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Abstract Finding optimal compression levels for diagnos-
tic imaging is not an easy task. Significant compressibility
variations exist between modalities, but little is known
about compressibility variations within modalities.
Moreover, compressibility is affected by acquisition pa-
rameters. In this study, we evaluate the compressibility
of thousands of computed tomography (CT) slices ac-
quired with different slice thicknesses, exposures, recon-
struction filters, slice collimations, and pitches. We dem-
onstrate that exposure, slice thickness, and reconstruction
filters have a significant impact on image compressibility
due to an increased high frequency content and a lower
acquisition signal-to-noise ratio. We also show that com-
pression ratio is not a good fidelity measure. Therefore,
guidelines based on compression ratio should ideally be
replaced with other compression measures better correlat-
ed with image fidelity. Value-of-interest (VOI) transfor-
mations also affect the perception of quality. We have
studied the effect of value-of-interest transformation and
found significant masking of artifacts when window is
widened.

Keywords Image compression . Image artifact . Image
quality . Image visualization . JPEG2000 . Computed
tomography . Exposure . Slice thickness . Filter type

Introduction

We reasonably expect instant access to a wealth of informa-
tion. With the Internet and cloud computing, we are also used
to very efficient collaboration mobile applications. However,
health-care information exchange is very slowly following
this trend. Patients’ records are still commonly handled man-
ually and spread across multiple institutions. As a result, re-
cords are not readily available or are incomplete; patients may
be required to repeat exams, which causes treatment delays
and reduces productivity.

Being aware of the financial and health implications, many
authorities around the world started laying groundwork for an
electronic health record (EHR) that will be universally acces-
sible and readily available and contains information relevant
to all aspects of patient care: demographics, contact informa-
tion, allergies, intolerances, laboratory results, diagnostic im-
aging, pharmacological and immunological profiles, etc.
Achieving this will require tremendous resources. In
Canada, for instance, the cost of providing a pan-Canadian
Electronic Health Record for each one of its 35 million citi-
zens is expected to be over $3.5 billion [1].

The implementation of high-capacity redundant data cen-
ters and the deployment of robust network infrastructures are
some of the factors that contribute to such high costs. This is
mostly due the vast amount of data produced every day by
modern diagnostic imaging devices. For instance, computed
tomography (CT) can generate image stacks containing thou-
sands of slices that can weigh more than a gigabyte.
Moreover, these images need to be archived for a very long
time, usually until the patient’s death, and remain readily
available throughout his/her life.

This issue can be mitigated with the use of data compres-
sion. Images can be losslessly compressed by up to two thirds.
Compressing to a greater extent is desirable to further reduce
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bandwidth and storage requirements, but lossy compression
introduces artifacts and distortions that, depending on their
levels, can alter diagnostic accuracy and may interfere with
image processing techniques used in computer-aided diagnos-
tic applications [2].

Estimating the impacts of these distortions is very difficult.
Images with seemingly similar characteristics that are com-
pressed using identical compression parameters can result in
very different reconstruction fidelity; some can preserve all
their diagnostic qualities, while others may become complete-
ly unusable. Because of liability issues raised by possible di-
agnostic errors caused by lossy compression, radiologists gen-
erally are not inclined to use compression techniques that
would produce visually lossy results [3]. Compression guide-
lines were introduced to enable the use of lossy compression,
but variations [4, 5] in image compressibility suggest that
broad guidelines allow only for conservative and suboptimal
compression.

The term fidelity is used throughout this paper to quantify
the accuracy of the reconstruction. On the other hand, image
quality depends on the subjective perception of an observer
and his/her ability to perform a specific task. Image quality
can also be improved with image processing techniques.

Most research on this topic was aimed at finding the maxi-
mum safe compression ratios for a given modality or organ in
order to propose guidelines for practitioners. Conversely, our
objective with this paper is to identify and raise awareness on
the limitations inherent to the reliance on compression ratios to
characterize image fidelity. To achieve this, we will study the
impact of image content and five acquisition parameters on the
compressibility of the computed tomography of a lung phantom
and we will show that those factors are more closely related to
fidelity than the compression ratio itself.Wewill also investigate
the relation between CT acquisition parameters and noise in
addition to analyzing how they affect fidelity after compression.
Finally, we will examine the effects of different value-of-interest
(VOI) transformations commonly used to adapt the high dynam-
ic range of medical images to the limited range of most displays.

Previous Work

In 2006, a survey of radiologists’ opinions on compression [3]
revealed that lossy compression was already used in the USA
for both primary readings and clinical reviews, while
Canadian institutions remained much more cautious about
irreversible compression. In the USA, two radiologists out of
five reported using lossy compression before primary reading
and all reported using lossy compression for clinical reviews.
The compression ratios that they used ranged between 2.5:1
and 10:1 for CT and up to 20:1 for computed radiography.
Comparatively, only three Canadian radiologists out of six
reported using lossy compression at all and only one reported

using compression before primary reading. Furthermore, two
of them declared using compression ratios between 2.5:1 and
4:1, which are effectively, or very close to, lossless levels.
Almost every radiologist expressed concerns regarding litiga-
tions that could emerge from incorrect diagnostic based on
lossy compressed images, and all was aware that images from
different modalities require different compression ratios. In
view of that, most radiology departments from the USA had
conducted their own tests to establish visually lossless com-
pression ratios with the assumption that imperceptible distor-
tions cannot impair diagnostic accuracy in any way.

This task of finding visually lossless compression thresh-
olds is usually done by asking trained radiologists whether
pairs of unaltered and compressed images are identical.
These studies are structured as a two-alternative forced choice
(2AFC) experiments where observers can either examine both
images side-by-side or alternate between both images to de-
termine if the distortion is perceivable or not. This exercise is
repeated with many images compressed at different compres-
sion ratios to find a visually lossless threshold for a given
modality and/or organ system. Images compressed with com-
pression ratios below this threshold are then assumed diagnos-
tically lossless. Interestingly, while performing these experi-
ments, some researchers [6–8] noticed that when radiologists
could perceive differences between both images they often
preferred the compressed version. A possible explanation for
this is that when compression ratios are increased beyond
visually lossless thresholds, acquisition noise is significantly
attenuated before the signal itself. This is supported in [8, 9]
by the absence of structures in difference images from visually
lossy image pairs indicating that noise is likely lost before any
diagnostically important information. This suggests that it
might be desirable to compress diagnostic images beyond
visually lossless levels.

The impacts of compressibility differences between differ-
ent modalities on image fidelity are widely known [2, 3, 9],
but as variations within the same modalities are not as widely
acknowledged, guidelines are often only defined on a modal-
ity basis. However, these variations can be fairly significant.
As an example, tomographic images of the chest walls are far
less tolerant to compression than those of the lung [5] and
thinner slice thicknesses are known to have adverse effects
on compressibility [10]. Because of this, recommendations
from the Canadian Association of Radiologists (CAR) specify
different compression ratios for different anatomical regions
and CT scans are divided in six subtypes (angiography, body,
chest, musculoskeletal, neuroradiology, and pediatric) each
with different compression ratios. However, these recommen-
dations ignore key acquisition parameters that may have sub-
stantial impacts on compression such as reconstruction kernel
[9] and slice thickness [11] that are known to reduce com-
pressibility. Researchers in [9] observed a relationship be-
tween compressibility and the relative importance of the
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energy of the lower subbands in the wavelet domain. Because
acquisition parameters are linked to lower subbands’ energy
levels, they concluded that compression ratio recommenda-
tions should not be developed on a modality or organ system
basis. Compressibility variations within images have also
been observed in [12] with a regional difference between the
lungs, chest wall, and mediastinum. Interestingly, they noted
that while the lung had lower peak signal-to-noise ratio
(PSNR), it had higher perceptual rating. More recently, they
have tried [13] to predict the perceived image quality using
only parameters extracted from Digital Imaging and
Communications in Medicine (DICOM) headers and found
that compression ratio and slice thickness are the two best
predictors. Unfortunately, they have limited their model to
these two variables even if other parameters are known to be
correlated to compressibility.

In an effort to foster the use of image compression in diag-
nostic imaging applications, researchers conducted a large-
scale pan-Canadian study [14] on irreversible compression
for medical applications. It involved 100 staff radiologists
analyzing images from several modalities. Images were com-
pressed using multiple compression ratios, and each pair was
rated using a six-point scale. Diagnostic accuracy was also
evaluated by requiring radiologists to examine images of
known pathologies. As a result, guidelines based on compres-
sion ratio were proposed for computed radiography, computed
tomography, ultrasound, and magnetic resonance, but the ef-
fects of acquisition parameters were ignored and slice thick-
ness for CT scans was restricted to 2.5 mm and higher. This
work resulted in the recommendations on irreversible com-
pression [15] that have been published by the CAR and are
used today in Canada.

Recommendations like those from well-established organi-
zations are essential, but compression ratio, on which these
ratios are usually based, is poorly correlated with image fidel-
ity [3] because deterioration levels depend highly on image
information [16] and noise [17]. The CAR acknowledged this
by providing different guidelines for different scenarios, but it
is still only a coarse approximation and image fidelity cannot
be guaranteed for a given compression ratio. Therefore, fidel-
ity metrics should be used instead of compression rate in med-
ical application [16]. Furthermore, differences in coder
implementations [5] can produce different results even when
using identical target compression ratio. Most JPEG2000
coders use the mean-squared error to regulate compression,
but this is not a requirement of the standard, which is
completely open to other implementations that could produce
completely different outcomes [18].Moreover, different codec
vendors use different compression ratio definitions, either based
on stored or allocated bits, resulting in 25 % differences [19].
The CAR does not specify which definition should be used
with its recommendations, and even if they did, radiologists
would probably be unaware of the implementation used by their

software. Because of all these factors, standardization of image
quality or fidelitymeasurement and compression parameters for
clinical applications is desirable [20].

Another issue specific to medical imaging is the high dy-
namic range. Diagnostic images usually have more than 255
(8 bits) gray levels. Visualization systems cannot display such
a wide range, but these images can be dynamically adapted
using VOI transformations [21] that can be manipulated by
the clinician in order to explore a different grayscale window.
Papers such as [4, 11, 22, 23] on diagnostic image quality have
used fixed values of interest for their evaluation. However,
diagnosis may require unpredictable settings [3] and a
narrower window can make distortions more apparent, while
a wide widow can mask them. Observers should be allowed to
freely modify [14] the value-of-interest setting as they would
in their practice; otherwise, their observation may be skewed.
Another option is to allow customization within a reasonable
range as in [24, 25]. Imposing a lower limit on window width
eliminates the case where a single and, otherwise, invisible
artifact is amplified and becomes obvious because the window
width is narrower than the display range.

Methodology

As stated above, the existence of significant compressibility
differences between imaging modalities and the variations due
to noise levels is well known. However, to our knowledge, the
impact of CT acquisition parameters, analyzed individually,
has never been thoroughly studied. This is the gap that this
experiment seeks to demonstrate.

Data

Our objective is to study two challenges related to diagnostic
image compression: the compressibility variations in comput-
ed tomography caused by different acquisition parameters and
the impact of window width on the perception of compression
artifacts. We have restricted our study to computed tomogra-
phy because it is known to be poorly compressible and gen-
erates an increasing amount of data. To achieve that objective,
multiple series of the same region of the same subject, ac-
quired with different acquisition parameters, are needed.

Acquisition parameters are available from each image
DICOM header. However, different implementations incon-
sistently report these parameters. Exposure, for instance, is not
consistently reported across different devices and reconstruc-
tion filters may not have any direct equivalent for different
hardware configurations. Moreover, the field of view and sub-
ject size, when not kept constant, make comparative evalua-
tion very difficult. For example, when the field of view is
increased for a specific subject, the easily compressible black
background fills a larger image region resulting in increased
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compressibility. For these reasons, we used multiple series of
the same subject acquired with the same equipment to ensure
that acquisition parameters are consistently reported.

Fortunately, the National Cancer Institute made many di-
agnostic image collections publicly available to encourage
and support cancer research through their Cancer Imaging
Archive project. One of these collections, labeled phantom
FDA [26], perfectly fits the requirements of our experiment.
It was developed in an effort to evaluate the effects of acqui-
sition parameters on the accuracy of automated lung nodule
size estimation algorithms used in computer-aided diagnostic
solutions. To meet their requirements, the researchers repeat-
edly scanned an anthropomorphic thoracic phantom with syn-
thetic lung nodules using different acquisition parameters.
These parameters are presented in Table 1. Parameters include
five slice thicknesses varying from 0.8 to 5 mm, three effec-
tive exposures from 25 to 200 mAs, two slice collimation
configurations, two different pitches, and two types of recon-
struction filter. Two different nodule layouts were made avail-
able through The Cancer Imaging Archive, and we have se-
lected all series, each with a different parameter combination,
of the nodule layout labeled 2. That is 23,767 individual im-
ages across 72 series. Slice thickness depends on slice colli-
mation, and only 3-mm-thick slices can be acquired with both
collimator configurations. All the series were acquired using a
Philips 16-row scanner (Mx8000 IDT; Philips Healthcare,
Andover, MA), and precautions were taken to preserve a con-
stant positioning of the phantom between acquisitions.
Figure 1 shows six images of the phantom with their slice
locations displayed in the upper left corner. The scanned area
spans about 30 cm with the slice location ranging from 90 to
389mm. Slices were acquiredwith a slice overlap of 50%; the
thinnest acquisitions (0.8 mm) had a spacing of 0.4 mm and
contained 750 images, while the thickest (5 mm) series had a
slice spacing of 2.5 mm and contained only 120 slices.

Compression

We have compressed each image with JPEG2000 using mul-
tiple compression ratios including lossless, 4:1, 5:1, 6:1, 8:1,
10:1, 15:1, and 30:1. The wide range of compression ratios
covers ratios that are normally used, except for 30:1 which is
twice the CAR-recommended ratio for CT. Our compression

ratio is calculated using the allocated file size including
headers; the codec used is an open source JPEG2000 imple-
mentation [27]. The software was able to compress high-
dynamic-range images.

Fidelity Evaluation

The fidelity of every compressed image is evaluated: using
maximum absolute difference, (1) mean-squared error
(MSE), and (2) PSNR. Maximum absolute difference is the
absolute difference of the most altered pixel using the com-
pression process.

MSE is computed with

MSE ¼ 1= MNð ÞΣiΣ j I0 i; jð Þ�I c i; jð Þ½ �2 ð1Þ

where I0 is the original image and Ic is the compressed image.
PSNR is computed with

PSNR ¼ 20log I range=
ffiffiffiffiffiffiffiffiffiffi

MSE
p� �

ð2Þ

where Irange is the range of the signal; therefore, PSNR is the
signal-to-noise ratio in decibels. We have calculated the range
of the signal in all images and found it to be 1600. Although
the bit allocated was 16 and bits stored were 12, suggesting a
dynamic range of 4096, we have used 1600 for Irange to com-
pute PSNR values.

Table 1 Acquisition parameters

Parameter Values

Slice thickness (mm) 0.8, 1.5, 2, 3, 5

Effective dose (mAs) 25, 100, 200

Filter type Detail, medium

Slice collimation (mm) 16×0.75, 16×1.50

Pitch (mm) 0.9, 1.2

Fig. 1 Image content relative to slice location. The number displayed in
the upper left corner of the image indicates the slice location
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Compressibility Evaluation

Compressibility can be evaluated by

1. Observing the file size after lossless compression com-
pared to the uncompressed file size

2. Comparing the relative image fidelity of the two different
compressed images with the same compression ratio.

With the first measure, if one image has a smaller file size,
we can conclude that it is more compressible. With the second
measure, if one image has a higher PSNR or conversely a
lower MSE than another one, we can also conclude that it is
more compressible.

Most JPEG2000 coder are designed to minimize MSE
(maximize PSNR) for a specified target compression ratio.
As a result, both proposed measures are equivalent. This is
illustrated in Fig. 2: the PSNR of all 23,767 images com-
pressed at 4:1, 5:1, 8:1, 15:1, and 30:1 plotted against their
respective lossless file size. The relation is linear except for
images compressed at 4:1 with lossless file size below 128 kB
because these images could have been compressed losslessly
using reversible filter banks. Naturally, fidelity decreases for a
given ratio when the lossless file size increases.

Statistical Analysis

In order to evaluate the impact of each acquisition parameter
on compressibility, we have used the R software [28] to per-
form statistical analysis and to fit models. Fitted models are
evaluated with the coefficient of determination (R2), root

mean-squared prediction error (PE), and Pearson correlation
coefficient (CC).

A linear regression was performed between PSNR of im-
ages compressed at 8:1 and their corresponding lossless file
sizes. The model is extremely well fitted (R2=0.99, PE=
0.13 dB, CC=0.99), indicating that both the PSNR at a fixed
compression ratio and the lossless file size can be used inter-
changeably to estimate compressibility.

Results

Impacts of Image Content

From Fig. 2, we note that

1. For a specific compression ratio, compressibility varies
for more than 20 dB for different images, suggesting that
this variation is due to image content.

2. For a given image, the fidelity decreases by only 3 dB
when a compression ratio is decreased from 6:1 to 8:1
or from 8:1 to 15:1 or from 15:1 to 30:1.

This suggests that image content, defined by slice location
and acquisition parameters, has a more significant impact on
image fidelity than compression ratios.

Figure 2 shows that 15 % of images compressed at 15:1
(point b) have a fidelity lower than the median of those com-
pressed at 30:1 (point a); likewise, 4 % of those compressed at
8:1 (point c) have a lower fidelity than the median of those
compressed. In other words, images with lossless file sizes
smaller than 155 kB, compressed at 30:1, are less degraded
than images with lossless file sizes larger than 190 kB, com-
pressed at 8:1.

Figure 3 shows the size of each losslessly compressed im-
age, plotted against slice location, for all 23,767 images. Each
series is displayed using a curve with different gray levels.
Series are acquired with different acquisition parameters.
Compressibility variations between series are very important.
For the same slice location and subject, the average lossless
file size was 116 kB in the best case and 193 kB in the worst
case, a 66 % difference.

Compressibility variations along the subject are also appar-
ent. Every series exhibits a similar behavior with respect to
slice location, and adjacent images from the same series have
similar compressibility.

Themaximum absolute difference between the original and
compressed images for the most damaged pixel is displayed in
Fig. 4. With images compressed at 15:1, the maximum abso-
lute error varies by a factor of 10; 10 % (above point b) of the
images compressed at 15:1 and 4 % of the images compressed
at 8:1 (not shown) have higher maximum absolute error than
the median of those compressed at 30:1 (point a).

cba

4:1

5:1

6:1

8:1

15: 1

30: 1

100 120 140 160 180 200 220
30

40

50

60

70

80

Fig. 2 PSNR of lossy compressed image plotted against lossless file size.
Each point represents the PSNR of an image compressed at a specific
lossy compression ratio. This PSNR is plotted against the lossless size of
that image. PSNR is directly correlated to the lossless compression image
size
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Impacts of Acquisition Parameters

Impacts on Prediction

We have shown that the image content as well as the acquisi-
tion parameters have a significant impact on compressibility
without identifying which one of the acquisition parameters
has the most significant impact. In the dataset that was used,
five parameters were varied between each acquisition; our
objective here is to study the impact of each acquisition

parameter, such as exposure. We have grouped the images in
subsets of equal exposure. In our case, we have three groups
of images: (1) acquired with 25 mAs, (2) acquired with
100 mAs, and (3) acquired with 200 mAs. For each group of
images, we have measured the file size. We show in Fig. 5
where the boxes are centered at the mean and extend between
the 25th and 75th percentiles.

When exposure increases from 25 to 100 mAs, the boxes
do not overlap. This suggests that exposure has a definitive
impact on compressibility. When exposure increases, the file
size decreases and compressibility increases.

Images have been grouped into subsets of equal thick-
nesses; box plots for thicknesses of 0.8, 1.5, 2, 3, and 5 mm
are shown in Fig. 5b. It is clear than when thickness increases,
so does compressibility.

Images where divided into two groups according to filter
type: medium and detail. Images processed with the medium
filter contain less noise but have lower spatial resolution. It is
clear from Fig. 5c that compressibility is increased with the
use of the medium filter.

Images are separated in two subsets according to slice col-
limation: 16×0.75 and 16×1.5 mm. Figure 5d suggests that
when slice collimation is decreased, compressibility increases.
Finally, images are separated into two groups according to
pitch: 0.9 and 1.2 mm. Figure 5e suggests that pitch has no
effect on compressibility.

Figures 5a, e shows box plots on the impact of each one of
these five parameters on lossless file size. These plots clearly
indicate that there is a link between exposure, thickness, filter
type, slice collimation, and compressibility. Pitch, on the other
hand, seems to have little effect. In fact, z testing indicates that
the means of both groups are statistically identical and that
pitch does not have any statistically significant impact on
compressibility. This may appear counterintuitive, and it will
be discussed later.

Impacts on Fidelity

Figure 6 shows histograms of PSNR differences between im-
ages at the same location taken from two series acquired while
varying one single parameter. The reference series was ac-
quired with an exposure of 200 mAs, a slice thickness of
5 mm, and a medium filter. This series corresponds to the best
possible compressibility in our dataset. Figure 6a shows the
impact on compressibility when reducing exposure from 200
to 100 mAs (dark gray) and from 200 to 25 mAs (light gray).
Figure 6b shows the impact on compressibility when reducing
the thickness from 5 to 3 mm, from 5 to 2 mm, from 5 to
1 mm, and from 5 to 0.8 mm. Figure 6c shows the impact
on compressibility when changing the filter from detail to
medium.

With this dataset, we observe the following:
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1. A 7 dB reduction in fidelity when exposure is reduced
from 200 to 25 mAs and a 2 dB reduction when exposure
is reduced from 200 to 100 mAs

2. A 7 dB reduction in fidelity when slice thickness is re-
duced from 5 to 0.8 mm, a 3 dB reduction when thickness
is reduced from 5 to 2 mm, and a 5 dB reduction when
thickness is reduced from 5 to 1.5 mm

3. A 2.5 dB reduction in fidelity when the detail filter is used
instead of the medium filter.

Relative Importance of Each Parameter

To evaluate the relative importance of each acquisition param-
eter on compressibility, we have fitted a quadratic model to
predict the PSNR of images compressed at 8:1 using follow-
ing equation (3):

PSNR ∼ Bi þ B f � Filter þ Bc � Collimationþ Be � Exposure
þ Bt*Thick þ Be

2 � Exposure2 þ Bt
2 � Thick2

ð3Þ

Because each acquisition parameter does not have the same
distribution in terms of average and standard deviation, we
have normalized each beta variable in Eq. 3 by subtracting
its mean and dividing by its standard deviation. Using a nor-
malized predictor, the quadratic model can be represented ac-
cording to the beta coefficients shown in Table 2. Themodel is
a well-fitted model with a coefficient of determination (R2) of
0.94, a prediction error of 1.05 dB, and a Pearson correlation
coefficient of 0.97. Beta values provide an estimation of the
relative importance of each parameter. Moreover, when
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Table 2 Beta coefficient for predicting PSNR when compressed at 8:1

Beta coefficient values

Intercept (Bi) 0.44

Exposure (Be) 0.73

Slice thickness (Bt) 0.68

Filter type (Bf) −0.34
Slice collimation (Bc) −0.05
Exposure2 (Be

2) −0.31
Slice thickness2 (Bt

2) −0.13
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considering only images located between slice locations at
150 and 300 mm, the quadratic model is even better, cutting
prediction errors by half.

Be and Bt, being larger, suggest that exposure and thickness
have the most significant impact on compressibility, followed
by filter type and slice collimation. Because of the bias intro-
duced by the covariance between predictors [29], other
methods were developed to evaluate the contribution of each
predictor to R2. By using the proportional marginal variance
decomposition (PMVD) [30], we have found 53 % of the pre-
diction provided by exposure, 34 % from slice thickness, and
13% from filter type. We have also found that slice collimation
has no effect on compressibility by itself. The covariance be-
tween collimation and slice thickness is high because collima-
tion of 16×0.75 mm has been used to acquire series with slice
thicknesses of 0.8, 1.5, and 3 mm; likewise, collimation of 16×
1.5 mm has been used only with thicknesses of 2, 3, and 5 mm.

We have fitted another model that includes a compression
ratio as a predictor, in order to compare the impact of compres-
sion ratios with other acquisition parameters. To fit the model,
we have considered compression ratios that are usually used
with CT images: 6:1, 8:1, 10:1, and 15:1. We added two terms
for a compression ratio to Eq. 3: one linear and one quadratic.

Analyzing each predictors’ relative importance with
PMVD, we found that compression ratio can only explain
28 % of the PSNR variations while exposure explains 38 %,
slice thickness 25 %, and filter type 9 %. Therefore, with this
dataset, acquisition parameters affect the compression fidelity
significantly, more so than compression ratio.

Impacts of Noise

Exposure and slice thickness are directly related to noise in
computed tomography. Noise is a key factor in image com-
pression. Noisy images are hard to compress because they
produce many small uncorrelated coefficients in high-
frequency wavelet subbands.

In our experiment, noise was estimated for each series by
calculating the variance within a uniform region of the first
slice. This uniform region of 208 by 94 pixels represents an
area of the phantom molded in urethane with a constant
Hounsfield unit value. Noise alone is a fair predictor (R2=
0.85, PE=7.3 kB) of image compressibility, and it is much
more accurate than any other single predictor. Using exposure,
thickness, filter type, and slice collimation to predict noise
yields a good fit (R2=0.90, CC=0.95). PMVD reveals that
exposure explains 67 % of noise in our highly controlled
model, slice thickness 27 %, and filter type 6 %.

Noise was added as a predictor to the quadratic model in
Eq. 3. The quality of the model was not significantly improved
because noise and the other predictors are highly correlated.
Commonality analysis [29] is used to identify the unique con-
tribution of every single parameter and the common

contribution of every possible combination of parameters to
R2. It provides separate measures for the explained variances
of each individual parameter as well as measures for the shared
variance of all combinations of parameters. It is mostly useful
when the regression contains significant multicollinearity and
suppressions as is the case with this model. Commonality anal-
ysis measures always sums to R2 which is 0.92 in this case.
Table 3 shows each contribution in percentage of R2. Exposure,
slice thickness, filter type, and noise each uniquely accounts for
less than 5 % of the compressibility variance, while noise and
exposure commonly account for 45 %, noise and slice thick-
ness for 26 %, and noise and filter type for 8 %. Slice collima-
tion has no effect on compressibility but is highly co-dependent
on slice thickness. Noise, slice collimation, and slice thickness
together account for 15 % of the total variance.

Impacts of Window/Level Transform on Image Fidelity

Image visualization requires a Bwindow and level^ transfor-
mation in order to select parts of the pixel dynamic range to
display. Standard ranges of values of interest (VOIs) are de-
fined for specific tasks and anatomical regions. CT values are
shifted and scaled to create presentation values (p values) that
fit the dynamic range of the display. These different VOI set-
tings affect the image fidelity by masking coding artifacts. To
illustrate this phenomenon, three common VOI settings were
used to transform CT values into p values: (1) abdomen, cen-
tered on 60 Hounsfield units (HU) with a window width of
400 HU; (2) lung, centered on −500 HU and spanning at
1500 HU; (3) bone, centered on 750 HU and spanning at
3500 HU. Figure 7 shows the PSNR computed on the p values

Table 3 Commonality analysis

Total

Unique to exposure 3.36

Unique to thickness 3.63

Unique to collimation 0.27

Unique to filter type 4.81

Unique to noise 5.37

Thickness and exposure −2.23
Thickness and collimation 2.26

Exposure and filter type −2.18
Noise and exposure 45.46

Noise and thickness 11.25

Noise and filter type 8.27

Noise, thickness, and collimation 15.02

Noise, exposure, and thickness 1.36

Exposure, thickness, and filter type 2.27

Exposure, filter type, and noise 2.20

Total 100.00

Entries with small contribution (<1 %) were removed
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plotted against lossless file size. The display range (Irange) con-
sidered was 256. When the abdomen is displayed with 256
gray levels, distortions are attenuated by a factor of 1.5. In that
case, a CT value difference of 3 would show up as a p value
difference of 2. On the other hand, distortions that occur outside
this range, where HU values are clamped to either 0 or 255,
would become completely invisible. Thewindowwidth used to
visualize lung is large, more than six times the display range.
Only large distortions can be noticed. The bone window is even
larger, 14 times the display range. Consequently, distortions are
significantly masked. Therefore, narrow windows can accentu-
ate distortions, while wide windows can significantly underes-
timate them. This should be carefully considered when design-
ing metrics or observer-based fidelity studies.

Discussion

Our results have shown that noise is a key factor in image
compressibility. The quantum noise found in computed to-
mography images is governed by the Poisson statistic law,
and the signal-to-noise ratio (SNR) is proportional to the
squared root of N, the number of photons [5]. With all other
acquisition parameters kept constant, the number of photons
generated by the X-ray source is directly proportional to cur-
rent and time product, in milliampere second, called exposure.
Increasing this parameter by a factor of 2 causes a 41 % in-
crease in SNR. This relation holds for slice thickness as well
since the number of photons reaching the X-ray detectors is
directly proportional to the detector size. Because of noise,

compressibility is increased with exposure and slice thickness.
Moreover, high-frequency details in the image are harder to
compress and are attenuated by the averaging over a larger
region along the z-axis, which increases with slice thickness.

In multi-slice CT scanners, the pitch is defined as the table
feed for each complete revolution of the X-ray detectors and
source. A pitch of 1 indicates a table feed equivalent to the
width of the detector array. If speed or coverage is needed,
images can be reconstructed with less than a full rotation,
resulting in pitches higher than 1. Conversely, slices recon-
structed with pitches lower than 1 are reconstructed with more
than one revolution [21], resulting in increased exposure.
Consequently, with all other parameters kept constant, the
number of photons emitted per slice is inversely proportional
to the pitch. Therefore, increasing the pitch introduces more
noise and reduces compressibility. However, multi-slice scan-
ner manufacturers usually use an alternative definition of ex-
posure that takes pitch into account—effective exposure.
Effective exposure, or mAs per slice, allows radiologists to
estimate acquisition signal-to-noise ratio with fewer parame-
ters. As a result, to keep effective current constant in our
experiment, the X-ray tube current was increased by 30 %
when the pitch was increased from 0.9 to 1.2.

Reconstruction filters are not standard across manufacturers.
However, detail filters usually accentuate high frequencies
while increasing noise. CT images of bones have high contrast
and can benefit from sharper fine details without suffering from
significant increase in noise levels. On the other hand, soft
tissues have lower contrast and it is preferable to attenuate noise
using a medium filter in spite of lower spatial resolution [21].
Therefore, detail and medium filters are commonly called bone
and soft tissue filters. Images acquired using detail filters are
less compressible because of increased high-frequency details.

Conclusion

Producing compression guidelines for medical applications is
not an easy task. Many factors affect the overall fidelity of
compressed images. Coding algorithms and compression ra-
tios are obviously important factors, but other parameters can
also have significant impacts on image fidelity and, conse-
quently, diagnostic quality. Our study showed that image con-
tent as well as acquisition parameters significantly affect im-
age compressibility of computed tomography.

Exposure appears to be the most significant parameter as it
accounted for about half of the compressibility variations,
followed by slice thickness and filter type. Noise is known
to be poorly compressible, and all the three parameters are
directly related to noise levels of the acquired image.
Smaller slice thicknesses and detail filter type are also associ-
ated with higher spatial resolution and higher frequency con-
tent; they therefore present additional challenges for image
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Fig. 7 Each point represents the PSNR computed on presentation values
obtained after applying the grayscale window transform against the
lossless file size for a specific image. The image displayed with the
abdomen window shows lower fidelity, while those presented with the
bone VOI appears to have higher fidelity

644 J Digit Imaging (2015) 28:636–645



compression. Slice collimation and pitch did not have any
effect on compressibility. Pitch did not impact noise levels
and therefore compressibility because it was taken into ac-
count in the effective exposure parameter.

Visualization transformations such as window and level
scaling can significantly alter the perception of quality. Great
care is needed while choosing VOI parameters during com-
parative study on image quality. Moreover, compression met-
rics that take into account noise and grayscale transformations
would be more suitable for medical image compression.

Finally, in light of on the body of literature, the experiment,
and the discussion presented in this paper, we recommend that
rate-based guidelines be phased out in favor to quality-based
guidelines. Future work includes proposing fidelity metrics
other than global PSNR to control the quantification step dur-
ing lossy compression.
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