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Abstract Multimodality medical image fusion plays a vital
role in diagnosis, treatment planning, and follow-up studies of
various diseases. It provides a composite image containing
critical information of source images required for better local-
ization and definition of different organs and lesions. In the
s ta te-of- the-ar t image fus ion methods based on
nonsubsampled shearlet transform (NSST) and pulse-
coupled neural network (PCNN), authors have used normal-
ized coefficient value to motivate the PCNN-processing both
low-frequency (LF) and high-frequency (HF) sub-bands. This
makes the fused image blurred and decreases its contrast.
The main objective of this work is to design an image
fusion method that gives the fused image with better con-
trast, more detail information, and suitable for clinical
use. We propose a novel image fusion method utilizing
feature-motivated adaptive PCNN in NSST domain for
fusion of anatomical images. The basic PCNN model is
simplified, and adaptive-linking strength is used. Different
features are used to motivate the PCNN-processing LF
and HF sub-bands. The proposed method is extended for
fusion of functional image with an anatomical image in
improved nonlinear intensity hue and saturation (INIHS)
color model. Extensive fusion experiments have been per-
formed on CT-MRI and SPECT-MRI datasets. Visual and
quantitative analysis of experimental results proved that
the proposed method provides satisfactory fusion outcome
compared to other image fusion methods.

Keywords Image fusion . NSST . PCNN . Improved
nonlinear intensity hue saturation color model . CT-MRI
fusion . SPECT-MRI fusion

Introduction

Multimodality medical image fusion provides a composite
image containing all the crucial information present in the
source images. It is widely used in diagnosis, treatment plan-
ning, and follow-up studies of various diseases. It helps in
precise localization and delineation of lesions. For the diagno-
sis and treatment planning of certain diseases, information
provided by more than one imaging modality would be re-
quired as each medical imaging modality is having its own
strengths and limitations. Anatomical imaging modalities like
X-ray computed tomography (CT), magnetic resonance imag-
ing (MRI), and ultrasound imaging provide morphologic de-
tails of the human body. Whereas, functional imaging modal-
ities like single photon emission computed tomography
(SPECT) and positron emission computed tomography
(PET) provide metabolic information without anatomical con-
text. By the fusion of functional image with an anatomical
image, it is possible to provide anatomical correlation to the
functional information. This is used in oncology for tumor
segmentation and localization for radiation therapy treatment
planning [1]. Fusion of CT with MRI images is used in
brachytherapy treatment planning [2].

Medical image fusion has been widely explored, and many
schemes have been proposed by researchers. Depending on
the technique used, these can be classified into the following
categories: methods based on dimensionality reduction tech-
nique such as principle component analysis (PCA), morpho-
logical operators-based methods, fuzzy logic-based methods,
neural network (NN)-based methods, and multi-scale
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decomposition transform-based methods or transform domain
methods [3].Multi-scale top hat transform-based image fusion
algorithm is proposed in [4]. These morphological operator-
based algorithms are sensitive to structuring element used to
extract image features, and there is possibility of introduction
of artifacts into the fused image. The performance of fuzzy
logic-based algorithms [5] is dependent on the selection of
membership functions, and the membership functions have
to be varied depending on the modalities to be fused. In case
of NN-based algorithm [6], images are segmented or divided
into blocks of fixed sizes, and then they are fused. These
methods are sensitive to segmentation algorithm or the block
size [7, 8]. Functional and anatomical image fusion based on
PCA and intensity hue saturation (IHS) color model has been
proposed in [9]. This method suffered from spectral distortion
because of the nonlinear IHS color model. PET-MRI fusion
based on color tables has been tested in [10], and this method
presents the functional information in different color palette.
PET-CT fusion based on features in spatial domain is reported
in [11]. This method is easy to implement. However, color
palettes of source functional image and fused image are dif-
ferent in this case. Among the aforementioned techniques,
transform domain image fusion methods are more feasible
for medical image fusion. Because it is possible to extract
image features of different resolutions and directions into dif-
ferent sub-bands using transform and combine these sub-
bands in accordance with their characteristics. In transform
domain image fusion methods, the major influencing factors
are selection of multi-scale decomposition (MSD) transform
and the coefficient fusion schemes. The MSD transforms like
discrete wavelet transform (DWT), curvelet transform (CVT),
and contourlet transform (CNT) do not provide better image
fusion performance as they are shift variant transforms. Due to
subsampling operation in the construction of these transforms,
some information would be lost, and blocking artifacts would
be introduced in the fused image. Again, due to up-sampling
in their reconstruction, the error incurred would be enlarged.
Hence, shift-invariance property of MSD resulting from elim-
ination of down-samplers and up-samplers are very much es-
sential for image fusion. One of the shift invariant MSD trans-
forms is nonsubsampled contourlet transform (NSCT). It is
able to represent the smoothness along the edges or contours
properly. However, its high computational complexity im-
pedes its use for medical image fusion. Nonsubsampled
shearlet transform (NSST) [12, 13] is a shift invariant MSD
transform that has high directional sensitivity and having less
computational complexity compared to NSCT. These features
of NSST are suitable for medical image fusion application.
After fixing the MSD transform for directional decomposition
of source images, the next step is to design the fusion rules for
combining the coefficients of different sub-bands.

Fusion rules based on different strategies have been tested
by researchers. These could be classified into fusion rules

based on saliency measures, neural networks, and fuzzy logic.
Entropy of square of the coefficients and sum of modified
Laplacian has been used in NSCT domain [14]. Energy and
regional feature-based fusion rules have been adapted in
NSCT domain [15]. Regional energy and contrast feature-
based fusion rules in NSST domain have been utilized in
[16]. Directional vector norm and band-limited contrast-based
fusion rules in NSST domain have been proposed in [17].
Non-classical RF model-based fusion rules in NSST domain
have been tested in [18]. Fusion outcome of all these methods
suffered from poor contrast and loss of information related to
one of the source images. A special type of neural network
inspired by the cat’s visual cortex called pulse-coupled neural
network (PCNN) [19] has been applied for image fusion. The
temporal synchronous pulse output of PCNN contains valu-
able information for many image-processing applications. The
PCNN used in multi-resolution transform domain is promis-
ing for medical image fusion application. In the past years,
researchers have used PCNN-based fused rules in transform
domain. The basic PCNN model is utilized in NSCT domain
[20]. Modified spatial frequency-motivated PCNN has been
adapted in NSCT domain [21]. PCNN with adaptive-linking
strength based on spatial frequency has been used in NSST
domain [22]. Unit-linking PCNN with contrast-based
linking strength has been used in [23]. The modified
models of PCNN such as dual-channel PCNN [24, 25],
intersecting cortical model (ICM) [26], and spiking corti-
cal model (SCM) [27, 28] have been used for image fu-
sion. However, in these state-of-the-art methods, external
stimulus to PCNN for approximate and detail sub-bands is
normalized coefficient value. PCNN-based fusion rules
for both types of sub-bands have been modeled in the
same way. In fact, the information present in approximate
and detail sub-bands is different. The normalized coeffi-
cient value used to motivate PCNN in LF sub-band fusion
leads to blur and loss of details in the fused image. In the
present work, this point is taken into consideration, and a
suitable feature is used to motivate the PCNN-processing
LF sub-band. Values of other parameters of the PCNN are
chosen based on the task to be performed by them in the
network to get optimum performance.

Rest of the paper is organized as follows. PCNN neuron
model used in the proposed method is discussed in section
BSimplified Adaptive PCNN Model^. The proposed ana-
tomical image fusion method is described in section
BProposed Anatomical Image Fusion Method^. Extension
of this method to functional and anatomical image fusion is
described in section BFunctional and Anatomical Image
Fusion^. The BResults and Discussions^ section is divided
into three subsections for clarity: BMethods Used for
Comparison^, BCT-MRI Image Fusion Results^, and
BSPECT-MRI Image Fusion Results^. Finally, conclusions
are drawn in the BConclusions^ section.
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Simplified Adaptive PCNN Model

PCNN is a laterally connected two-dimensional network
of pulse-coupled neurons that have one to one correspon-
dence with pixels of the image. The basic model of PCNN
has more number of parameters and its detailed descrip-
tion is available in [27]. It is practically difficult to set the
optimum value for each parameter. Hence, in the present
work, PCNN is simplified in such a way to reduce the
number of parameters to be adjusted. On other hand, all
the unique capabilities of the PCNN are retained in this
simplified model. Structure of the simplified adaptive
PCNN neuron model adapted in the present work is
depicted in Fig. 1. This consists of three fields: receptive
field, modulation filed, and pulse generator. The receptive
field comprises of two input parts: feeding input and
linking input. Feeding input Fij[n] given by Eq. (1) is
the channel through which external stimulus Sij and the
output from neighboring neurons Yijkl[n] fed to the center
neuron. Linking input Lij[n] given by Eq. (2) is another
channel through which neighboring neurons coupled to
the center neuron.

Fi j n½ � ¼ Si j þ
X 1

k¼−1

X 1

l¼−1
WklY ijkl n−1½ � ð1Þ

Li j n½ � ¼
X 1

k¼−1

X 1

l¼−1
MklY ijkl n−1½ � ð2Þ

Where, W and M are the synaptic weight matrices.
In the modulation field, the feeding and linking inputs

are modulated in the second order fashion to obtain the
total internal activity Uij[n] of the neuron as described in
Eq. (3).

Ui j n½ � ¼ Fi j n½ � 1þ βi jLi j n½ �� � ð3Þ

βij is the linking strength of the ijth neuron of the
network.

In pulse generator part, internal activityUij[n] of the neuron
is comparedwith its internal threshold θij[n], and the pulse will
be generated at the instances when the internal activity crosses
the threshold value.

Y i j n½ � ¼ 1 if Ui j n½ �≥θi j n½ �
0 otherwise

�
ð4Þ

Threshold value is updated each iteration according to
Eq. (5).

θi j n½ � ¼ αθi j n−1½ � þ vY i j n−1½ � ð5Þ

Where α is threshold decay constant, and v is threshold
magnifying constant.

The timematrix which holds the first firing instance of each
neuron in the PCNN is described in Eq. (6). This holds im-
portant information, and it is used as output of PCNN in the
present work.

Ti j n½ � ¼ n if Y i j n½ � ¼ 1 for the first time
Ti j n−1½ � otherwise

�
ð6Þ

PCNN parameters are set to the following values:

I. Synaptic weight matrices (W and M): The synaptic weight
matrix couples the neighboring neurons to the center neu-
ron. Generally, neighboring neurons close to the center neu-
ron must be coupled with more weight than neighboring
neurons far away. Hence, it is reasonable to make the syn-
aptic weight matrices to be dependent on the Euclidian dis-
tance from the center neuron. As the synaptic weight matri-
cesW andM in the feeding input Fij[n] given in Eq. (1), and
linking input Lij[n] given in Eq. (2), respectively, serve the
same purpose, they are set to the same value given in Eq. (7).

W ¼ M ¼
0:1035 0:1465 0:1035
0:1465 0 0:1465
0:1035 0:1465 0:1035

2
4

3
5 ð7Þ

II. Linking strength (β): Linking strength β modulates the
linking input and feeding input to form total internal activ-
ity as given in Eq. (3). In order to get high internal activity
from regions having remarkable features than the low ac-
tivity regions, it is intuitive to use variable linking strength
instead of using constant linking strength for all neurons in
PCNN. Sum of directional gradients (SDG) feature at each
location is used as the linking strength of the neuron pres-
ent in the corresponding location.

The sum of directional gradients of a function I(x, y) is
defined as:

SDG I x; yð Þ½ � ¼ dg1þ dg2þ dg3þ dg4 ð8ÞFig. 1 Neuron structure of simplified adaptive PCNN model
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dg1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ−I x−1; yð Þð Þ2 þ I x; yð Þ−I xþ 1; yð Þð Þ2

q
ð9Þ

dg2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ−I x; y−1ð Þð Þ2 þ I x; yð Þ−I x; yþ 1ð Þð Þ2

q

ð10Þ

dg3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ−I x−1; y−1ð Þð Þ2 þ I x; yð Þ−I xþ 1; yþ 1ð Þð Þ2

� �.
2

r

ð11Þ

dg4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ−I x−1; yþ 1ð Þð Þ2 þ I x; yð Þ−I xþ 1; y−1ð Þð Þ2

� �.
2

r

ð12Þ

III. Threshold decay and magnifying constants: Threshold
θij[n] of each neuron is updated by Eq. (5) every iteration
of PCNN. The two parameters, threshold decay (α) and
magnifying (v) constants, control the pulsing frequency
of neurons. If the neuron has not pulsed, then threshold is
reduced by a factor of α each iteration to reach to the
internal activity so that neuron may get fired. To get
moderate pulsing frequency, α is made equal to 0.75.
Once the neuron fired, then threshold would be increased
by an amount v. Hence, v is set to 20 a large value in
order to avoid firing of neurons more number of times
during PCNN processing.

IV. Number of iterations: Number of iterations of PCNN is
chosen adaptively. PCNN is iterated until all the neurons
fired once. The ordinal value of the iteration in which the
lost neuron fired gives the total number of iterations.

Proposed Anatomical Image Fusion Method

Although PCNN can be used to fuse the image pixels directly
in spatial domain, usage of PCNN in multi-scale decomposi-
tion transform (MSDT) domain gives better results, because
MSDT visualizes image feature of different orientations and
d i f f e ren t reso lu t ions . Among ex i s t ing MSDTs ,
nonsubsampled shearlet transform (NSST) has important
characteristics of shift invariance and high directional sensi-
tivity at lower computational complexity. In the present work,
image fusion is performed in NSST domain. More details of
NSST are available in [12, 29]. The proposed image fusion
frame work is depicted in Fig. 2. The two source images A and
B are represented in approximate/low-frequency (LF) sub-
bands and directional/high-frequency (HF) sub-bands of var-
ious scales using NSST. The LF sub-bands AL and BL of
source images A and B are combined to obtain fused LF
sub-band FL using PCNN-based fusion algorithm in which

sum of variation in squares (SVS) feature described in
Eq. (14) is fed as external stimulus (SLX, X=A or B) to the
PCNN. The HF sub-bands AHF and BHF of the source images
A and B, respectively, are combined using PCNN-based fu-
sion algorithm in which coefficient absolute value (CAV) is
fed as external stimulus (SHFX, X=A or B) to the PCNN. PCNN-
based fused algorithm is described in the following subsec-
tion. Inverse NSST of fused sub-bands gives the fused image
(F).

PCNN-Based Fusion Algorithm

I. Initialize the PCNN: Feeding input F, linking input L,
output Y, and time matrix T of PCNN shown in Fig. 1
initialized to zero. Threshold θ is initialised to one to
avoid void iterations.

II. Compute the linking strength β: At each coefficient of
the sub-band, calculate the sum of directional gradients
(SDG) feature using Eq. (8) and give it to PCNN as its
linking strength β.

III. Feed the PCNN: External stimulus S to the PCNN is
made different for LF and HF sub-band fusion in view
of type of information present in these sub-bands. LF
sub-band is a smooth version of the image and it contains
most of the signal energy. Hence, the sum of the varia-
tion in squares of the coefficients (SVS) is fed as external
stimulus to PCNN-processing LF sub-band. SVS feature
is calculated by using Eqs. (13) and (14).

Let C(u, v) be LF sub-band coefficient at location
(u, v). The variation in the square of the coefficients
in 3×3 neighborhood is defined as (13).

vs C u; vð Þ½ �

¼
X 1

m¼−1

X 1

n¼−1
C u; vð Þ2−C uþ m; vþ nð Þ2

� ���� ���
ð13Þ

Sum of variation in squares of coefficients at location
(u, v) is defined in Eq. (14).

svs f C u; vð Þ½ �

¼
X 1

i¼−1

X 1

j¼−1
w iþ 1; jþ ið Þvs C uþ i; vþ jð Þ½ �

ð14Þ

w ¼ 1

16

1 2 1
2 4 2
1 2 1

2
4

3
5 ð15Þ

HF sub-bands hold the detail information present
in the image. Hence, coefficient absolute value
(CAV) is fed as external stimulus to PCNN-
processing HF sub-bands.
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IV. Obtain the time matrix T: Iterate each PCNN using
Eqs. (1–5) until all neurons fire. Save the time ma-
trices of PCNN-processing LF sub-bands AL and BL

of source images A and B as TLA and TLB, respective-
ly. Similarly, time matrices of PCNN-processing HF
sub-band of rth scale and dth direction Ar,d and Br,d

of source images A and B as Tr,dA and Tr,dB,
respectively.

V. Derive the fused sub-bands: At each location of the sub-
band, the source image coefficient which has fired earlier
is selected. Fused LF sub-band FL is obtained by the
Eq. (16).

FL i; jð Þ ¼ AL i; jð Þ if TL
A i; jð Þ≤TL

B i; jð Þ
BL i; jð Þ otherwise

�
ð16Þ

Fused HF sub-band of rth scale and dth direction is
obtained by the Eq. (17).

Fr;d i; jð Þ ¼ Ar;d i; jð Þ if Tr;d
A i; jð Þ≤Tr;d

B i; jð Þ
Br;d i; jð Þ otherwise

�
ð17Þ

Functional and Anatomical Image Fusion

Functional image is a low-resolution pseudocolor image in
which color of the image holds the most vital information such
as metabolic activity or blood flow etc., depending on the
organ being imaged. However, anatomical image is a high-
resolution grayscale image that gives the structural informa-
tion. Fused functional and anatomical should have the same
color as that of the functional image and all the details of
anatomical image. One of the promising approaches to
achieve this is fusion in de-correlated color model. So far,
nonlinear IHS (NIHS) color model [30] and lαβ [31] color
models have been used for medical image fusion application.
NIHS color model introduces new colors in the fused image,
but it is able to preserve the anatomical details with good
contrast. lαβ color model has better de-correlation of chro-
matic and achromatic information, thereby, it does not incur
any spectral distortion or change in color information.
However, it does not provide good contrast for spatial details.
To get better spectral and spatial characteristics, improved
nonlinear IHS color model (INIHS) [32] is adapted in the
present work for the first time for medical image fusion

Fig. 2 Schematic of proposed
anatomical image fusion method
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application. INIHS color model does not incur color gamut
problem after fusion with an anatomical image. In INIHS
color model, all the desired intensity changes can be achieved
with the contrast being well maintained by adjusting the satu-
ration to be within the maximum attainable range.

The proposed functional and anatomical image fusion tech-
nique is depicted in Fig. 3. The functional image which is in
RGB color model is converted to INIHS color model.
Thereby, we get intensity component (i), hue component (h),
and saturation component (s). Before fusion of the intensity
component with anatomical image, it is very important to
normalize the intensity range of anatomical image (A) with
that of the intensity component (i) of functional image. If A
is an anatomical image, then normalized anatomical image
Anew is given by Eq. (19).

A1 ¼ A−minimum of Að Þ= maximum of A−minimum of Að Þ
ð18Þ

Anew ¼ A1 maximum of i−minimum of ið Þ þminimum of i ð19Þ

This new anatomical image Anew is fused with intensity com-
ponent by the proposed anatomical image fusion method to
obtain inew containing all the details of anatomical image. The
inew, the original hue (h), and saturation (s) components convert-
ed to RGB color model give the fused image (F). Detail proce-
dure of converting RGB color model to INIHS color model and
INIHS color model to RGB color model is available in [32].

Results and Discussions

All simulations are done in Matlab7.1 on PC with Intel core2
Duo 3 GHz. In the proposed method, a number of NSST
decomposition levels are set to 3 with 4, 8, and 8 directions

from coarse to fine scale. The shearing filter width is set to 8,
16, and 16. The Bpyr^ filter is used as pyramidal filter. All the
PCNN parameters are set as discussed in section 2. Extensive
experiments have been conducted on 9 sets of CT-MRI im-
ages and 5 sets of SPECT-MRI neurological images of differ-
ent pathologies to test the performance of the proposed meth-
od and its extension to functional-anatomical image fusion.
All these pre-processed and registered datasets have been col-
lected from http://www.med.harvard.edu/aanlib/home.html.
Both quantitative and qualitative analysis has been done on
experimental results. This section discusses the methods used
for comparison, performance indexes used for quantitative
evaluation, CT-MRI image fusion results, and SPECT-MRI
image fusion results.

Methods Used for Comparison

The proposed method denoted as M6 is compared with the
following five latest methods. NSST-based method with non-
classic receptive field-based fusion rule [18] denoted as M1.
Improved intersecting cortical model-based fusion rule
adapted in NSST domain [26] denoted as M2. Energy and
contrast-based fusion rules utilized in NSST domain [16] de-
noted as M3. An improved dual-channel PCNN-based fusion
rule adapted in NSCT domain [25] denoted asM4. The spatial
frequency-linked PCNN in NSST domain [22] denoted as
M5. The parameter setting of these methods is done as per
the details given by the corresponding references.

In order to prove the effectiveness of the improved nonlin-
ear IHS (INIHS) color model, the proposed image fusion
method for functional and anatomical images, is compared
with the following NIHS color model-based methods. A sim-
ple NIHS color model-based method in which intensity com-
ponent of functional image is replaced with anatomical image
[30] denoted as m1. Image fusion method of references [16,
22, 25, 26] in NIHS color model domain denoted as m2, m3,
m4, and m5, respectively. The proposed functional-
anatomical image fusion method is denoted as m6.

Performance Indexes

I. Mutual information based index (MI): Mutual informa-
tion between fused image and the two source images is
calculated and then added [14].

II. Spatial frequency (SF): Spatial frequency [14] of fused
image asses its activity level.

III. Standard deviation (STD): Standard deviation of fused
image measures its clarity.

IV. Edge information-based quality index (Qab/f) [33]:
Xydias and Petrovic proposed an image fusion quality
index that quantifies the amount edge information trans-
ferred from source images to the fused image [33]. In
case of anatomical image fusion (CT-MRI image

Fig. 3 Schematic of proposed functional and anatomical image fusion
frame work
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fusion), Qab/f is calculated between fused image and
the two anatomical images. In case of functional-
anatomical image fusion, it is calculated for each spec-
tral band of the functional image separately and then
averaged.

V. Q, Qw, and Qe: Gemma Piella et al. [34] proposed three
image fusion quality indexes based on universal image
quality index [35]. These quality indexes quantify the
similarity without structural distortion between the
fused and the original images. These have a dynamic
range of 0 to 1.

VI. Bias: Bias quantifies the spectral distortion in case
of functional and anatomical image fusion. Bias is
the absolute difference in the means of functional
image and fused image in all spectral bands relative
to the mean of the functional image. The less value
of bias implies less spectral distortion and better
fusion quality.

Bias ¼ 1

3

X3

k¼1

abs f k−Fk

� �
f k

f k , and Fk are the mean values of kth spectral band of
functional image and fused image, respectively.

VII. Filtered correlation coefficient (FCC) [36]: This quality
index quantifies the anatomic detail information in func-
tional and anatomical fused image. Fused and anatomi-
cal images are high pass filtered using laplacian filter
mask. Correlation coefficient between each filtered
fused image spectral band and filtered anatomical image
is calculated, and then averaged to get filtered

correlation coefficient (FCC) or high correlation coeffi-
cient [36]. Range of FCC is 0 to 1.

CT-MRI Image Fusion Experimental Results

Image fusion methods are tested on nine CT-MRI image pairs
of different cases. Case 1 is an acute stroke case is shown in
Fig. 4. Patient of this case had difficulty in reading. Cases 2 to
9 are shown in Fig. 5. Case 2 is an acute stroke case presenting
as speech arrest. The MRI image of this case reveals infract
having ribbon like geometry. Case 3 is hypertensive enceph-
alopathy. Case 4 is a multiple embolic infractions case. Case 5
is a fatal stroke case in which enlarged right pupil can be seen.
Case 6 is a metastatic bronchogenic carcinoma, and the MRI
image of this case reveals a large mass with surrounding ede-
ma in left temporal region. Cases 7, 8, and 9 are meningioma,
sarcoma, and cerebral toxoplasmosis cases, respectively. All
these nine image pairs are of size 256×256 and are in 256
grayscale format.

Visual Evaluation of CT-MRI Fusion Results

Visual evaluation of CT-MRI fusion results is performed with
respect to the following aspects. Ability of fused image to
retain hard tissue information present in the CT image and soft
tissue information present in the MRI image with the same
contrast as that of the source images. Structural distortion
introduced into the fused image is tested. Ability of fused
image to present the pathology of the source images clearly
without any distortion is observed. The usefulness of fused

Fig. 4 CTand MRI image fusion results of case 1: a CT image, bMRI image. Fused image by cM1 [18], dM2 [26], eM3 [16], fM4 [25], gM5 [22],
and h the proposed method M6

J Digit Imaging (2016) 29:73–85 79



image for clinical applications is evaluated. Fused images of
acute stroke case that is case 1 by all the six methods including
proposed method is presented in Fig. 4. The visual inspection
of fused images reveals the following facts. Fused image by
M1 shown in Fig. 4c retained the details of CT and MRI
images. However, contrast is poor and few structures are dark-
ened. Fused image by M2 shown in Fig. 4d is able to hold all
the details ofMRI image, but hard tissues present in CT image
are lost. Fused image by M3 shown in Fig. 4e retained the CT

image details clearly, but it has not maintained the desired
contrast for soft tissues of MRI image. Fused image by M4
shown in Fig. 4f has the details of CT and MRI image.
However, both details are blurred. Even though, fused image
by M5 shown in Fig. 4g maintains good contrast for soft and
hard tissues of MRI and CT; there are discrepancies in few
tissues or structures compared to the original images. Fused
image by the proposed method M6 shown in Fig. 4h pre-
sented all the details of MRI and CT images clearly without

Fig. 5 CTandMRI image fusion results of cases 2 to 9: aCT images, bMRI images. Fused images by cM1 [18], dM2 [26], eM3 [16], fM4 [25], gM5
[22], and h the proposed method M6
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any type distortions. The pathology which is infarct in this
case is presented clearly in the fused image by M6. Similar

performance is perceived for the remaining 8 cases (cases 2
to 9) shown in Fig. 5.

Fig. 6 Quantitative evaluation of CT-MRI image fusion results with respect to a mutual information-based index (MI), b spatial frequency (SF), c
standard deviation (STD), and d edge information-based index (Qab/f) [33]. UIQI-based indexes [34] e Q, f Qw, and g Qe
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Quantitative Evaluation of CT-MRI Image Fusion Results

Quantitative comparison of image fusion methods for all 9
cases of CT-MRI images is reported in Fig. 6. The mutual
information based quality index (MI) [14] indicates the
amount of information contained in the fused image about
the source images. The larger the value of MI indicates better
fusion quality. Comparison with respect to MI is depicted in
Fig. 6a. For most of the cases, proposed method M6 exhibited
better performance compared to all other methods with respect
to MI. The method M1 showed poor performance with
respect to MI. Spatial frequency (SF) index specifies the
overall activity of fused image. The proposed method
M6 showed superior performance with respect to SF
by giving the highest value of SF for all cases com-
pared to other methods as evident from Fig. 6b. M2
showed poor performance in terms of SF.

The standard deviation (STD) index reveals the clarity of
the fused image and the comparison with respect to STD is
reported in Fig. 6c. The maximum value of STD is achieved
by M6 for all the cases. This implies that the over clarity of
fused images by the proposed method is better compared to
that of other methods. The edge information-based quality
index Qab/f represents the amount of edge details carried
from source images to the fused image. It has a dynamic
range of 0 to 1. The value 0 indicates the complete loss of
edge information. The comparison with respect to Qab/f
[33] is shown in Fig. 6d. For most of the cases, proposed
method achieved the maximum value compared to other
method. This implies that the fused images by proposed
have maximum edge information compared to that of other
methods. Comparison with respect to UIQI-based indexes
Q, Qw, and Qe [34] is shown in Fig. 6e–g, respectively. All
these three indexes have dynamic range of 0 to 1. As quality
indexes reach 1, fusion quality would be the best. The index Q
reveals the amount of salient information transferred from
source images without structural distortion in the fused image.
Method M4 and M6 showed better performance with respect
to this index. The quality index Qw measures the amount
salient information by giving more weightage to the percep-
tually important regions in the image. The quality index Qe
gives importance to edge information. The proposed method
M6 showed superior performance by achieving the maximum
value of Qw and Qe for all cases compared to other methods.
The average value of each quality index calculated by consid-
ering 9 CT-MRI cases is shown in Table 1. The best value of
each quality index is highlighted. From this analysis, it is
evident that the proposed method M6 gives superior perfor-
mance compared to other methods.

Fig. 7 SPECT-MRI fusion results of case 1: aMRI image, b SPECT image. Fused image by cm1 [30], dm2 [26], em3 [16], fm4 [25], gm5 [22], and h
the proposed method m6

Table 1 Quantitative comparison of CT-MRI image fusion results by
different image fusion methods

Quality index M1 M2 M3 M4 M5 M6

MI 2.605 2.883 2.804 2.743 2.861 2.955

SF 28.862 19.052 29.469 29.480 23.156 33.091

STD 68.000 76.402 84.335 74.037 83.680 85.907

Qab/f 0.500 0.417 0.483 0.540 0.443 0.542

Q 0.488 0.727 0.808 0.813 0.774 0.816

Qw 0.672 0.468 0.737 0.734 0.706 0.793

Qe 0.490 0.124 0.554 0.598 0.477 0.692

The best value of respective quality index is in bold entry
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SPECT-MRI Image Fusion Results

The proposed functional-anatomical image fusion method is
tested on 5 SPECT-MRI cases. The first case which is a sub-
acute stroke case is reported in Fig. 7. The SPECT image of
this case presented in Fig. 7b shows hyper-perfusion in the
right posterior parietal. Remaining cases 2 to 5 are presented
in Fig. 8a, b. Case 2 is a stroke (aphasia) case. In the MRI
image of this case, there are several areas of increased signal

abnormality. SPECT image of this case showed the increased
uptake of Thallium radioactive tracer representing the acute
infraction in the left middle cerebral artery. Case 3 is cavern-
ous hemangioma case in which SPECT images were made
with Technetium-labeled red blood cells. Mixed signal in the
MRI image of this case represents angiomas. Case 4 is ana-
plastic astrocytoma case. High tumor Thallium uptake in
SPECT image indicates left parietal anaplastic astrocytoma.
Case 5 is astrocytoma case in which MRI image shows cystic

Table 2 Quantitative analysis of
SPECT-MRI fusion results by
different methods

Case Quality
index

m1 m2 m3 m4 m5 m6

1 Bias 0.907 0.906 0.771 0.859 0.782 0.742

FCC 0.695 0.696 0.671 0.699 0.513 0.782

Qab/f 0.508 0.514 0.486 0.482 0.413 0.539

2 Bias 1.167 1.167 0.944 0.848 1.068 0.880

FCC 0.734 0.734 0.663 0.727 0.571 0.763

Qab/f 0.446 0.474 0.431 0.462 0.402 0.585

3 Bias 2.540 2.540 1.514 1.943 2.026 1.380

FCc 0.330 0.330 0.290 0.320 0.213 0.405

Qab/f 0.221 0.263 0.304 0.369 0.355 0.453

4 Bias 2.786 2.786 2.070 2.100 2.373 1.749

FCC 0.339 0.339 0.303 0.410 0.210 0.499

Qab/f 0.233 0.256 0.287 0.346 0.355 0.464

5 Bias 29.867 29.866 17.468 20.370 29.627 19.781

FCC 0.488 0.488 0.428 0.563 0.370 0.744

Qab/f 0.316 0.392 0.319 0.430 0.404 0.724

The best value of respective quality index is in bold entry

Fig. 8 SPECT-MRI fusion results of cases 2 to 5: aMRI images, b SPECT images. Fused images by cm1 [30], dm2 [26], em3 [16], fm4 [25], gm5
[22], and h proposed method m6
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elements in a left occipital region, and SPECT image obtained
with Thallium radioactive tracer shows an anterior border of
high uptake. The visual and quantitative analysis of SPECT-
MRI fusion results is discussed in the following subsections.

Visual Analysis of SPECT-MRI Fusion Results

SPECT image is a low-resolution pseudocolor image.
Different levels of uptake of radioactive tracer are represented
with different colors in SPECT image. MRI image is a high-
resolution grayscale image presenting the anatomical details.
Fused image of SPECT and MRI image should retain all the
anatomical details of MRI image without altering the func-
tional content that is without changing the color of SPECT
image. Any change in the color of fused image compared to
functional image is known as spectral distortion and loss of
anatomical details is known as spatial distortion. Fused im-
ages of case 1 by different methods are illustrated in Fig. 7.
Spectral distortion is evident in the fused images by methods
m1 tom5 presented in Fig. 7c–g. The hyper-perfused region is
changed to black color in fused images by m1 and m2, which
is originally in white color in SPECT image. Non-functional
region is presented as green color in fused images by m1 to
m5. Because, methods m1 to m5 are based on NIHS color
model, in which the changes made in intensity, the component
during fusion process affects the spectral content. However, in
the fused image by proposed method m6 presented in Fig. 7h
retained the functional information. Anatomical details in
fused images by m4 and m5 are smoothed. Proposed method
m6 presented the anatomical details with good contrast. Fused
images of cases 2 to 5 are presented in Fig. 8. Fused images by
methods m1 to m5, spectral distortion is evident in non-
functional area of SPECT images, whereas, in fused image
by proposedmethodm6 shown in Fig. 8h, pathological tissues
and other tissues are presented clearly.

Quantitative Analysis of SPECT-MRI Fusion Results

Quantitative analysis of SPECT-MRI image fusion for the 5
cases is presented in the Table 2. The best value of each qual-
ity index in each case is highlighted. To assess the spectral
distortion incurred by various image fusion methods, bias in-
dex is adapted. Bias measures the absolute difference in the
means of fused image and functional image relative to the
mean of functional image. Hence, low value of bias indicates
that the spectral distortion is low and fusion quality is better.
Minimum value of bias is achieved by proposed method m6
for cases 1 to 4. This implies that spectral distortion is less in
proposed method compared to other methods. Spatial distor-
tion is quantified by filtered correlation coefficient (FCC) and
edge information-based performance index (Qab/f). Proposed
method achieved highest values for these quality indexes
compared to other methods. This indicates that anatomical

details of MRI images are better preserved in proposed com-
pared to others.

Conclusions

Multimodality medical image fusion method utilizing simpli-
fied adaptive PCNNmodel in NSST domain is proposed. The
high directional sensitivity and shift-invariance property of
NSST helps in extracting more directional information with-
out introducing artifacts. Directional gradient feature at each
location is used as the linking strength of the PCNN at corre-
sponding locations. The adaptive PCNN-processing low-fre-
quency and high-frequency sub-bands are motivated by dif-
ferent features consistent with the characteristics of corre-
sponding sub-bands. The proposed method is compared with
five state-of-the-art image fusion methods. A set of nine pairs
of CTandMRI neurological images of different pathologies is
used for testing the proposed method. Visual analysis of CT
and MRI image fusion results proved that the proposed meth-
od is able to retain the salient information of CT and MRI
images with good contrast compared to other methods.
Quantitative comparison with respect to mutual information-
based quality index, spatial frequency, standard deviation,
edge information-based quality index, and UIQI-based quality
indexes proved the superiority of proposed method over other
methods.

The proposed method is extended for functional and ana-
tomical image fusion in improved nonlinear IHS (INIHS) col-
or model. INIHS color model does not incur color gamut
problem and this helps in retaining the spectral information
of functional image in the fusion process. The proposed func-
tional and anatomical image fusion method is compared with
five other methods. Set of five SPECT and MRI neurological
images is used for testing. Visual analysis of SPECT and MRI
fusion results reveal that the fused images by proposed meth-
od retain the color information of original images both in
pathological regions and normal regions. In case of other
methods, hyper-perfused areas and non-functional regions of
SPECT images are changed to different colors, which ham-
pers their practical utility for the diagnosis and treatment plan-
ning. The quantitative spectral and spatial distortion measures
evidenced the superior performance of proposed functional
and anatomical image fusion method over other methods.
However, the proposed method is tested only on different
neurological disorders. Because of the usage of the PCNN in
the proposed method, computational complexity is slightly
higher.
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