

Prob ωið Þð Þ ð4Þ

Experiments and Results

For the validation of the method, two databases were considered.
The first, containing images from 13 patients, was fromMICCAI
2012 Challenge (PROMISE 2012) (http://promise12.grand-
challenge.org/Download/showSection/data) (Table 1). The sec-
ond was a multi-centric database, collected from five sites. It was
composed of images from 22 patients (Table 2). As prostate
appearance on the images is impacted by different parameters
as the patient age and the final cancer diagnosis, images were
selected in a way to be representative of the population. Thus,
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patients were in the age range 45–68 years with amean age of 56
, while prostate volumes were in the range 24–82 cm3 with mean
volume of 43 cm3. For diagnosis outcome, 14 patients (63. 6 %)
had been diagnosed “positive” for cancer.

Images were acquired with standard T2W sequences as
proposed by the different manufacturers.

Evaluation is done by comparing the segmentation result
noted Vs to a reference Vr, using the following criteria:

– Overlap ratio (OR), also known as Jaccard index, is the
ratio of the intersection’s volume to the union’s volume
(optimal value = 1):

OR ¼
Vr

\
Vs

���
���

Vr∪ Vsj j ð5Þ

– Dice similarity coefficient (DSC) is a similarity measure
based on the Jaccard index (optimal value = 1), defined
by:

DSC ¼
2: Vr

\
Vs

���
���

Vrj j þ Vsj j ð6Þ

– Mean Euclidean distance (DIST) between the contours (au-
tomatic and manual) drawn on the same MR image. The
center of gravity of the manual contour was chosen as a
reference point. Straight-line segments intersected the two
contours. The intersection points were considered to com-
pute DIST.

The PROMISE database served to highlight the perfor-
mance of the gland extraction step in the proposed method

(Table 3). The reference segmentation was available for these
data.

For the second database, the obtained results were com-
pared with manual segmentations produced by an expert radi-
ologist (more than 15 years’ experience) (Table 4).

For both patients bases, the execution time was 15 ± 5 s
(mean ± SD) for the registration step and about 50 ± 5 s (mean
± SD) for the segmentation step, giving an overall execution
time of less than 2 min for the whole process.

Figure 2 depicts the results for two patients from the two
databases. Figure 3 shows a mutual display of the segmenta-
tion result of the patient from the PROMISE 12 database,
overlaid on the central image.

Discussion

In this study, we investigated the abilities of the combination
of evidential clustering and prostate zonal atlases to drive a
segmentation process for separating the peripheral and the
transition zones on T2-weighted MR Images. Compared to
the previous published studies, the current one brings two
novelties. First, it operates only on the T2-weighted sequence
while the most previous methods require multiparametric da-
ta. The second consists in the introduction of probabilistic

Table 1 Parameters of the MICCAI challenge MR database

Patients Voxel size (mm3) Image size (voxel)

1–4, 6, 7 0.625 × 0.625 × 3.6 320 × 320 × 20

5 0.625 × 0.625 × 3.6 320 × 320 × 20

8–10 0.39 × 0.39 × 3.3 512 × 512 × 23

11 0.468 × 0.468 × 3.33 384 × 384 × 28

12 0.351 × 0.351 × 3.3 512 × 512 × 26

13 0.625 × 0.625 × 3.6 320 × 320 × 28

Table 2 Parameters of the multi-centric MR database

Patients Device Voxel size (mm3) Image size (voxel)

1–4, 6–15 Philips 1.5T 0.31 × 0.31 × 4 512 × 512 × 15

5, 17–20 Siemens 1.5T 0.78 × 0.78 × 3 256 × 256 × 24

16 GE 1.5T 0.39 × 0.39 × 3 512 × 512 × 22

21 GE 3T 0.47 × 0.47 × 4 512 × 512 × 15

22 GE 3 T 0.74 × 0.74 × 4 512 × 512 × 20

Table 3 Overall
performance results on
the MICCAI database

Patient DSC (%) DIST (mm)

Patient 1 74.13 4.3

Patient 2 74.59 4.5

Patient 3 66.82 4.8

Patient 4 76.95 4.3

Patient 5 71.30 4.5

Patient 6 85.57 2.8

Patient 7 72.96 3.9

Patient 8 82.26 3.0

Patient 9 83.69 3.1

Patient 10 75.07 4.2

Patient 11 79.43 3.85

Patient 12 78.93 3.8

Patient 13 79.63 3.15

Mean 77.02 ± 5.26 3.8

Table 4 Overall performance results for the 22 patients of database 2

DSC (%) OR (%) DIST (mm)

Prostate 81.78 ± 5.86 69.57 ± 8.14 3.00 ± 1.5

TZ 70.23 ± 12.06 64.40 ± 13.44 4.5 ± 1.8

PZ 62.00 ± 7.27 57.30 ± 11.60 5.2 ± 2.7
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Fig. 2 Results of the two zones segmentation: the transition region (white
region) and the peripheral region (gray region). From left to right: the
apex, the central slice, and the base. a Patient 6 from the MICCAI
challenge database (Prostate’s DSC = 85.57 %, PZ’s DSC = 51.20 %,

and TZ’s DSC = 74.40 %). b Patient 13 from the multi-centric MR
database (Prostate’s DSC = 88.80 %, PZ’s DSC = 71.30 %, and TZ’s
DSC = 84.20 %)
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atlases of the two zones. This approach was inspired by the
techniques used for gray and white matters segmentation on
brain MR imaging.

The first step of the method involves a gland extraction
where we have applied the method described in [12]. When
applied on the PROMISE 12 challenge data, the method ex-
hibits performances (Table 3, mean DSC = 77 %) within the
range of the reported values (65–84 %) [1].

For the zonal segmentation, the overall results of the pro-
posed method (Table 4) could appear insufficient mainly for
the peripheral zone extraction (mean DSC 62 %). However, it
must be stressed that these results were obtained on an image
base that reflects the real life images: different appearances and
volumes of the prostates. The algorithm results are very close to
the expert contours in the central part of the gland. Nevertheless,
for the prostate extremities, the base and mainly the apex, the
results are poor. This is mainly due to the lack of signal and the
partial volume effect. The enhancement of image qualities by
the development of new image sequences and new images re-
construction algorithm will certainly improve the signal to noise
ration ratio leading to an improvement of the segmentation.

Another issue that can be seen as a limit of this study is the
validation using only a single expert while currently the trend is
to take into account the inter-observer variability through
STAPLE techniques for instance. Most often, the use of multi-
observer references is done by generating a pseudo ground-truth

reference taking into account all the references. This consensus
reference can be seen as a mean contour that normalizes the most
experienced observers’ contours with those produced by the ob-
servers with limited experience. We chose to perform the valida-
tion by comparison to manual delineations done by an experi-
enced radiologist (second author). He used multiparametric and
multi-incidenceMR images, with transverse, sagittal and coronal
slices, to draw the contours as accurately as possible. Moreover,
it is important to stress that in daily clinical practice, diagnosis,
and therapies planning tasks are based on a single user.

Lastly, to conclude, the main aim of this work was to pro-
pose a simple technique, suitable to clinical conditions (mean
execution time less than 2 min) to perform complete segmen-
tation of the gland and the extraction of the peripheral and
transition zones. All process is fully automatic even if in some
cases, after convergence, some manual corrections are needed
at the gland extremities.
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