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Abstract This paper investigates the efficacy of automated
pattern recognition methods on magnetic resonance data with
the objective of assisting radiologists in the clinical diagnosis
of brain tissue tumors. In this paper, the sciences of magnetic
resonance imaging (MRI) and magnetic resonance spectrosco-
py (MRS) are combined to improve the accuracy of the clas-
sifier, based on the multidimensional co-occurrencematrices to
assess the detection of pathological tissues (tumor and edema),
normal tissues (white matter—WM and gray matter— GM),
and fluid (cerebrospinal fluid — CSF). The results show the
ability of the classifier with iterative training to automatically
and simultaneously recover tissue-specific spectral and struc-
tural patterns and achieve segmentation of tumor and edema
and grading of high and low glioma tumor. Here, extreme
learning machine – improved particle swarm optimization
(ELM-IPSO) neural network classifier is trained with the fea-
ture descriptions in brain magnetic resonance (MR) spectra.
This has the characteristics of varying the normal spectral
pattern associated with tumor patterns along with imaging
features. Validation was performed considering 35 clinical
studies. The volumetric features extracted from the vectors of
this matrix articulate some important elementary structures,
which along with spectroscopic metabolite ratios discriminate
the tumor grades and tissue classes. The quantitative 3D anal-
ysis reveals significant improvement in terms of global accu-
racy rate for automatic classification in brain tissues and dis-
criminating pathological tumor tissue from structural healthy
brain tissue.

Keywords Magnetic resonance spectroscopy .Magnetic
resonanceimaging .Multidimensionalco-occurrencematrices .

Feature extraction . Extreme learningmachine . Particle swarm
optimization

Introduction

Brain tumors are complex in nature. A biology-based system
research model can deliver more compelling insight. Brain
tumors are the leading cause of solid tumor cancer death in
children under the age of 20 [1]. Classification by combining
multimodal proton MRS and morphological MR images of
the brain in anatomic types of tissue from medical images is
still a challenging task. Often, both anatomy and pathological
diagnosis require intensive manual interaction for segmenta-
tion and classification.

Numerous studies in the early literatures have proposed
different techniques towards classification of brain tumors
based on diverse sources [2, 6, 22]. Amongst the most prom-
ising noninvasive methods in radiology towards diagnosis of
brain tumors, magnetic resonance imaging (MRI) and magnet-
ic resonance spectroscopy (MRS) are significant. MRI pro-
vides detailed soft tissue contrast information about brain
tumor anatomy, cellular structure, and vascular supply, making
it an important tool for the effective diagnosis, treatment, and
monitoring of the disease. Anatomical structures and patho-
logical structures like tumors or lesions have high diversity in
sizes, shapes, locations, and intensities. An MRI sequence
encloses information relevant to the tissue parameters. All
image analysis and recognition models extract patterns with
implied information and assist towards tissue characterization.
MRS, a functional imaging technique that detects metabolic
changes, is mainly used towards the study of tissuemetabolism
and for differentiating between tumor grades. The most signif-
icant biochemical signals provide useful information on brain
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tumor grades [14]. Leveraging towards other functional imag-
ing techniques, MRS does not utilize high-energy radiation
and contrast agents or labeled markers. Discrimination in types
of tumor grade requires additional information. In contrast,
metabolite spectra from the MRS imaging add new dimension
towards discrimination of lesions [5]. Changes in the intensity
of individual images are generally not sufficiently specific for
diagnostics of tumors from MRI. Hence, different additional
patterns across multiple resonances are required.

Need for a Multidimensional Texture Analysis
for the Characterization of a Brain Tumor

Context of Contemporary Status

Limited work has been carried out in the area of characteriza-
tion and analysis of 3D (volumetric) textures using MRI,
MRS, and both MRI and MRS [5, 9, 10, 24, 25]. Dou et al.
[27] proposed the glial tumor segmentation method using data
fusion of MRI and MRS based on fuzzy-based method. A
model to create nosologic images of the brain based on MRI
and MRS imaging was developed. The abnormality, edema
and tumor, was detected based on atlas, outlier detection,
intensities, and application of geometric spatial constraints
using least squares support vector machine (LS-SVM) [18].
An approach in combining both textural and spectroscopic
features have achieved mean classification accuracy of 99 %
for discriminating between low and high-grade tumors by
Devos et al. [7]. Luts et al. combined four textural features
and ten spectroscopic features, with LS-SVM classification
algorithm towards discrimination of different tumor types with
promising results [19]. A support vector machine (SVM)-
based system was investigated on acquired postcontrast MR
image and spectroscopic features improving discrimination
between meningiomas and metastasis [28]. Georgiadis et al.
proposed 3D gray-level co-occurrence matrix–run-length ma-
trix (GLCM–RLM) with MRS features achieving 100 % ac-
curacy using LSFT-SVM model [11]. However, the computa-
tional time required for the training and evaluation procedures
was very high (approximately 11 h) which attributed to the
iterative methods used for the best feature selection (exhaus-
tive search) and for the system’s evaluation in the proposed
classification system. Although the SVM classifier has been
shown to provide a good generalization performance, results
are often far from the theoretically expected level, because
SVM implementation employs approximation techniques.

Need for a Volumetric Feature Extraction Design Model

Various grades of tumor do suggest primary tumor which
involves radiological features and requires macroscopic ap-
pearance for further clinical analysis [19]. Earlier, quite a few

studies have been proposed combining MR textural and spec-
troscopic analyses, to provide clinicians’ second opinion tools
that will assist them in the characterization of brain tumors [28].
On the other hand, studies have relied on the 2D textural feature
thus depriving their system from higher-order, information rich,
textural features and involve more metabolites that are cum-
bersome to quantify on MRI in everyday clinical routine [28].

Similarly in Georgiadis et al. and Wang et al. [11, 28], a
series of 3D textural features were extracted based on the
volume-of-interest’s (VOI’s) histogram, volumetric co-
occurrence matrices, and run-length matrices. Since the fea-
ture extraction methods cannot generate features that are all
discriminative for classification, feature selection techniques
have been increasingly used inMRI brain tissue classification.
To achieve the best classification performance, the use of
subset feature selection methods that generally have better
performance is required. However, the rich high computation-
al cost of subset feature selection methods limits their appli-
cation to problems with high feature dimensionality as in
previous studies [11, 29]. To leverage the advantages and
overcome the limitations of the abovementioned feature ex-
traction and selection techniques, an integrated feature extrac-
tion and selection method for neuroimage classification is
proposed. The model for 3D texture analysis is based on
extended multidimensional co-occurrence matrices.

Problem Definition

The major challenge towards fusion of MRI and MRS signals
is due to (i) the spatial resolution inMRI (high) andMRS (low)
and (ii) low computational complexity with best discrimina-
tion accuracy. Hence, combination on the features of metabo-
lite distribution fromMRS, coherent (here minimal feature rich
extraction subset) with the 3D volumetric texture features
(MRI), is more important [2, 14, 20, 21]. The proposed meth-
odology utilizes a data fusion model to define anatomical and
metabolic aspects in tissues and to classify the brain tissue type
from surrounding undesired tissues to recognize. The multi-
spectral information available in a sequence of MRS and the
distinct features in MRI are used to create a multifaceted
imaging model [10, 23]. In particular, it allows quantification
of metabolites from a well-defined volume element (voxel).

The key contribution of this approach constitutes the com-
bination volumetric features extracted from the multidimen-
sional co-occurrence matrices and spectroscopic features as
modeled by the ratio between several metabolites. The volu-
metric and spectroscopic features are presented to the extreme
learning machine-improved particle swarm optimization
(ELM-IPSO) classifier [2] designed for head MRIs in the
characterization of brain tissues along with significant
amounts of pathological brain tissue as tumor. It also aids in
the investigation on how the postcontrast magnetic resonance
image and spectroscopic features might improve
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discrimination between high-grade and low-grade gliomas.
The design model is shown in Fig. 1.

Materials and Methods

MRI and MRS Clinical Specimens Acquisition

The clinical specimen utilized in the present study consisted of
brain MR image series and MR spectra of 35 clinical routine
cases with verified and untreated intracranial tumors; namely, 12
meningiomas and 23 gliomas. The MRI volumes acquired on a
Siemens 1.5 T were available in two sequences: T1-weighted
(T1) and T1 with gadolinium contrast agent (T1c). Each image
sequence with a 3 mm brain slice-interval (i.e., the voxel size
was 0.4492 mm×0.4492 mm×3 mm) in axial plane was mea-
sured. Regarding the acquisition ofMR spectra, a single-volume

spectroscopy of 1.5 Tat short time echo (TE) (TE 10–25 ms/TR
500–1500 ms) proton MRS Imaging (1H-MRSI) sequence was
used. To determine cerebral variation in MRS, area, amplitude,
and ratios of major metabolites and spectral profiles are consid-
ered to detect differences in infiltration (N-acetyl-aspartate
(NAA) — 2.02 ppm, NAA), proliferation (total creatine (tCr;
3.03 ppm))/choline-containing compounds ((tCho; 3.2 ppm)-
Cho/Cr), necrosis (lipids), glycolytic metabolism (lactate), or
energetic metabolism (glucose and glutamine) at different tu-
moral stages and after therapies. Spectroscopic VOIs were ob-
tained from the T1-weighted postcontrast axial images, posi-
tioned entirely within the region of the tumor.

Volume of Interest Extraction and Feature Calculation

Second-order statistics tend to achieve higher discrimination
indexes. Literature survey on texture analysis (TA) approach

Fig. 1 System design for both
volumetric and spectroscopic
features
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for MR images include gray-level co-occurrence matrix pro-
posed by Haralick et al. [12] as most vastly used. Several
promising studies have been analyzed with co-occurrence
texture analysis in the classification of pathological tissues
from normal tissues for example from the liver, breast, brain
tumors with variable locations such as lymphomas, spine, and
muscles with improvements [3]. Mahmoud et al. [22] have
proposed a 3D approach using co-occurrence matrix analysis
to increase the sensitivity and specificity of brain tumor char-
acterization with promising results. Kovalev et al. [15–17]
tested 3D co-occurrence matrices in analyzing cerebral tissue
and glioma in T1-weighted MR images and analysis in age/
gender related differences.

Failure of deformable models occurs due to presence of
abnormal anatomical variability or even in the presence of
normal but highly variable structures and accurate initializa-
tion [26]. Explicit anatomical templates have been successful-
ly used through nonlinear registration, at high computational
cost, and time complexity. Previous studies [2] indicate the
use of subset feature selection methods to best describe the
optimal features that result in high computational cost and
limit in application to problems with high feature dimension-
ality. Hence, this work is proposed to develop a classification
model with multidimensional co-occurrence matrix model
that could aid in the automation of medical image analysis
tasks by successfully segmenting both normal anatomy and
tumor type pathology, with less computational time and com-
plexity. To leverage the advantages and overcome the limita-
tions of feature extraction and selection techniques, an inte-
grated feature extraction and classification method for
neuroimage classification is proposed. The model for 3D
texture analysis is based on extended multidimensional co-
occurrence matrices as in Kovalev et al. [15].

The 3D co-occurrence matrix describes image spatial struc-
ture based explicitly on the intensity information with no respect
to other important features. Formulation of multidimensional co-
occurrence matrix is a complex problem. The structure of M
dimensional matrix is required to satisfy ‘the principle of orthog-
onal sets’ of elementary image features associated with different
matrix axes. Research on texture dimensions [15] proved inclu-
sion of properties like coarseness, contrast, periodicity, and
anisotropy. Considering simultaneously all the features together
with their variations in spatial domain, these image features
could be accepted as an “orthogonal basis” for M dimensional
co-occurrence matrix axes. The co-occurrence matrices are like-
ly to be generalized to D dimensional Euclidean spaces and
extract more characteristics from the matrix. Addressing differ-
ent aspects of analyzing images into physiological and patho-
logical interest requires classification using multiparameter
values. Here, multiparameter features refer to the following three
specific values for the edges (E), gray values (G), and local
contrast (H) of the voxels [16]. The co-occurrence matrix de-
scribes local textural properties reasonably well, while the

“global” image structure is almost ignored. These descriptors
are insensitive to the global (low frequency) shape of a multidi-
rectional 3D image pattern if the range of intervoxel distances is
relatively small. Hence, the need for matrices to describe global
structure with various other features and orientations is required.
The inclusion of feature selection stage in the previous discus-
sion forfeits faster recognition time. Hence, limited optimal
feature selection is required for faster recognition rate. This
section presents a feature extraction functioning based on mul-
tidimensional co-occurrence matrices. The effectiveness of the
proposed approach is demonstrated through development of
extreme learning machine-improved particle swarm optimiza-
tion (ELM-IPSO) classifier for the same datasets.

Volumetric MR Imaging Features Using Multidimensional
Co-occurrence Matrices

The enhancement of spatial dimensionality on the same set of
discrete gray values modifies the relationships between the
sets of possible dimensional images and their co-occurrence
representations. The need to improve the sensitivity and spec-
ificity of co-occurrence features is essential to enable recog-
nition and partition of numerous normal and pathological
structures of textural differences in MR brain images. The
spatial co-occurrence matrix dimensions (number of axes) in
combination with basic image features (e.g., intensity, gradi-
ent magnitude, and orientation) result in improved multidi-
mensionality matrix [15]. The image dimensionality corre-
sponds to spatial dimensionality of input data, while the
matrix dimensionality reflects the number of image character-
istics and intervoxel relations under consideration [15]. The
Laplace derivative and global neighborhood statistics add
significance to the co-occurrence matrix.

Based on the previous works and literature studies [2] that
have been carried out earlier, the feature space is modified as
proposed in Kovalev et al.'s studies [15–17] that best describes
the statistical behavior on the classification of brain tissue
types. The attributes are:

& The magnitude of the local gradient magnitude (∇)
& The angle orientation (θ)
& The surface slope (Φ) (i.e., angle between reference and

surface planes)
& The Laplace image derivative (L)
& The gray-level neighborhood intensity (NS)
& The Euclidean distance (D)

The co-occurrence matrix illustrates the MRI structure of
3D gray-scale segment. The detailed descriptors of spatial 3D
image structure are a modification to the extendedmultisort co-
occurrencematrices proposed by Kovalev et al. [15]. The value
m of the matrix is the frequency of certain features of a given
voxel pair. Consider a random voxel pair (i, j) defined on a
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discrete 3D voxel lattice i=(xi,yi,zi) and j=(xj,yj,zj) with Euclidean
distance D (i, j). The Laplace image derivative on these voxels
is represented as L(i, j), local gradient magnitudes by ∇(i, j), the
angle between their 3D gradient vectors by θ(i, j), slope (i, j),
and neighborhood statistics NS(i, j). Then, the general, six-
dimensional co-occurrence matrix can be defined as:

M ¼ n d i; jð Þ; L i; jð Þ;∇ i; jð Þ; θ i; jð Þ;NS i; jð Þ;φ i; jð Þð Þk k:
ð1Þ

Gradient magnitudes (i), δ(j), and angle between gradient
vectors θ(i, j) are computed as:

∇ ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇2
x ið Þ þ ∇2

y ið Þ þ ∇2
z ið Þ

q
a i; jð Þ ¼ cos−1 δ ið Þ˙δ jð Þ

� � ð2Þ

where δ(i)×δ(j) is the dot vector product and δ(i) and δ(j)
corresponds to the normalized gradient vectors. Gradient vec-
tor components ∇x, ∇y, and ∇z can be calculated by any
suitable 3D operator. In place of Zucker–Hummel filter in
Kovalev et al.'s studies [15], a combination of (3×3×3 win-
dow) Sobel gradient and Laplace image derivative operator
(first-order and second-order derivative) resulted in better
performance. Neighborhood statistics, a simple geometric
standard deviation of intensity around a voxel’s small neigh-
borhood region, uses the logarithm of the intensity in contrib-
uting more informative space due to exponential distribution
of image intensity. The gradient magnitude at the position of
the Laplacian zero crossing combines information from mul-
tiple orthogonal operators in a vector space and then projects
the results to the edge subspace. The co-occurrence matrix
was normalized by the elements proportional to the brain
region volume for each distance bin separately [15].

The structure of normalized multidimensional co-
occurrence matrix dimensions includes intervoxel distance,
intensity neighborhood, gradient magnitude, its relative gra-
dient orientation (angle between gradient vectors), slope, and
image derivative to form a set of fundamental image

characteristics. The relativity of all features of the multidimen-
sional matrix is invariant to translation, rotation, and reflection
of image data. The local gradient magnitude appends infor-
mation about the homogeneity of the local neighborhood, i.e.,
whether the region is rather uniform in intensity (e.g., in the
white matter) or has high intensity slopes (e.g., at the
gray/white matter border). The gradient angle θ(i, j) mostly
captures gyral and sulcal shape variability. The image deriv-
atives are converted to polar co-ordinates to retain the infor-
mation. The texture analysis calculates gray-level co-
occurrence matrix, which includes both global feature and
local feature space. The gray-level co-occurrence matrix is
computed at each phi, theta, and radius level. The six-
dimensional co-occurrence matrices were computed for the
anatomy structure, to recognize white matter, gray matter,
cerebrospinal fluid, tumor, and edema with 45° spatial reso-
lution of directions, i.e., x,y,z directions 3×3×3−1=27−1
neighbors in spatial directions. The co-occurrence matrices
are respective of pairs and are irrespective of the actual direct-
edness of the line between the elements of the pair. As a result,
the half-size directional space is needed. The combinations of
the spatial relationship or the displacement vector d are con-
sidered to set as four distances in 1, 2, 4, and 8 voxels and 13
directional spaces. The approach constructs features from the
entire VOI. The proposed method results in a simple informa-
tion fusion strategy which iterates between a 3D gradient
feature with co-occurrence matrices, along with image deriv-
atives and neighborhood statistics to identify brain tissues and
classification step to identify the tumor pathology tissue.

Here, the following dimensions were binned as follows:
four intensity bins (64 units each), six angle bins (45° each),
and 20 distance bins (d=20). Co-occurrence matrices are
collected within a certain VOI and represented as a point
in the six-dimensional feature space. The co-occurrence
matrix is a combination of the occurrences of pairs of
gray-scale values in the image, as a function of distance
and direction. Usually the co-occurrence matrix of the image
is tabulated with the number of times of specific voxel
values that occur as neighbors in a specific direction. No
repetition of voxel pairs is formed by every current image
voxel and subsequent ones.

Table 1 Comparison of classifi-
cation accuracy in the discrimi-
nation of low-grade and high-
grade glioma

Features Classification accuracy of
low-grade glioma

Classification accuracy of
high-grade glioma

Overall
accuracy

Std
Dev

MRI (textural) 88.45 84.20 86.50 6.8

MRS
(spectroscopic)

92.65 89.35 90.5 7.2

MRI & MRS
features

99.15 98.25 99.15 8.05

3D GLCM &
RLM [2, 14]

93.05 95.65 94 7.4
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Spectroscopic Features

Magnetic resonance spectroscopy (MRS) measures the
concentrations of different metabolite chemical compo-
nents within tissues. From the spectroscopic data of
each MRI, three metabolite markers of neuronal integ-
rity were evaluated [choline (Cho), N-acetyl aspartate
(NAA), and creatine (Cr)], and the following metabolite
integral peak–height ratios were observed in the pro-
posed pattern recognition system: Cho/NAA, Cho/Cr,
and NAA/Cr [4, 11, 27]. These ratios are used in
clinical practice for assessing various chemical proper-
ties of brain neoplasms, providing an added value in
tumor identification [3, 4].

Model System Design and Evaluation

Classification was performed by starting with the more dis-
criminative features and gradually adding less discriminative
features along with spectroscopic features, until there is no
significant improvement. For each dataset, the isolation in
feature space (volumetric and spectroscopic) of the tumor
classes, healthy brain tissue, and tumor brain tissue was eval-
uated. The extreme learning machine (ELM) algorithm pro-
posed by Huang et al. [13] is determined. The input weights
(vi) and bias (bi) are selected using improved PSO variant as in
studies [2, 9] which adaptively adjust the corresponding net-
work parameters. The output weights (βi) are analytically
determined based on the Moore–Penrose generalized inverse
of the hidden-layer output matrix [2]. This modified ELM
implemented the improved PSO and optimizes the input
weights and hidden biases, according to both root mean
squared error on validation set and the norm of the output
weights [7]. The classification is performed for the selected
feature sub-region as in Aruna Devi and Deepa’s study [2].
Pseudocode of the ELM-IPSO is given in Algorithm 1 [2, 9,
13].

Algorithm 1 Extreme learning machine-improved particle
swarm optimization (ELM-IPSO)

Step 1: Let the training set consist ofN vectors,N={(xi,ti)|xi∈
Rn, ti∈Rm, i=1, 2,…N}.

Step 2: Fix P hidden neurons with sigmoid function g(x)=1/
1+exp[−(v×x+b)] for N different training samples.

Step 3: Initialize population array of swarm particles with a
set of input weights and hidden biases.

Pi=[W11, W12,…, W1n,…, W21, W22,…, W2n,…,
WH1, WH2,…, WHn, b1, b2,…, bH] within range of
[−1,1], modeling SLFN with output weights β as:

∑
i¼1

P

βig vi:x j þ bi
� � ¼ y j; 1≤ j≤N: ð3Þ

Step 4: Calculate hidden layer output matrix H using Eq. 4.

Hβ ¼ y ð4Þ

where H ¼
f v1:x1 þ b1ð Þ ⋯ f vP:x1 þ bPð Þ

⋮ ⋱ ⋮
f v1:xN þ b1ð Þ … f vP:xN þ bPð Þ

2
4

3
5 & β ¼ βT

1 :::::β
T
N

� �T

ð5Þ
Step 5: For each swarm particle, compute the fitness as the

root mean squared error (RMSE) on the validation
set only instead of the whole training set as used in
Zhu et al.'s study [30] along with the norm of output
weights.

pi;best ¼ pi f pi;best

� �
− f pið Þ > ηf pi;bestð Þ

� �
or

f pi;best

� �
− f pið Þ < ηf pi;bestð Þ and wopi <j jwopi;best

��� ���
� 	

Pi;best else

ð6Þ

gi;best ¼ pi f gi;best

� �
− f pið Þ > ηf gi;bestð Þ

� �
or

f gi;best

� �
− f pið Þ < ηf gi;bestð Þ and wopi <j jwogi;best

��� ���
� 	

gi;best

ð7Þ

where fitness of best positions and their corresponding
weights are considered. η>0 is the tolerance rate.
Step 6: The corresponding output weight matrix β is calcu-

lated with least-square Moore–Penrose generalized
inverse of H (H†) using Eq. 8.

β ¼ H†Y ð8Þ

Step 7: The velocity updation is done as,

vi k þ 1ð Þ ¼ β vi kð Þ þ c1γ1ðpi ; best−piÞ þ c2γ2 gi ; best−pi
� �
 � ð9Þ

c1=c2=2.05 [8], which scales cognitive and social compo-
nents equally. Equation 10 represents β as the constriction
coefficient.

β ¼ 2κ

2−ψ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ ψ−4ð Þð Þp�� �� ð10Þ

where κ ε [0,1] and ψ=c1+c2. κ is often set to 1 which is
successful here.
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Step 8: The position of each particle is updated using Eq. 11,
and a new population is generated.

pi k þ 1ð Þ ¼ xi þ vi k þ 1ð Þ ð11Þ

Step 9: The algorithm is repeated until the criterion of hard
threshold value is reached or maximum number of
iterations is met.

Once stopped, the algorithm reports values of gbest
and f(gbest) as its solution. The best parameter values
with γ1, γ2=0.5, N=50, and maximum iterations of
200 are computed for selection of input weights and
bias.

Statistical Experiments and Results

Due normalization was performed towards segmentation
of VOI of the images. The multidimensional co-
occurrence matrices represented the most discriminatory
features for the segmentation of white matter, gray matter,
CSF, and abnormal tissue separation. The MRS spectro-
scopic features provided additional information on the
tumor grade present for the subject-specific abnormal
tissue prior the MRSI data. All voxels under abnormal
category were classified into the respective tumor grade
that was represented in the training and test set for pattern
recognition. The detection of white matter (WM), gray
matter (GM), cerebrospinal fluid (CSF), tumor, and edema
along with the spectroscopic profiles used for the

classification of high-grade and low-grade gliomas was
proved. Evaluation is done by leave-one-out validation
analysis. A test set was used to calculate classification
results for each dataset. In particular, the proposed ELM-
IPSO classification system was designed and assessed by
using solely (a) textural features or (b) spectroscopic
features and (c) both textural and spectroscopic features
[10]. Finally, mean classification accuracies and variances
were evaluated at each number for all features.

Table 1 shows the classification accuracy evaluation with
various features implemented. To assess the precision of the
proposed classification system, the co-occurrence matrices
resulted in an overall discrimination accuracy of 86.5 %.
Figures 2 and 3 depict MRS signal for normal brain and tumor
brain. Together, both volumetric features and spectroscopic
features proved the highest discrimination accuracy between
low-grade and high-grade gliomas of 99.15 % as in Fig. 6.

Figure 4 portrays the box-plots of resonance spectro-
scopic features resulted for glioma grade tumor. These
multidimensional feature points are invariant to rotation,
translation, scale, and viewpoint. The values of the

Fig. 2 MRS signal-normal brain

Fig. 3 MRS signal-glioma

Fig. 4 Box plots of spectral resonance features
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vectors of co-occurrence matrices constructed for de-
scribing regional texture features, comprising intensities,
their gradients, the angle between gradients, their gray-
level neighborhood statistics, surface slope, distance,
and Laplace derivative, are proposed. Here, the follow-
ing dimensions were binned as follows: four intensity
bins (64 units each), angle bins (45° each), and four
distance bins (d=l–4″). Co-occurrence matrices were
collected within a certain VOI and represented as a
point in the six-dimensional feature space. The proposed
method is compared with 3D GLCM–RLM features
requiring additional features and, substantially, a feature
selection stage [2, 11]. It has been noticed that the
proposed system gives better sensitivity, specificity,
and overall accuracy with 99.15 % as in Table 2 when
compared with various neural classifiers. Figure 5
shows the volumetric features extracted on co-
occurrence matrices. The spectral features enhanced the
accuracy up to 90 %. Figure 6 illustrates the accuracy
versus number of features. Figure 7 depicts segmented
portion of tumor, edema, and brain tissues.

From the receiver operating characteristic (ROC), ar-
ea under the curve (AUC) and related statistics are
obtained and are tabulated as in Table 3. Apparently,

the ELM has the highest AUC value, which indicates
that it is the best classifier. The standard errors are
reasonably small, resulting in relatively narrow confi-
dence intervals. The lower limits of the confidence
intervals of the AUC of the three classifiers exceed
the 0.5 value (the AUC of a random classifier), and
hence, the three classifiers perform much better than a
random classifier. To compare the three classifiers,
pairwise statistical t-test is applied based on the differ-
ences in the AUC of the three classifiers. The null
hypothesis is that the difference in the AUC between
two classifiers is equal to zero. The pairwise compari-
son in Table 3 between the ELM-IPSO versus SVM and
IELM-PSO versus back propagation shows that their
confidence intervals do not include the 0 value with
p<0.001, which means that in both cases the difference
in AUC of the ROC is statistically significant. On the
other hand, the pairwise comparison between the SVM
versus the back propagation shows no significant differ-
ence between their AUC values since the confidence
interval (CI) contains the 0 value with nonsignificant p
value=0.793. Thus, various statistical results significant-
ly prove that the ELM-IPSO classifier has the higher
classification accuracy.

Fig. 5 Multidimensional co-occurrence matrix volumetric features

Table 2 Results on the proposed
MRS and MRI COM model on
various classifiers

Classifier Sensitivity % Specificity % Overall accuracy % ROC Az MSE

BPN 89.58 68.17 82.85 0.81 0.21

SVM 91.84 76.19 87.14 0.90 0.10

ELM 93.33 86.533 93.5 0.94 0.09

IELM-PSO 98.01 95.0 99.15 0.97 0.015

J Digit Imaging (2014) 27:496–506 503



Discussions and Conclusions

Choline found in cell walls increases as the cells replicate,
evident in tumor case. Creatine, spectroscopic reference me-
tabolite, tends to remain more or less constant throughout the
normal state andmost pathologic conditions. NAA, a neuronal
health marker, tends to be lower in tumor case. Lipid and
lactate locate on almost same spectrum signal and are markers
of tissue necrosis. MRS is most useful in distinguishing tumor
from other lesions that can look like a tumor on MRI. In all
cases, the pathology from these locations demonstrated either
the existence of tumor cells or their location in low-grade and
high-grade gliomas. Hence, spectral pattern resembles pat-
terns for grading in tumors. Further analysis of the
misclassified cases showed that, in spite of validation, there
were two glioblastomas where normal tissue contribution had
overlapping of necrotic pattern with lipid signals at short TE.
Hence, both long TE and short TE should be analyzed. Addi-
tional brain tumor patterns and grades can be analyzed using
in-vivo and ex-vivo data.

Dissimilar types of tissue undergo intensity discrepancy of
brain overlaps. This extends for any intensity-based discrete
voxel labeling model. It reasons out due to the finite spatial
distribution of the image acquisition: voxels at the boundary
between tissue types have more than one tissue contributing to

Fig. 7 MRI segmentation: tumor, edema, CSF, WM, GM with expert validation

Fig. 6 Accuracy vs number of features
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the measured signal (partial volume effect). The tumor edge
voxels are situated in high-gradient regions of the MR image,
which has been overcome by the proposed approach against
[4]. The elimination of feature selection stage reduces the
computational cost. The segmentation method using data
fusion of MRI and MRS is only a simple information fusion
strategy, but it is effective for tumor classification. Here, they
act as image enhancement methods. MRS achieves a high
degree of diagnostic specificity, since it is able to detect the
biochemical changes that accompany specific diseases.

Comparing with the state-of-the-art techniques, Devos
et al. [7] approach employed achieved 97 % discriminatory
classification between metastatic and meningiomas using LS-
SVM network. Luts [19] modeled LS-SVM classifier with
96 % accuracy towards grading of tumors. Similarly a recent
model [11] attained 100 % accuracy with both textural and
spectroscopic features using SVM in the discrimination of
meningiomas and metastases. To overcome the limitations of
the abovementioned 3D feature extraction and selection tech-
niques (which involve more features) and previous findings
[2], an integrated feature extraction and selection model for
3D texture analysis based on extended multidimensional co-
occurrence matrices method for neuroimage classification is
proposed in this paper. Hence, in comparison to the state-of-
the-art models, studies using ELM-IPSO classifier have been
experimented for its speed and simplicity [2], which produces
the best generalization solution in real time domain applica-
tion. Further computational time is reduced, due to elimination
of feature selection stage, modeling a simple computationally
efficient automated system design.

The current version of the proposed system could be ex-
tended for multifocal tumors. Further investigation on mag-
netic source imaging (MSI) with magneto encephalography
(MEG) and brain mappings will assist in correlating intraop-
erative cortical simulation. Exploration towards brain map-
ping techniques will aid in neurooncology management fea-
turing multi faceted purview. The thrust for studies towards
stereotaxic space in MR images can be explored with new
metabolite components [23].

Acknowledgments This work was supported by the Council of Scien-
tific and Industrial Research (CSIR), NewDelhi, India, with reference 09/
1073/(0001)/2012. The authors thank PSG IMSR & Hospitals,

Coimbatore, Tamilnadu, India, for providing clinical data after the ap-
proval of the ethics committee on clinical information.

References

1. American Cancer Society: Cancer Facts & Figures 2012. American
Cancer Society, Atlanta, 2012

2. Aruna Devi B, Deepa SN: Brain tumor tissue characterization in 3D
magnetic resonance images using improved PSO for extreme learning
machine. Progress in Electromagnetics Research B 49:31–54, 2013

3. Alparone L, Argenti F, Benelli G: Fast calculation of co-occurrence
matrix parameters for image segmentation. Electronics Letters 26(1):
23–24, 1990

4. Bendszus M, Warmuth-Metz M, Klein R: MR spectroscopy in
gliomatosis cerebri. American Journal of Neuroradiology 21:375–
380, 2000

5. Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP,
Mikkelsen T: Correlation between MRS imaging and image guided
biopsies: semi quantitative and qualitative histopathological analyses
of patients with untreated glioma. Neurosurgery 49:823–829, 2001

6. Chris C, Alex Zijdenbos P, Evans CA: A fully automatic and robust
brain MRI tissue classification method. Medical Image Analysis 7:
513–527, 2003

7. Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JA,
Vanhamme L, Buydens LM, Heerschap A, Van Huffel S: The use of
multivariate MR imaging intensities versus metabolic data from MR
spectroscopic imaging for brain tumour classification. JMagnReson.
173:218–228, 2005

8. Fei H, Hai-Fen Y, Qing-Hua L: An improved Extreme learning
machine based on particle swarm optimization. Proc. of Int. conf.
on Intelligent Computing: 699–704, 2012.

9. Fuster Garcia E, Tortajada S, Vicente J, Robles M, García Gómez
JM: Extracting MRS discriminant functional features of brain tu-
mors. NMR Biomed, 2012. doi:10.1002/nbm.2895

10. Garcia Gomez JM: Brain tumor classification using magnetic resonance
spectroscopy. Tumors of the Central Nervous System 3:5–19, 2011

11. Georgiadis P, Kostopoulos S, Cavouras D, Glotsos D, Kalatzis I, Sifaki
K, Malamas M, Solomou E, Nikiforidis G: Quantitative combination
of volumetric MR imaging and MR spectroscopy data for the discrim-
ination of meningiomas frommetastatic brain tumors by means pattern
recognition. Magnetic Resonance Imaging 29:525–535, 2011

12. Haralick RM, Shanmugam K, Dinstein I: Textural features for image
classification. IEEE Trans. Syst. Man Cybern. 3:610–621, 1973

13. Huang GB, Zhu QY, Siew CK: Extreme learning machine: theory
and applications. Neurocomputing 70(1):489–501, 2006

14. Howe FA: Opstad KS:1H MR spectroscopy of brain tumors and
masses. NMR Biomed 16:123–131, 2003

15. Kovalev VA, Kruggel F, Gertz HJ, von Cramon Y: Structural brain
asymmetry as revealed by 3D texture analysis of anatomicalMR images.
Proc. of Int. Conf. on Pattern Recognition, Quebec: 808–811, 2002.

Table 3 Pairwise comparison
between the AUC of the classi-
fiers using Student’s t-test

IELM-PSO vs SVM IELM-PSO vs BPN SVM vs BPN

MSE error 0.00954 0.0256 0.0102

95 % confidence interval (CI) 0.0854–0.134 0.0724–0.0154 −0.0179–0.032
Significance level p<0.05 p<0.05 p=0.793

Difference in AUC curve 0.08 0.03 0.02

J Digit Imaging (2014) 27:496–506 505

http://dx.doi.org/10.1002/nbm.2895


16. Kovalev VA, Petrou M, Suckling K: Detection of structural differ-
ences between the brains of schizophrenic patients and controls. Psy.
Research: Neuro-imaging 124:177–189, 2003

17. Kovalev VA, Kruggel F, von Cramon DY, Gertz HJ: Three-
dimensional texture analysis of MRI brain datasets. IEEE Trans. on
Medical Imaging 20(5):424–433, 2001

18. Luts J, Laudadio T, Idema AJ, Simonetti AW, Heerschap A,
Vandermeulen D, Suykens JAK, Van Huffel S: Nosologic imaging
of the brain: segmentation and classification using MRI and MRSI.
NMR in Biomedicine 22(4):374–390, 2009a

19. Luts J, Heerschap A, Suykens JAK, Van Huffel S: A combined MRI
and MRSI based multiclass system for brain tumour recognition
using LS-SVMs with class probabilities and feature selection.
Artificial Intelligence in Medicine 40(2):87–102, 2007

20. Luts J, Martinez-Bisbal MC, Van Cauter S. Molla, Piquer E, Suykens
JA, Himmelreich K, Celda, UB, Van Huffel S: Differentiation between
brain metastases and glioblastoma multiforme based on MRI, MRS
and MRSI. Proc. of the IEEE International Symposium on Computer-
Based Medical Systems (CBMS), New Mexico: 1–8, 2009b.

21. Majós C, Aguilera C, CosM, Camins A, Candiota AP, Delgado-Goñi
T, Samitier A, Castañer S, Sánchez JJ, Mato D, Acebes JJ, Arús C: In
vivo proton magnetic resonance spectroscopy of intraventricular
tumours of the brain. Eur Radiol 19(8):2049–2059, 2009

22. Mahmoud GD, Toussaint G, Constans JM, de Certaines JD: Three
dimensional texture analysis in MRI: a preliminary evaluation in
gliomas. Magn. Reson Imaging 21:983–987, 2003

23. Nelson SJ: Analysis of volume MRI and MR spectroscopic imaging
data for the evaluation of patients with brain tumors. Magnetic
Resonance in Medicine 46:228–239, 2001

24. Simonetti AW, Melssen WJ, de Szabo Edelenyi F, van Asten JJ,
Heerschap A, Buydens LM: Combination of feature-reduced MR
spectroscopic and MR imaging data for improved brain tumor clas-
sification. NMR in biomedicine 18:34–43, 2005

25. Soffietti R, Baumert BG, Bello L, von Deimling A, Duffau H, Fre’nay
M, Grisold W, Grant R, Graus F, Hoang-Xuan K: Guidelines on
management of low-grade gliomas: report of an EFNS–EANO*
Task Force. European Journal of Neurology 17:1124–1133, 2010

26. Simon KW, Kaus M, Jolesz FA, Kikinis R: Adaptive, template
moderated, spatially varying statistical classification. Medical
Image Analysis 4(1):43–55, 2000

27. Weibei Dou, Aoyan Dong, Shaowu Li, Ping Chi, Jean-Marc
Constans: Glioma Tissue Modelling by combing the information of
MRI and in vivo Multivoxel MRS. Proceedings of Int. Conf. on
Bioinformatics and, Biomedical Engineering (iCBBE2010), China:
1–4, 2010.

28. Wang Q, Eirini Karamani L, Erickson M, Uday Kanamalla S,
Vasileios M: Classification of brain tumors using MRI and MRS
data. Proc. of SPIE 6514:65140S1–65140S8, 2007

29. Fan Y, Shen D: Integrated feature extraction and selection for
neuroimage classification. Proceedings of SPIE 7259:72591U, 2009

30. Zhu QY, Qin AK, Suganthan PN, Huang GB: Evolutionary extreme
learning machine. Pattern Recognition. 38(10):1759–1763, 2005

506 J Digit Imaging (2014) 27:496–506


	Multidimensional Texture Characterization: On Analysis for Brain Tumor Tissues Using MRS and MRI
	Abstract
	Introduction
	Need for a Multidimensional Texture Analysis for the Characterization of a Brain Tumor
	Context of Contemporary Status
	Need for a Volumetric Feature Extraction Design Model
	Problem Definition

	Materials and Methods
	MRI and MRS Clinical Specimens Acquisition
	Volume of Interest Extraction and Feature Calculation
	Volumetric MR Imaging Features Using Multidimensional Co-occurrence Matrices
	Spectroscopic Features

	Model System Design and Evaluation

	Statistical Experiments and Results
	Discussions and Conclusions
	References


