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Abstract The level set approach to segmentation of medical
images has received considerable attention in recent years.
Evolving an initial contour to converge to anatomical bound-
aries of an organ or tumor is a very appealing method, espe-
cially when it is based on a well-defined mathematical foun-
dation. However, one drawback of such evolving method is its
high computation time. It is desirable to design and implement
algorithms that are not only accurate and robust but also fast in
execution. Bresson et al. have proposed a variational model
using both boundary and region information as well as shape
priors. The latter can be a significant factor in medical image
analysis. In this work, we combine the variational model of
level set with a multi-resolution approach to accelerate the
processing. The question is whether a multi-resolution context
can make the segmentation faster without affecting the accu-
racy. As well, we investigate the question whether a premature
convergence, which happens in a much shorter time, would
reduce accuracy. We examine multiple semiautomated con-
figurations to segment the prostate gland in T2ZW MR images.
Comprehensive experimentation is conducted using a data set
of'a 100 patients (1,235 images) to verify the effectiveness of
the multi-resolution level set with shape priors. The results
show that the convergence speed can be increased by a factor
of =2.5 without affecting the segmentation accuracy.
Furthermore, a premature convergence approach drastically
increases the segmentation speed by a factor of =17.9.
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Introduction

The use of level set methods has been increasing in recent
years since they do not, in contrast to active contours such as
snakes, rely on contour parametrization. This feature enables
level set segmentation to adjust better to topological changes.
As well, level set algorithms can be easily extended to higher
dimensions. In addition, they are mathematically well-
established, making them better to understand, analyze, and
implement. Furthermore, level sets are defined implicitly, so,
topological changes of the curve, such as splitting and merg-
ing, and corner and cusp development are handled much
easier than other active contour methods, such as the explicit
snakes technique [1]. However, the level-set methods propa-
gate a curve using a higher dimensional function and their
numerical solutions need small time steps to achieve stable
curve evolution [2], such that the computation time can dras-
tically increase. Hence, designing fast level set algorithms is
the goal of many recent research works including this paper.
To verify the performance of level set segmentation and in
order to assess the performance of any modification, one
needs a real-world case. Prostate imaging is needed for several
purposes, such as cancer detection and prostate volume esti-
mation for diagnosis, active surveillance, biopsy, and treat-
ment planning. For radiation therapy, for instance, generally
CT images are employed whereas in some cases, registering
MR images, in order to exploit their information via fusion
with CT scans, may also be useful. Prostate imaging using
MRI provides high soft-tissue contrast and distinction of
anatomic structures. This advantage can be exploited if we
register MR images to CT or ultrasound scans to fuse
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information from two different modalities. The manual pros-
tate segmentation in MR images is a time-consuming task.
Thus, proposing automated or semi-automated methods to
segment the prostate gland in MR images is desirable.

In this paper, a semiautomated multi-resolution level
set algorithm is used for 2D segmentation of prostate gland
in T2ZW MR images. A multi-resolution approach is used to
accelerate the convergence speed. A shape-prior method is
utilized to compensate for the weak edges and similar tissue
structures surrounding the prostate. Comprehensive experi-
mentation is conducted using a large data set of MRI prostate
images (image data of 100 patients consisting of 1,235 images
to be segmented) to verify the effectiveness of the used
method.

The paper is organized as follows: in “Prostate
Segmentation”, other works on prostate segmentation are
briefly reviewed. “Level Set for Image Segmentation” pro-
vides a background review on level set methods, using prior
shapes and existing approaches to employ multi-resolutions.
In “Multi-Resolution Level Set for Prostate Segmentation in
MR Images”, the proposed combination of level set with
shape priors and multi-resolution is laid out. “Experimental
Settings” describes the experimental settings including the
dataset, construction of the shape priors, performance mea-
sures, and implementation environment. “Results” presents
and discusses the results including, accuracy and time evalu-
ations, the effect of ROI variability, leave-one-patient-out
evaluation, and the results of a premature convergence.
“Discussion and Concluding Remarks” are presented in the
last section.

Prostate Segmentation

Because of the recent attention to prostate MR imaging, there
is only a few research works, e.g., compared to transrectal
ultrasound imaging, related to their segmentation. Statistical
shape models have been used for this purpose. For instance,
an active shape model (ASM) approach is proposed for
prostate segmentation [3]. In other paper, region-based
statistical appearance model (SAM) from texture fea-
tures is constructed and integrated with level set based
statistical shape model (SSM) for 3D MRI prostate
segmentation [4].

Several works utilize active contours for prostate segmen-
tation in MR images. Tsai et al. use a region-based level set
with shape prior to 3D segmentation of prostate MRI [5].
Snakes and region-growing are utilized in another work
for prostate, bladder, and rectum segmentation [6].
Zhang et al. propose an interactive method utilizing edge-
based level set [7]. Liu at el. compute deformable elliptical
model and use it to initialize region-based level set with shape
prior [8].
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Other researchers use probabilistic approaches. Farjani
et al. introduced a 3D segmentation technique based on the
maximum a posteriori (MAP) estimate of a log-likelihood
function consisting of three descriptors: intensity, shape prior,
and spatial interaction [9, 10]. The authors experimentally
compare their results in [9] with [5] and have achieved sig-
nificantly better performance in terms of accuracy. Makni
et al. introduced Bayesian a-posteriori segmentation based
on Markov field [11]. A statistical shape model was used as
a priori knowledge.

Various other methodologies are used for prostate segmen-
tation in MR images. For instance, semiautomatic approaches
based on atlas registration have been proposed [12, 13].
Firjany et al. segment the prostate gland by using graph cuts
to optimize an energy function constructed from intensity
level, shape information, and spatial information [14]. A
method using wavelet multi-scale products (MWP) has been
proposed as well [15, 16]. The border of prostate is found by
adaptively tracing the magnitude of WMP near the prostate
gland. Samiee et al. propose a semiautomatic approach for
prostate segmentation by computing edge direction in the
region around prostate [17]. By transforming prostate image
into polar space, Zwiggelaar et al. segment the prostate by line
detection and non-maximum suppression [18]. Sahba
et al. [19, 20] use locally adaptive enhancement [21] and
Kalman filter to segment the prostate gland. Rahnamyan
et al. [22] focus on automated initialization of snakes, whereas
Bustince et al. [23] use ignorance functions for prostate
thresholding.

Prostate MR imaging provides high sensitivity and contrast
supporting a better visual inspection by clinicians.
Segmentation of MR images, however, can be more difficult
due to their richness and the presence of many edges. We use
prostate MR images, both with and without endo-rectal coils,
to verify the hypothesis whether combining a multi-resolution
scheme with level set segmentation can deliver accurate and
fast results.

Level Set for Image Segmentation

Level sets were introduced in 1988 for interface propagation
[1]. They have been used in many applications such as com-
putational fluid mechanics [24], computer graphics [25],
shape optimization [26], inverse problems [27], and image
processing [2]. The contour is defined implicitly by using a
Lipschitz-continuous function ¢(x,y), called level set function.
Usually, the contour is defined at the zero ™ level of ¢(x,y)
such that positive and negative values represent different
regions. The evolution of the curve is performed implicitly
as the level set function evolves. Since the contour is defined
implicitly with a function of higher dimension, topology
changes are handled automatically. The most common
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method for defining initial level set function ¢(x,y) is using
the sign distance function of the initial contour.

Geometric active contours were introduced as the first
implementation of level set formulation of active contours to
solve an image segmentation problem [28]. A similar method
was proposed by Malladi et al. [29, 2]. Geodesic active
contours were proposed by Caselles et al. [30], [31]. The
authors define a geodesic curve as “a local minimal distance
path between given points”. The objective is to find geodesic
(minimum distance) curves in a Riemanian space with metric
derived from the image content. Similar active contour models
have been proposed in other works [32], [33]. In addition to
curve length minimization, other papers propose area mini-
mizing term to the speed function [34]. Because edge-based
level set methods rely on local features (the gradient of the
image), noise can greatly affect the performance of the
algorithm.

Region-based active contour algorithms exploit the char-
acteristics of regions, such as intensity distribution or texture,
for curve evolution. One of the early and well-known methods
is proposed by Chan and Vese. The authors proposed a level
set method to minimize Mumford-Shah segmentation model
[35] for piecewise constant approximation of the image [36].
A piecewise smooth approximation version has been intro-
duced as well [37]. In this method, smoothed partial images
represent each partition. Similar active contour models and
formulations have been proposed in other reports [38, 39].

Shape Priors

Although the level set approach is considered a good segmen-
tation method, many shapes remain difficult to segment. This
could be due to noise, objects’ occlusion, or low contrast
among background and objects. Adding a constraint to search
for certain shapes was considered by several researchers, and
has obtained good results in some applications.

Chen et al. proposed a method that incorporates the shape
prior into the level set formulation [40]. For n images with the
curves Cy,...,C, representing the segmented objects in the
images with different sizes and orientations, the shape prior,

C*, is defined by calculating the average shape of the n
curves. The suggested level set formulation is given by

min /5 { (V1)) +2 dz(c,uRc+T}‘v¢‘

&.u.RT

where C is the contour represented by the zero “ level of the
level set function ¢, i is scale transformation matrix, R is the
rotation transformation matrix, X is a weight, g(+) is an edge
detection function, ¢ is the Dirac function, and 7 is a transla-
tion transformation vector. The function d is defined as the
distance between the point (x,y) on (uRC+T) and the shape
prior C*.

Tsai et al. proposed a method for capturing the shape prior
by utilizing principal component analysis [5]. The authors
represented the shape as the zero level curve imposed on the
level set ¢(w), which is defined by the mean shape ¢and the
weighted m eigenshapes {¢,...,¢,,}, defined from the train-
ing data as in

= $+ Z Wi¢i7 (2)
i=1

where w; are the weights for eigenshapes.

Leventon et al. used a similar method to extract the
shape prior using principal component analysis [41]. In
addition, the maximum a posteriori (MAP) position and
shape of the object is estimated at each step of the surface
deformation based on the prior shape and image properties.
The authors extended geodesic active contours by adding the
shape information.

Inspired from two-view geometry, Riklin-Raviv et al.
proposed an extension to Chan and Vese method by
including shape prior [42]. The authors used two im-
ages, one as a reference and the other one as target
image. The object in the reference image is used to

construct the prior shape a by using planar projective
homography. The dissimilarity between the zero level set ¢

and the zero level set qAb is used to derive the energy function
that evolves the level set ¢. Other work embedded the knowl-
edge of the symmetry of objects into level set function for-
mulation [43].

Bresson et al. proposed a level set function that incorpo-
rates edge, region, and shape terms [44]. We use this method
as our base/parent algorithm to verify the effect of both shape
prior and multi-resolution. We describe this approach in more
details in “Multi-Resolution Level Set for Prostate
Segmentation in MR Images”.

Multi-Resolution Level Set

Multi-resolution image analysis concerns representation and
processing of images in different resolutions. While some
features cannot be detected at one resolution, they may be
detected at others. As well, the effect of noise and false edges
may be reduced at lower resolutions. These are the main
motivations of multi-resolution analysis. Several multi-
resolution techniques have been proposed in literature to
improve level sets.

Pyramid multi-resolution analysis is a well-known tech-
nique in image processing. Images of different resolutions are
created by filtering and subsampling the original image.
Gaussian pyramid has been utilized to enhance edge-based
level set active contours [45]. The curve initialization is per-
formed on the coarsest resolution and propagation proceeds
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with finer resolutions. Similar methodology has been
employed to segment ultrasound echocardiographic images
[46, 47].

Scale-space representation has been used for multi-
resolution analysis of images as well [48]. Set of images are
created with different smoothness scales. As scale of smooth-
ness is increased, the fine-scale structures in the image are
suppressed. Bresson et al. proposed a level set formulation of
active contours in scale-space [49]. The evolution equation of
the suggested framework is based on the Polyakov functional.
Several applications along multi-scale segmentation have
been proposed.

As a well-known multi-resolution analysis tool, wavelet
transform has been employed to enhance active contours in
several research projects. Curvelet, which is a multi-scale and
multi-directional geometric wavelet transform, has been used
to enhance geodesic active contours [50]. An edge map is
obtained using curvelet thresholding. Initialization is per-
formed in the coarsest resolution, and for each subsequent
finer resolution, the level set function ¢ is defined as the
converged level set function of the previous resolution. Al-
Qunaieer et al. proposed a method to accelerate region-based
level set image segmentation [51]. The authors used wavelets
to decompose the image into three resolutions, and start the
curve evolution from the coarsest resolution. The achieved
results confirmed that using multi-resolution reduces the effect
of'noise for large objects and accelerates the convergence rate
of the segmentation algorithm.

Multi-Resolution Level Set for Prostate Segmentation
in MR Images

In this paper, we extend level set image segmentation with
shape-prior method (according to [44]) to take advantage of a
multi-resolution approach. This method was selected because
its formulation incorporates three terms: the shape term (ac-
counts for object’s shape), the region term to attract the shape-
prior globally toward homogeneous intensity regions, and the
local edge term to attract the curve toward local variations near
the object. A shape prior is constructed by applying principal
component analysis (PCA) on the signed distance functions of
the zero ” level set of training contours. Only the few first
principal modes are needed to capture the largest variations in
the training set while redundancy is removed. The shape prior
is constructed as

6= G+ W pXpeas (3)

where ¢ is the mean shape, W, contains the first p principal
components, and x,,., is the vector of eigencoefficients.
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Using a multi-resolution approach reduces the noise
in the coarse scales. Also, at the coarsest level, weak
edges are ignored and the contour will be only attracted
to the strong edges. In addition, regions become more
homogeneous as the resolution is reduced. If the initial-
ization of the curve begins with a coarse version of the
image, the convergence will be fast because many de-
tails are omitted and only the main features and edges
remain. This enables us to implement a faster algorithm.
Few multi-resolution approaches have been reported in
literature as discussed in the previous section, but none
of them has tried to segment the prostate gland in MR
images. In this paper, we analyze the performance of
the proposed multi-resolution extension in terms of ac-
curacy and running time in more details.

Algorithm 1 describes how shape priors are created
during a training phase. 7 is the training set, which
consists of manually segmented images. The curves
defining the segmented prostate are extracted from the
training set and stored in C. The signed distance func-
tion (SDF) is calculated for each curve for the shape-
prior construction. Then, all signed distance curves in C
are aligned (see [52]). After that, the average shape, &,
is calculated from C and the first p principal compo-
nents are computed and stored in W7,

The pseudo-code of the proposed approach is pre-
sented in Algorithm 2. The shape priors S are extracted
from the training set as defined in Eq. (3). r is the
number of levels of resolution and ROI is the region
of interest (a rectangle around the prostate gland). The
preprocessing stage consists of noise removal and con-
trast enhancement (“Preprocessing”). The image / and
shape-prior S are decomposed into r levels of resolu-
tions using Gaussian pyramid. Each lower resolution level is
obtained by using a 5x5 low-pass filter on the previous level.
For levels 0</<r and image [ of size NxM, the pyramid
defined as [53]

L) = 320 wlmom) i (2i 4 m, 2) + ), 4)

m=—2 n=-2

where i=1,...N, j=1,... M, and w(-) is a Gaussian-like kernel.
The result of image decomposition is stored in /;, where 3 k=
0,...,7 and r is the lowest resolution, thus I is the original
image and [, is the coarsest resolution. Similarly, the
shape prior S is decomposed and stored in Sy, where k=
0,...,r. Starting from the coarsest image resolution /,,
Bresson algorithm is run on /, using S, for shape-prior.
The curve is initialized with an ROI (the rectangle
around the prostate is used as the initial curve). As
the current resolution is not the resolution of the orig-
inal image, the converged curve of the current resolu-
tion is up-sampled for each next (finer) resolution. For
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each resolution 7, the shape prior S; is used to guide the
evolution of the level set function on image /. The

algorithm continues until the curve converges in the
original resolution.

Algorithm 1: Shape-Prior Training
T = [ty, ty ..., tn] /* training set */
for i =1 to n do
C; = ExtractCurve(T;) /* extract contours */
C; = SDF(C;); /* signed distance function */
end for
Align(C), C = [cy,¢y ..., ] /* align contours */
¢ = MeanShape(C) /* generate average shape */
W, = PCA(C) /* find principal components */

Algorithm 2: Multi-resolution approach
I =input image
S =shape-prior, see Eq. (3) and Algorithm 2
r = number of resolutions
ROI =region of interest
Pre-Processing
I = NoiseRemoval(I)
I = ContrastEnhancement(I)
Multi-Resolution Decomposition (Pyramid)
I, =Pyramid .(I), k=0, ...,r
Sy =Pyramid .(S), k =0,..,r /* r isthe lowest resolution */
Multi-Resolution Propagation
for i=7r to 0 do

Shape-prior = S;

if i =7 then

Initialize curve, on [ within ROI

else
initial curve < up-sampled curve
end if
Run Bresson algorithm on [; using S;
if i > 0 then
Up-sample curve to the (i — 1)** resolution
end if
end for

Preprocessing

Prostate MR images are generally difficult to segment, this is,
among others, due to the low contrast among prostate and
adjacent tissues, the fuzzy boundaries of prostate, and many

other edges in vicinity of the prostate border (e.g., rectum
edges). In order to segment the prostate accurately, prepro-
cessing steps are required for any method. Two preprocessing
steps were applied to each image before curve propagation
started. The first step is for noise elimination. For this purpose,
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Fig. 1 Preprocessing steps
(from /eft to right): input image,
after noise removal, and after
contrast enhancement

a non-local adaptive non-parametric filtering approach, pro-
posed by Dabov et al. [54] was utilized. Then, a contrast
enhancement using contrast-limited adaptive histogram equal-
ization was applied [55]. Figure 1 illustrates the output image
of both noise removal and contrast enhancement steps. These
steps were the same for all tested methods. Please note that the
time spent on preprocessing has not been included in the time
measurements to evaluate the performance of the proposed
approach.

Experimental Settings

In this section, the experimental settings will be described. We
use a large dataset consisting of image data of 100 patients
(1,235 images) to verify whether embedding level sets in a
multi-resolution framework can expedite the segmentation
process while maintaining the same achievable accuracy level.
We will refer to the level set method according to Bresson
et al. [44] as LSp and the proposed multi-resolution extension
as LS%’[R .

Dataset

Prostate MR images used in this paper have been collected
from the online archive database “Prostate MR Image
Database” [56]. The database contains MR volume data of
more than 100 patients and is provided by Brigham and
Women’s Hospital, the National Center for Image-Guided
Therapy and Harvard Medical School. Different machines
were used to obtain the images. All images are T2 weighted
with or without endo-rectal coil but they have been with
different MR machines and exhibit different qualities. The
slice thickness ranges from 2 to 4 mm. The field of view is
ranging from 90 to 140 %. The dataset has been downloaded
and converted to DICOM images. An oncologist has manu-
ally segmented the prostate gland in all images. We refer to
these manually segmented images as gold standard images for
the algorithms. Such images are used to construct the shape
priors and to verify the accuracy of the tested algorithms. The
number of images for each patient is different. Some patients
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have more than one set of images (multiple sets captured with
different configurations). Some of the images are 256 x
256 pixels, while others are 512x512 pixels.

Constructing the Shape Priors

In order to construct the shape priors, 30 % of the patients
were used for training, while the remaining datasets are used
for testing. To test the effect of shape priors on the segmenta-
tion results, a “leave-one-patient-out” evaluation was also
conducted using 10 randomly selected patients. Curves de-
scribing the segmented prostate glands are extracted from the
gold standard images, and then aligned with each other. PCA
is applied on the aligned signed distance function of the
training curves in order to select the first p principal compo-
nents that have 98 % fitting with the training curves. The
Eq. (3) is used for the shape-prior construction.

Prostate images may be divided into three distinctive re-
gions with respect to shape diversity/irregularity: the top
slice(s) (apex), the bottom slice(s) (base) and slices in between
(midgland). Because of this distinction, three different shape
priors are constructed. The used shape priors are illustrated in
Fig. 2. Needless to say that for the prostate gland segmentation
in this approach, the internal zones (central and peripheral
zones) do not play any role as we are looking to extract the
gland boundaries.

Performance Measures

The numerical results of LSy X and LS}, are compared in terms
of execution time and accuracy for each level of resolution.
Time is measured for the complete execution of the two
algorithms including initialization phase for both, and image
and shape decomposition in LSk".

Two measures are used to calculate accuracy, namely dice
coefficient D and Hausdorff distance dj;. The dice coefficient
is calculated by [57]

2111ﬂ1G‘

p—_1 (5)
1|+ ‘IG‘
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Fig. 2 From left to right: shape
priors for apex, midgland, and
base

where /, is the segmented image, /; is the gold standard
image, and |-| is the set cardinality. The Hausdorff distance
is calculated by [58]

d[[ :max(h(ln,l(;),h(lc,ln)), (6)

where

h(I,,1s) = max min ||a—b]|. (7)
acl, belg

Since we are using a large dataset, the mean, standard
deviation, and the 95 % confidence interval of all measure-
ments are calculated.

Implementation Environment

The experiments were conducted using a PC with a CPU
speed of 2.20 GHz and 8 GB of RAM. The operating system
was Windows 7 (64-bit version). The program was written
and run with 64-bit version of Matlab. All software packages
have been accessed under research licensing at the University
of Waterloo.

Results

LSy® is a semi-automatic approach such that the region of
interest (ROIJ) is assumed to be provided by the user. This is a
rectangle around the prostate gland that limits the segmenta-
tion to a smaller portion of the image. In our tests, the ROI of
an input image is a rectangle (bounding box) that touches the
edges of the shape in the corresponding gold standard image,

Table 1 Parameters setting

Parameter Value
Num. of iterations for re-initialization 5
Time steps 1
Spatial transformation Affine
Weight for the boundary term 1
Weight for the shape term 1/3
Weight for the region term 10

but enlarged by 15 % of its width in each direction. The
number of resolution levels is empirically chosen to be three
(r=3). It s worth to mention that the choice of the number of
resolutions could greatly affect the performance of LS} <. The
evolution of the curve for both algorithms is stopped if there is
a change less than =15 in five consecutive iterations, or if the
number of iterations exceeds 1,000. Parameters for both algo-
rithms were empirically set to same values (Table 1). To be
consistent, all images are assumed to be of size 256x256. If a
512x512 image is encountered, it is resized.
In this section, multiple experiments are conducted:

1. Evaluate the performance of LS%X and compare it to LSy

2. Analyze the sensitivity of the algorithm to manual ROI
selection

3. Verify the effect of the shape priors on the performance of
LSy® via a leave-one-patient-out

4. Investigate the effect of premature convergence

Accuracy and Speed Evaluation

In this experiment, the shape priors are constructed using 30 %
of the available data (the images of one patient are either in
training or in testing set). The first p principal components that
have 98 % fitting with the training curves are selected. The
number of principal components fitting this criteria are 5 for
apex, 4 for base, and 4 for midgland. Noise removal and
contrast enhancement are applied to all images. The first two
slices were segmented using the shape prior for apex, the last
two using the shape prior for base, and the remaining in
between using the shape prior for midgland. It is worth men-
tioning that a small distance between the slices naturally
generates many images, hence, leading to several slices
representing each apex, base, and mid-gland sections.
However, since we use the shape prior for initialization, this
will not affect the processing as for a fine slice thickness/gap,
e.g., smaller than 1 mm, adjacent slices will be very similar.
The rectangle representing the ROI was used as curve initial-
ization. Both methods were run for all images, and the perfor-
mance measures (dice value, Hausdorff distance, and time)
along with the segmented image were recorded. Selected
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Table 2 Sample results for some

individual images Image# (part) LSp LSy*® Speed-up
D (%) dy Time (s) D (%) dy Time (s)

Apex 88 3.46° 63 86" 3.74 29° 2.1
Apex 82" 4.00* 66 81 4.12 46* 1.4
Midgland 91 4.47% 148 93? 5.29 58° 25
Midgland 85 4.00° 84 86" 4.24 32° 2.6
Midgland 91" 5.66" 93 89 5.74 44° 2.1
Midgland 91* 4.69* 181 90 5.00 70° 2.6
Base 93" 3.61 81 90 3.46° 49° 1.6
Base 92¢ 4.12% 68 90 458 30° 2.3
Midgland 58 5.92¢ 36 59° 5.92¢ 27° 1.3
Midgland 63 5.00 29 67" 4.90* 18? 1.6
7 83 4.49 85 83 4.70 40 2.1
o 12 0.78 450 11 0.78 15

 Better results

sample results are presented in Table 2. Both algorithms
converged before reaching maximum number of iterations
(i.e., 1,000) for all images.

Analysis of Tuble 2 As it can be seen, the accuracy remains the
same (around 83 % for both methods), whereas the
computational time decreases from 85+45 s (for LSp)
to 40+15 s (for LS¥™). This represents an speed-up factor
of =2.1.

Because of the large number of images (1,235 seg-
mented slices), the results are summarized per patient.
The dice value D and Hausdorff distance dy along with
time averages and standard deviations are calculated for
all patients. The overall performance of the algorithms is
summarized in Table 3. Figure 3 shows sample segmentations.

Table 3 Overall summary of results (95 % confidence interval) for both
methods

Region Metric

Apex D [61 %, 69 %] [66 %, 70 %]*
dy [5.76, 6.28] [5.75, 6.17]*
Time (8) [129, 170] [55, 67T*

Midgland D [76 %, 79 %] [77 %, 80 %]*
dy [5.50, 5.85]* [5.53,5.87]
Time (s) [105, 128] [43, 497°

Base D [80 %, 83 %]* [72 %, 76 %]
dy [4.77, 5.26]* [5.10, .64]
Time (s) [87, 107] [34, 39T*

Overal D [76 %, 79 %] [77 %, 80 %]*
dy [5.50, 5.85]* [5.53,5.87]
Time (s) [105, 128] [43, 49T*

 Better results
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Analysis of Table 3 The overall performance of the two algo-
rithms are extremely similar in terms of accuracy. However, the
obvious difference is in the running time, where LS5~ is on
average 2.5 times faster than LS. It is an intuitive expectation
that processing in lower resolutions should be much faster than
higher ones. Furthermore, the initialized curves in the original
resolution in LSk are closer to the prostate boundaries than in
LSp. This results in a lower number of iterations in the original
resolution, hence shorter time. The segmentation of midgland
slices is generally easier than apex/base since, depending of
slice thickness, the first and last few slices may exhibit higher
shape irregularities. It can be observed from Table 3 that
midgland segmentation is more accurate than apex/base for
LSK™® which is expected, because the midgland is anatomically
more consistent/regular than apex and base. However, base
segmentation for LSy is more accurate than midgland. A paired
t test (with 95 % confidence interval) between methods was
performed as well. The null-hypothesis testing for both dice
and Hausdorff measures were not rejected, while the null-
hypothesis was rejected for the time. One can conclude that
the speed improvement was statistically significant, while the
accuracies can be assumed to be the same. Sample curve
propagation is illustrated in Fig. 4, where the first three rows
are the resolutions from lowest to highest of LSk and the last
row is the propagation in LS. It can be observed that for any
finer resolution, the curve initialization is much closer to the
prostate. This explains the fewer number of iterations in the
original resolution, and thus faster convergence. Outputs of
each resolution are shown in Fig. 5.

Effect of ROI Variability
As mentioned before, the proposed method is semi-automated

and requires input (drawing an ROI) from an experienced user.
Since we needed to automate the testing for the large number of
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Fig. 3 Sample output segmentation (from left to right): input image, gold standard segment, Bresson, MR-Bresson

images, the ROI was extracted from the gold standard images
(bounding box around the segment enlarged by 15 % of its
width on all sides). The input ROI of the user (clinicians/
doctors) will not be consistent with respect to its size. As well,
a user-drawn ROI may not always be centered around the
prostate gland; it is prone to variability in location and size.
Thus, eight random patients were selected to be tested using
two new settings of ROI. The first is with larger size (25 %
of the bounding boxes’ width), and another with random
length/width variations such that it may not be centered
around the prostate.
The results of using larger ROI are presented in Table 4.

Analysis of Table 4 Because the initial curve was larger (far-
ther away from the prostate boundaries) than the previous
experiment, the dice values are decreased. On the other hand,
the Hausdorff distance and the processing times are increased.
While dice value is decreased, compared with the previous
experiment, for the multi-resolution level set, it decreased
more for the level set because the curve can be attracted to
the desired local features in the lower resolutions. For the
same reason, the processing of the multi-resolution approach
time did not change much compared to LSp.

For the next experiment, the ROI was constructed by
increasing each side of the ROI by w-r, where w is 25 % of
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Iteration 4

Iteration 1 (first)

@,

Iteration 1 (first) Iteration 12

Iteration 20

Iteration 1 (first) Iteration 72

5N

Iteration 8 (last)

Iteration 36 (last)

Iteration 12

Iteration 36 Iteration 48 (last)

Iteration 112

Iteration 140 (last)

Fig.4 Curve propagation for LSK" and LS;; (brightness adjusted to facilitate visual inspection). The first three rows are for the three resolutions of LS},
starting from the coarsest. The last row is for LSg (for clarity the images are scaled to be of the same size)

corresponding side and 7 is a uniformly distributed random
number between zero and one. The results of using this ROI
are presented in Table 5.

Analysis of Table 5 The results of using random ROI are
closely comparable with the previous experiment. The dice
values are the same for LSy, Hausdorff distance is slightly
increased, while time is decreased. For LSg’R, the dice values
are slightly better, while Hausdorff distance and time are slight-
ly decreased. These results suggest that randomness in ROI
position can minimally affect the performance of both methods.

Fig. 5 Resolution levels
(for clarity, the images
are scaled to be of the same size)

@ Springer

The change in accuracy and time in these two experiments
indicate that curve initialization can affect the performance of
the curve propagation and convergence. While the size of ROI
can noticeably affect the performance of the algorithms, a slight
shift in location of the ROI can minimally change the results.

Leave-One-Patient-Out Evaluation
In the previous subsections, the used shape priors were con-

structed from 30 % of the dataset. To assess the effect of the
shape priors variation, a leave-one-patient-out evaluation on
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Table 4 The effect of larger
ROIs Patient# LSg LSHR
D dyy Time(s) D dy Time (s)
77 %+£8 % 5.49+0.41 163+£59 80 %=+4 %* 5.43+0.81° 70+£31%
70 %+26 % 6.16+1.9 216+61 79 %+2 %" 5.8+0.64" 81+56"
75 %+£11 % 6.91+0.98 206+71 79 %+4 %" 6.39£1.1% 72+25%
69 %+20 % 5.32+1.03 125+75 80 %=£5 %" 4.46+0.62° 39+8*
64 %+£21 % 5.94+1.26% 114+81 65 %+24 %" 6.36+1.82 77+121°
82 %+5 %* 5.36+0.7% 206+33 77 %+£21 % 5.46+1.18 104+113%
73 %+10 %* 6.86+1.5 151+64 73 %+16 % 6.61+1.57* 49582
77 %=+18 % 5.58+1.6 119+57 79 %+£3 %" 4.89+0.7° 38+10%
Larger ROI 73 %=£15 % 5.95+1.17 163+63 77 %+10 %* 5.68+1.06 %* 66+£53%
Fixed ROI 78 %=+13 % 5.52+1.21 124+37 80 %+9 %" 5.51£0.79 %" 44+13"

4 Better results

10 randomly selected patients was performed. The results are
presented in Table 6.

Analysis of Table 6 1t can be seen that the overall performance
is slightly better in terms of both accuracy and time, though
the improvement in time is much better for LSz method. These
results show that shape priors can noticeably affect the conver-
gence time of the used method, and slightly affect the accuracy.

LSBMR Premature Convergence

As discussed in “Accuracy and Speed Evaluation”, convergence
in original image resolution is much slower than coarser resolu-
tions. Thus, reducing the number of iterations in this resolution
is the primary goal to achieve faster convergence. This was
achieved in previous experiments by propagating up-sampled
converged contours in lower resolutions to higher ones.
However, the resolution zero (the original image) may still
require multiple iterations for the contour to converge. The
question arises whether it is really necessary to climb the reso-
lution pyramid up to the original level, or one could simply stop

at a lower resolution and deliver the up-sampled contour as final
result. To answer this question, the experiment in “Accuracy and
Speed Evaluation”, was repeated for LS%, but this time stop-
ping at resolution 1. The resulting curve is then up-sampled to
original resolution and considered as the final segmentation. The
shape priors are the ones used in “Accuracy and Speed
Evaluation”. The overall performance is summarized Table 7.

Analysis of Table 7 1t can be observed that the speed is consi-
derably increased by a factor of 7.6 for LSEX and 17.9 for LSj.
The accuracy is slightly enhanced too. A paired ¢ test between
premature version of LSYR LSMRP was performed with a confi-
dence interval of 95 % for dice, Hausdorff, and time. The null
hypothesis for both Hausdorff distance and time was rejected.

Discussion and Concluding Remarks
In this paper, we have used multi-resolution level set method

with shape priors for prostate segmentation in T2 weighted
magnetic resonance (MR) images.

Table 5 The effect of ROI

variability Patient# LSg LSY®
D dy Time (s) D dy Time (s)
78 %+6 %* 5.78+0.78 111438 78 %+7 % 5.64+1.09" 48+17°
81 %=+8 % 6.64+£0.94 144+66 82 %=+9 %* 6.36+0.65" 49+18*
78 %+9 % 7.15+£0.86 150+62 82 %=+7 %* 7.01+0.92° 58+17°
76 %+9 % 5.72+0.8 65+27 83 %+5 %° 5.25+0.89* 34+10*
70 %+11 % 6.12+0.62 56+26 77 %=+4 %* 5.77+0.55" 32+8*
81 %+11 % 5.43+0.67 151+£26 84 %=+8 %"* 5.22+0.69* 58+12°
81 %=+8 % 6.36+1.48 166+47 82 %=+8 %* 6.33+1.4" 57+19%
76 %=+9 %* 5.98+1.02 88+45 76 %=10 % 5.81+0.68" 36+9*
Random ROI 78 %+9 % 6.15£0.9 116+42 81 %=+7 %* 5.92+0.86" 46+14°
Fixed ROI 78 %=+13 % 5.52+1.21 123+37 80 %+9 %° 5.51£0.79 %" 44+12°
* Better results
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Table 6 Leave-one-patient-out

evaluation (LOPO) for 10 Patient# LSp LSy*®
randomly selected patients ] ]
(better results highlighted D dy Time (s) D du Time (s)
in gray shading)
77 %+4 % 4.93+0.36° 69+10 80 %+5 %* 4.96+0.7 29+6%
77 %+4 % 5.63+0.53 110+32 80 %=+4 %* 5.63+0.52* 4922
87 %+3 %" 5.98+0.81" 160+19 85 %=+8 % 6.42+0.9 47£15%
58 %+21 % 6.44+2.8 55+14 63 %=+13 %* 5.240.55" 28+6°
66 %+7 % 4.91+0.52° 59+14 70 %+8 %* 5.31+0.48 31+£7%
79 %=+3 % 6.19+0.43% 95+8 81 %+2 %* 6.38+0.58 34+6"
87 %+3 %" 5.77+1.16* 194+42 86 %+2 % 5.89+1.27 68+18"
79 %+4 % 5.82+1.2% 103+21 80 %=+7 %* 5.96+1.28 36+6%
82 %=+6 %"* 5.99+0.67* 160+23 79 %+9 % 6.22+0.71 56+15°
83 %=+5 %° 5.98+0.73* 160+20 82 %=+5 % 6.19+1.04 52+6%
LOPO 78 %+6 % 5.76+£0.92* 116+20 79 %=+6 %* 5.82+0.8 43+11°
30 % Training 77 %+15 % 6.11£1.36 153+62 79 %=11 %° 5.9+0.87* 52+16°

 Better results

The goal of this investigation was to increase the speed of
level sets whereas the initial accuracy should not decrease. As
for most applications, a real-time response, less than a second,
is ideal. Hence, cutting the segmentation time from minutes
toward seconds and fractions of a second seems to be the goal
of many practice-oriented papers. With respect to accuracy, it
is ultimately the user, or a group of users, who will provide a
baseline for comparison by creating manual segmentations
(ground-truth images). Therefore, the level of agreement be-
tween level set results and the ground-truth images, measured
via dice coefficient, should be the same with and without the
change for speed increase.

Processing time in low resolutions is much shorter than in
higher ones. Because the proposed method starts from a reso-
lution lower than the original, the convergence speed was
much faster. For each higher resolution, the initial curve is
the converged one from the previous (lower) resolution. Thus,
it is closer to the prostate boundaries in each higher resolution.

In the first experiment, the overall accuracies obtained using
level set method according to Bresson et al. (LS3) method and

the proposed multi-resolution method (LSEX) are extremely
close. The obvious difference is the convergence speed, where
LSH¥R is about 2.5 times faster than LSz with much more
consistency shown by the low standard deviations in Table 2.

The investigated method is semiautomated as the region of
interest is expected to be provided by an experienced user. The
effect of ROI variations, resulting from variability of human
operator’s input, was tested as well. Although the performance
of the two methods were affected, the multi resolution ap-
proach results show that it is less sensitive to larger ROIs. In
low resolutions, regions become more homogeneous. The
multi-resolution method is benefiting from this because of
the region attraction term. Although the ROI size can notice-
ably affect the outcomes, variability in its location does only
minimally change the results.

Shape priors were used to compensate for the weak edges
and similar tissue structures surrounding the prostate. The
effect of variability of shape priors was studied as well.
Shaper priors were constructed using 30 % of the patients,
and the remaining 70 % of data were used for testing. Also,

Table 7 Overall summary of

results of “prematured” multi- Region Metric Speed-up Speed-up
resolution level set (LSHRT)
compared to level set (LS) and Apex D [61 %, 69 %] [66 %,70 %] 24 [74 %, 77 %]* 213"
multi-resolution level set dir [5.76, 6.28] [5.75, 6.17] [5.21,5.61]
(LSE®) Time (s)  [129, 170] (55, 67] 6, 8T
Midgland D [76 %, 79 %] [77 %, 80 %] 2.6 [78 %, 82 %]* 17.9*
dyy [5.50, 5.85] [5.53, 5.87] [5.43, 5.76]
Time (s)  [105, 128] [43, 49] [6, 71
Base D [80 %, 83 %" [72 %, 76 %] 2.7 [78 %, 81 %]*  17.6°
dy [4.77, 5.26] [5.10, .64] [4.79, 5.247*
Time (s) [87,107] [34, 39] [5, 61
Overall D [76 %, 79 %] [77 %, 80 %] 2.6 [78 %, 80 %]* 17.9*
dy [5.50, 5.85] [5.53, 5.87] [5.29, 5.62]
, Time (s)  [105, 128] [43, 49] [6, 71
? Better results
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leave-one-patient-out evaluation was performed on 10 pa-
tients. The results of these different evaluations indicate that
shape-priors can obviously affect the convergence time, while
negligibly affecting the accuracy.

Premature convergence was introduced in an attempt to
further accelerate the multi-resolution level set. The idea came
from the global-to-local view property of multi-resolution
analysis, where the view of an image becomes rather global
for coarse resolutions. The local features (i.e., edges) of prostate
are minimally contributing to the segmentation process. So, the
idea to converge before the original resolution becomes viable
because the algorithm will become greatly faster without losing
accuracy. The results clearly demonstrated significant acceler-
ation, which could contribute to a real-time segmentation.

Because there is no available automation method for pa-
rameter selection yet, they were selected empirically as pre-
sented in Table 1. The weights of boundary, region, and shape
terms are important, and need to be selected carefully. Because
the MRI prostate has weak edges, boundary term should have
low weight. Regional information is more important, espe-
cially in lower resolutions, thus the region term weight should
be selected higher than boundary term. Choosing large value
for time step yields faster, but unstable numerical solution of
level set function, while choosing small value yields slower
computation time. Similarly, selecting high value for number
of'iterations before re-initialization could cause instability. We
believe that setting different parameters for each resolution
will enhance the performance of MR-Bresson. For example, as
resolution becomes finer, more weight should be set for bound-
ary term and less for region term, and the opposite is true.

Although this study was conducted on 2D images, the
findings assumed to be true for 3D images. Because level
set algorithm can be easily extended to higher dimensions.

Part of our future work would be automated detection of
the ROI and parameter selection. As well, learning to auto-
matically set the optimal resolution level constitutes an urgent
problem.

It should be mentioned that we did not observe any topolo-
gy change between the levels of resolution. However, if this
occurs, then the segmentation accuracy might drop. As well,
as the prostate gland, in spite of its shape variability, still can
be considered as a regular shape, e.g., compared to the malig-
nant tumors or brain regions, one may expect the same level of
speed-up but not necessarily the same level of accuracy.
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