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Abstract It is often difficult for clinicians to decide correctly
on either biopsy or follow-up for breast lesions with masses on
ultrasonographic images. The purpose of this study was to
develop a computerized determination scheme for histological
classification of breast mass by using objective features cor-
responding to clinicians’ subjective impressions for image
features on ultrasonographic images. Our database consisted
of 363 breast ultrasonographic images obtained from 363
patients. It included 150 malignant (103 invasive and 47
noninvasive carcinomas) and 213 benign masses (87 cysts
and 126 fibroadenomas). We divided our database into 65
images (28 malignant and 37 benign masses) for training set
and 298 images (122 malignant and 176 benign masses) for

test set. An observer study was first conducted to obtain
clinicians’ subjective impression for nine image features on
mass. In the proposed method, location and area of the mass
were determined by an experienced clinician. We defined
some feature extraction methods for each of nine image fea-
tures. For each image feature, we selected the feature extrac-
tion method with the highest correlation coefficient between
the objective features and the average clinicians’ subjective
impressions. We employed multiple discriminant analysis
with the nine objective features for determining histological
classification of mass. The classification accuracies of the
proposed method were 88.4 % (76/86) for invasive carcino-
mas, 80.6 % (29/36) for noninvasive carcinomas, 86.0 %
(92/107) for fibroadenomas, and 84.1 % (58/69) for cysts,
respectively. The proposed method would be useful in the
differential diagnosis of breast masses on ultrasonographic
images as diagnosis aid.

Keywords Computer-aided diagnosis . Histological
classification . Observer study . Feature extraction method .

Ultrasonographic image

Introduction

Mass is one of the important indications related to breast
cancer on ultrasonographic images. However, it can be
difficult for clinicians to determine whether a lesion with
mass is malignant or benign. The positive predictive value
of ultrasonography, i.e., the ratio of the number of breast
cancers found to the number of biopsies, is rather low [1–4].
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Unnecessary biopsies cause both physical and costly prob-
lems to the patients. To improve the positive predictive
value, in the previous studies, many investigators have
attempted to develop a computer-aided diagnosis (CAD)
scheme [5] for distinguishing between benign and malignant
masses on ultrasonographic images. Chen et al. [6, 7] uti-
lized the textural features in breast ultrasonographic images
to distinguish between benign and malignant masses by
using an artificial neural network (ANN). Joo et al. [8] also
employed an ANN with morphologic features. Shi et al. [9]
developed a CAD scheme based on a fuzzy support vector
machine to detect and classify mass from ultrasonographic
images. Horsch et al. [10] extracted lesion shape, margin
definition, echogenic texture, and posterior acoustic en-
hancement or shadowing of masses from ultrasonographic
images, and they estimated the likelihood of malignancy by
using linear discriminant analysis with these features. The
results of these CAD schemes indicated high performance in
distinguishing between benign and malignant masses.
However, experienced clinicians evaluate not only the
likelihood of malignancy but also the likelihood of
histological classification in determining patient manage-
ments. Therefore, the computerized analysis for evaluat-
ing not only the likelihood of malignancy but also the
likelihood of histological classifications for masses
would be helpful to clinicians for their decisions on
patient management [11–14].

On the other hand, most CAD schemes need to
extract image features of masses to evaluate the likeli-
hood of malignancy. However, clinicians’ subjective im-
pression of these image features was sometimes
different from the objective features extracted by these
CAD schemes. There would be a possibility that classi-
fication accuracy is improved by use of objective fea-
tures reflecting to clinicians’ subjective impression
based on clinical experience. The purpose of this study
was to select adequate feature extraction methods for
the objective features corresponding to clinicians’ sub-
jective impression and to develop a computerized deter-
mination scheme for histological classification of mass
using the extracted objective features to assist clinicians’
interpretation. In this study, an observer study was first
conducted to obtain clinicians’ subjective impression of
nine image features from masses in ultrasonographic
images. We defined some feature extraction methods
for each of the nine image features and selected an
adequate extraction method with the highest correlation
coefficient between the objective features and the aver-
age clinicians’ subjective impressions. We employed
multiple discriminant analysis using the extracted objective
features for determining histological classification of mass.
The classification accuracies were evaluated by applying the
proposed method to a test set of 298 masses.

Materials and Methods

The use of this database and the participation of clinicians in
the observer study were approved by our institutional review
board. Informed consent was obtained from all observers.

Materials

Our database consisted of 363 breast ultrasonographic images
obtained from 363 patients at Mie University Hospital, Tsu,
Japan. It included 150 malignant (103 invasive and 47 nonin-
vasive carcinomas) and 213 benign masses (87 cysts and 126
fibroadenomas). The histological classifications of these
masses were proved by pathologic diagnosis. The ultrasono-
graphic images were acquired with an Aplio (ToshibaMedical
Systems Corporation) system. These ultrasonographic images
were size of 716 pixels by 537 pixels with 8-bit gray scale.
Figure 1 shows an example of masses with four different types
of histological classifications. We divided our database into
two set; 65 images (28 malignant and 37 benign masses) as a
training set for the extraction method and 298 images (122
malignant and 176 benign masses) for the test set.

Observer Study for Subjective Impression

An observer study was conducted to obtain clinicians’ subjec-
tive impression of nine image features of breast masses on
ultrasonographic images. The nine image features were selected
by taking into account the image features that clinicians’ com-
monly used for describing masses on ultrasonographic images.
These image features were (1) depth–width ratio, (2) degree of
indistinctness in margin, (3) homogeneity in internal echoes, (4)
echo level in internal echoes, (5) echo level in posterior echoes,
(6) degree of round, (7) degree of polygonal, (8) degree of
lobulated, and (9) degree of irregular. Three clinicians (3–7 years
of experience) participated in this observer study.

The instructions to observers included: (1) the purpose of
this study is to obtain basic data for clinicians’ subjective
rating in a CAD scheme to assist clinicians’ interpretation of
breast ultrasonographic images. (2) A test session includes
65 breast masses (28 malignant and 37 benign masses). (3)
A subjective rating should be marked based on diagnosis of
breast ultrasonographic on a continuous rating scale be-
tween 0.0 and 1.0 with a line-checking method. (4) A
training session including three masses is provided at the
beginning of this study. (5) There is no time limit.

Computerized Determination Scheme

Segmentation of Mass

For accurate quantification of the image features, the location and
shape of all masses were determined by an experienced clinician.
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Extraction of Nine Objective Features

In the feature extraction method, we first defined some ex-
traction methods for each image feature. For each image
feature, we selected an adequate feature extraction method
with the highest correlation coefficient between the objective
features and the average clinicians’ subjective impressions.

Depth–Width Ratio We defined three extraction methods for
quantifying the depth–width ratio.

1. D/W1—ratio of the long axis and the short axis in the
segmented mass

2. D/W2—ratio of the height and the width for the
circumscribed rectangle of the segmented mass

3. D/W3—ratio of the maximum chords in the vertical and
horizontal directions

D/W1 andD/W2were sometimes used as aspect ratio in the
CAD scheme [15–17]. D/W3 was newly defined in this study
because clinicians usually take into account the ratio of the
maximum depth and the maximumwidth of a mass. Figure 2a
shows the relationship between the average of the clinicians’
subjective ratings and the above three extraction methods for
the depth–width ratio. D/W3 was the highest correlation coef-
ficient (r=0.86) among the three extraction methods. There-
fore, we selected D/W3 for the depth–width ratio. Amalignant
mass tends to have a high depth–width ratio.

Degree of Indistinctness in Margin In quantifying the de-
gree of indistinctness in margin, we defined four extraction
methods.

1. Indis1—mean pixel value of gradient (Sobel) on the
outline of the mass

2. Indis2—difference of the mean pixel values in the out-
side band and the inside band

3) Indis3—normalized radial gradient along the margin in
the mass

4. Indis4—highest mean pixel value of gradient (Sobel) on
four divided outlines of mass

Indis1, Indis2, and Indis3 were often used for quantifying
the degree of indistinctness in margins [10, 16–20]. Figure 3
shows an example of an inside and an outside band for
margin of mass. Here, the outside band was given by the
outside region with a width of 5 pixels around the outline of
the mass region, and the inside band was given by the inside
region with a width of 5 pixels around the outline of the
mass region. Indis4 was newly defined because clinicians
tend to evaluate an indistinct part only in margin. In Indis4,
we divided the outline of a mass into four parts and deter-
mined the highest mean pixel value of gradient in these four
parts. Figure 2b shows the relationship between the average
of clinicians’ subjective ratings and the above four extrac-
tion methods for the degree of indistinctness in margin.
Indis4 was the highest correlation coefficient (r=0.70)
among the four extraction methods. Therefore, we selected
Indis4 for determining the degree of indistinctness in mar-
gin. Margin for malignant cases tends to be more indistinct
than that for benign cases.

Homogeneity in Internal Echoes We defined the following
extraction methods.

1. HomoEchoes1—standard deviation of the intensity in a
mass

2. HomoEchoes2—relative standard deviation of the in-
tensity in a mass

Fig. 1 Four masses with
different types of histological
classifications. a Invasive
carcinoma, b noninvasive
carcinoma, c fibroadenoma, and
d cyst
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3. HomoEchoes3—autocorrelation in depth of the region
of interest (ROI)

4. HomoEchoes4—angular second moment

HomoEchoes1, HomoEchoes2, and HomoEchoes3 were
known as the feature extraction methods for quantifying ho-
mogeneity in internal echoes [10, 14, 16, 17, 19]. However,
HomoEchoes1 and HomoEchoes2 cannot properly evaluate
texture because these methods do not consider pixel location
information. In HomoEchoes3, autocorrelation in depth of
ROI was computed from the minimal rectangular ROI
containing the lesion. Autocorrelation was defined as

Autocorrelation ¼
XNR�1

n¼0

AyðnÞ
Ayð0Þ

: ð1Þ

Fig. 2 Relationship between the average of clinicians’ subjective
ratings and the objective features obtained by the selected extraction
method. a Relationship between the average of clinicians’ subjective
ratings and the depth–width ratio, b relationship between the average
of clinicians’ subjective ratings and the degree of indistinctness in
margin, c relationship between the average of clinicians’ subjective
ratings and the homogeneity in internal echoes, d relationship between
the average of clinicians’ subjective ratings and the echo level in
internal echoes, e relationship between the average of clinicians’

subjective ratings and the echo level in posterior echoes, f relationship
between the average of clinicians’ subjective ratings and the output of
the ANN with nine objective features, g relationship between the
average of clinicians’ subjective ratings and the output of the ANN
with 12 objective features, h relationship between the average of
clinicians’ subjective ratings and the output of the ANN with 10
objective features, and i relationship between the average of
clinicians’ subjective ratings and the output of the ANN with 11
objective features

Fig. 3 Example of an inside and an outside band for margin of mass
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where

AyðnÞ ¼
XMR�1

m¼0

Ay m; nð Þ: ð2Þ

Ay m; nð Þ ¼
XNR�1�n

p¼0

R2 m; nþ pð ÞR2 m; pð Þ: ð3Þ

R was the gray level value of the ROI. MR was the
number of pixels in the lateral direction of the ROI, and
NR was the number of pixels in the depth direction of the
ROI. However, it would sometimes be difficult for the
autocorrelation to quantify the homogeneity in internal ech-
oes because ultrasonographic images included speckle
noise. To overcome the problems, HomoEchoes4 using
angular second moment (ASM) in the texture feature was
defined in this study. Clinicians’ generically evaluate the
homogeneity of internal echoes from inside of the mass.
Therefore, we computed the ASM from inside of the mass.
The ASM was defined as

ASM ¼
X
i; j

p i; jð Þ2� ð4Þ

The gray scale level on ultrasonographic images was de-
creased from 256 to 32 levels. Four matrices in different
directions (0°, 45°, 90°, and 135°) were averaged. The dis-
tance between two points of interest was changed from 1 to 25
pixels. Here, p(i,j) was defined as the joint probability of the
gray levels i and j. Figure 2c shows the relationship between
the average of clinicians’ subjective ratings and the above four
extraction methods for homogeneity in internal echoes.
HomoEchoes4 was the highest correlation coefficient
(r=0.70) among the four extraction methods. Therefore, we
selected HomoEchoes4 for homogeneity in internal echoes. A
larger ASM value means more homogeneous.

Echo Level in Internal Echoes We defined three extraction
methods for the echo level in internal echoes.

1. InEchoes1—mean value of the pixels within the mass
2. InEchoes2— Avebg � Avemass

� �
=Avemass

3. InEchoes3—Avemass=max Avefatright ;Avefatleft
� �

InEchoes1 and InEchoes2 were sometimes used for eval-
uation of the echo level in internal echoes [16, 17, 19, 21].
In InEchoes2, 5 % brighter mass pixels were first deter-
mined by a dynamic threshold to form a brighter group with
the histogram technique. The average pixel value for the
brighter group was defined as

Avebg ¼ 1

NBP

X
IðPÞ

P2Rand IðPÞ�K

: ð5Þ

Here, I(P) was the gray level value of mass pixel P, NBP

was the number of brighter pixels, and k was also the
dynamic threshold. InEchoes2 was defined as

InEchoes2 ¼ Avebg � Avemass

� �
=Avemass: ð6Þ

Here, Avemass was the mean value of the pixel value
within the mass region. In clinical practice, clinicians com-
pare echo level for the right and left fat regions with that in
internal echoes within the mass. In InEchoes3, the Avefatright
and Avefatleft was defined by the mean pixel value in the right
and left fat regions, respectively. Figure 4 shows an example
of the fat regions on the right and left sides. Here, the size of
the fat region was (the maximum chord at vertical direction
in the segmented mass)×(the maximum chord at horizontal
direction in the segmented mass×1/3). Figure 2d shows the
relationship between the average of the clinicians’ subjec-
tive ratings and the above three extraction methods for the
echo level in internal echoes. InEchoes3 was the highest
correlation coefficient (r=0.76) among the three extraction
methods. Therefore, we selected InEchoes3 for the echo
level for the internal echoes. When the echo level in internal
echoes is low, there is a possibility that the mass is benign.

Echo Level in Posterior Echoes
1. PostEchoes1: min Aveð ðROIpostÞ�AveðROIleftÞ;AveðROIpostÞ�

AveðROIrightÞÞ
2. PostEchoes2: AveðROIpostÞ � Avemass

3) PostEchoes3:AveðROIpostÞ� AveðROIleftÞ þ AveðROIrightÞ
� �

= 2

PostEchoes1 and PostEchoes2 were used for the echo
level in posterior echoes in previous studies [10, 19, 21].

AveðROIpostÞ; AveðROIrightÞ; and AveðROIleftÞ were the average

pixel values in each region. To avoid influence of lateral
shadows, ROIleft and ROIright were located on both sides of
the posterior region of the mass. The size of the ROI was
(the maximum chord at vertical direction in the segmented
mass)×(the maximum chord at horizontal direction in the
segmented mass×4/5). Figure 5 shows an example of the
echo level in posterior echoes. PostEchoes3 was newly
defined because clinicians tend to compare the pixel values
in the posterior region with those in normal tissue at the

Fig. 4 Example of the fat region on right and left sides
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same depth. Figure 2e shows the relationship between the
average of clinicians’ subjective ratings and above three
extraction methods in echo level in posterior echoes. The
PostEchoes3 was the highest correlation coefficient (r=
0.88) among the three extraction methods. Therefore, we
selected the PostEchoes3 for the echo level in posterior
echoes. The echo levels in the posterior region for a benign
case tend to be higher than those for malignant cases.

Degrees of Four Shapes in Mass Clinicians’ evaluate the
shape of mass by taking into account not only simple shape
but also the other image features (e.g., the degree of indis-
tinctness in margin). To determine the degrees of four
shapes in mass, we extracted the following 15 image fea-
tures from the segmented mass: (F1) the area of the mass;
(F2) the filling rate of the circumscribed quadrangle; (F3)
the number of lines in the segmented mass obtained by the
Hough transform [22]; (F4) the number of concaves; (F5)
the area of concaves; (F6) the distance of the farthest point
and the convex, as shown in Fig. 6; (F7) the degree of
circularity; (F8) the degree of irregularity; (F9) the number
of protuberances; (F10) the ratio of the height and width for
the circumscribed rectangle of the segmented mass; (F11)
the ratio of the minimum distance and maximum distance

between the center and the edges of the segmented mass;
(F12) the ratio of the perimeter and area of the segmented
mass; (F13) the ratio of the perimeter of the segmented mass
and the perimeter of the corresponding best-fit ellipse of the
segmented mass; (F14) the ratio of the area of the segmented
mass and the area of the corresponding best-fit ellipse of the
segmented mass; and (F15) the degree of the indistinctness
in margin as mentioned in section B.2. (F2), (F7), (F8),
(F10), (F11), and (F12) were determined as follows.

F2ð Þ ¼ Am

Depth�Width
� ð7Þ

F7ð Þ ¼ 4� p � Am

Pm
2 : ð8Þ

F8ð Þ ¼ Pm
2

Am
: ð9Þ

F10ð Þ ¼ Lheight
Lwidth

: ð10Þ

F11ð Þ ¼ Dmax

Dmin
: ð11Þ

F12ð Þ ¼ Pm

Am
: ð12Þ

Here, Am was the number of pixels in the segmented mass
region. Width was the maximum chord in the horizontal
direction in the segmented mass region and Depth was the
maximum chord in the vertical direction in the segmented
mass region. Pm was the perimeter of the mass. Figure 7
shows an example of Llong, Lshort, Dmin, and Dmax. To
calculate F4, we first delineated a convex hull from the
segmented mass by using Sklansky’s algorithm [23]. The
concaves were then identified by subtracting the segmented
mass from the convex hull. Figure 8 shows the concave

Fig. 5 Example of the ROIleft, ROIpost, and ROIright

Fig. 6 Example of the concave region and the distance of the farthest
point and the convex Fig. 7 Example of the Llong, Lshort, Dmin, and Dmax, respectively

J Digit Imaging (2013) 26:958–970 963



shape identification process. F4 was defined as the number
of the identified concaves. F5 was defined as the number of
pixels in the identified concaves. For calculating F9, the
curvature was first calculated from the coordinate at the
outline of the segmented mass. Figure 9 shows an example
of a curvature calculated from the outline of the segmented
mass. We defined the local maximum value by identifying
each center point of the curvature that was larger than the
threshold. The threshold was determined experimentally as
0.6. F9 was defined as the number of the local maxima.

It is difficult to compute the degrees of round, polygonal,
lobulated, and irregular mass shape from these image features
in a manner similar to clinicians. Since clinicians determine
these degrees by their subjective impression, the degrees
would be expressed by nonlinear function of the image fea-
tures. An ANNs are often used to identify such function [24,
25]. Therefore, we computed the degrees of shape from these
image features using an ANN that was trained to learn the
relationship between the image features and the average sub-
jective clinicians’ ratings. The ANN was a three-layered, feed
forward network using a backpropagation algorithm [26]. The
most appropriate combination of image features in the degree
of each shape was determined by use of a leave-one-out test
method [27]. The selected image features were used for the
input data of the ANN whereas the average subjective ratings
were used for the teacher data of the ANN. Table 1 shows the
shape evaluation parameters for each ANN. These pa-
rameters were selected such that the output of the ANN
provides the highest correlation coefficient to the aver-
age clinicians’ subjective ratings using the leave-one-out
test method for training data.

Determination of Histological Classification

Multiple discriminant analysis [26] was employed to distin-
guish among four different types of histological classifica-
tions. For the input of the multiple discriminant method, we
used the nine objective features. Here, nine objective fea-
tures were normalized. The output of the multiple discrim-
inant analysis provided four values indicating the likelihood
of each histological classification. A leave-one-out test
method was used for the training and testing of the multiple
discriminant analysis.

The classification accuracy for each histological classifi-
cation was defined as

Classification accuracy ¼ Number of truly classified cases

Number of cases
:

ð13Þ
The sensitivity [28], specificity [28], positive predictive

value (PPV) [28], and negative predictive value (NPV) [28]
were defined as

Sensitivity ¼ TP

TPþ FN
: ð14Þ

Specificity ¼ TN

TNþ FP
: ð15Þ

PPV ¼ TP

TPþ FP
: ð16Þ

Fig. 8 Concave shape
identification process. a
Segmented mass, b convex
hull, and c detected concave

Fig. 9 Example of the
calculated curvature from the
outline of segmented mass. a
Segmented mass and b
curvature of the a segmented
mass
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NPV ¼ TN

TNþ FN
: ð17Þ

where true positive (TP) was the number of malignant
masses correctly identified as positive; true negative (TN)
was the number of benign masses correctly identified as
negative; false positive (FP) was the number of benign
masses incorrectly identified as positive; false negative
(FN) was the number of malignant masses incorrectly iden-
tified as negative.

Results

Table 2 shows the selected feature extraction method. The
correlation coefficients between the averages of clinicians’
subjective ratings and the objective features obtained by the
selected extraction method were 0.86 for the depth–width
ratio, 0.70 for the degree of indistinctness in margin, 0.70
for the homogeneity in internal echoes, 0.76 for the echo
level in internal echoes, 0.88 for the echo level in posterior
echoes, 0.72 for the degree of round, 0.88 for the degree of
polygonal, 0.74 for the degree of lobulated, and 0.73 for the
degree of irregular, respectively.

Figure 10 shows the distributions of the nine objective
features obtained from all masses in our database. Mean
values and standard deviations of each objective feature

for the four different types of histological classifications
are listed in Table 3. Here, these objective features were
normalized by use of all cases in our database. The degree of
indistinctness in margin, the homogeneity in internal ech-
oes, the echo level in posterior echoes, and the degree of
round shape for cysts tended to be larger than those for other
histological classifications. Fibroadenoma tended to have
larger values in the degree of round shape, the echo level
in internal echoes, and have smaller values for the degree of
irregular shape. Noninvasive carcinoma tended to have larg-
er values for the echo level in internal echoes and the degree
of irregular shape. Invasive carcinoma tended to have small-
er values for the indistinctness in margin, the degree of
round shape, and have larger values for the depth–width
ratio, the degree of irregular shape. These objective features
for each histological classification appeared the tendency
similar to clinical characteristics.

Table 4 shows the result of test for univariate equality of
group means. This test was evaluated by using the objective
features in Fig. 10. The Wilk’s lambdas [29] for the degree of
round shape were smaller than those for the other objective
features. The F value [29] for the degree of round shape was
also larger than those for any other features. This result would
indicate that the degree of round shape made a larger contri-
bution to determine four histological classifications of breast
masses. On the other hand, the degree of polygonal shape had
the largest Wilk’s lambda and the smallest F value. However,

Table 1 Shape evaluation parameters for each ANN

Shape Coefficient of the momentum term Learning rate Slant of the sigmoid function Hidden layer neurons Training iterations

Round 0.01 0.1 1.0 10 450

Polygonal 0.01 0.01 3 4 100

Lobular 0.1 0.1 1.5 11 1,300

Irregular 0.01 0.01 1 9 3,350

Table 2 Selected feature extraction method

Objective features Selected the feature extraction method Correlation
coefficient

Depth–width ratio Ratio of the maximum chords in the vertical and horizontal directions 0.86

Degree of indistinctness in margin Highest mean pixel value of gradient (Sobel) on four divided outlines of the mass 0.70

Homogeneity in internal echoes Angular second moment 0.70

Echo level in internal echoes Ave massð Þ=max Ave fatright
� �

; Ave fatleftð Þ� �
0.76

Echo level in posterior echoes Ave ROIpost
� �� Ave ROIleftð Þ þ Ave ROIright

� �� �
=2 0.88

Degree of round Output value of the ANN by use of (F1), (F5), (F6), (F8), (F9), (F11), (F12), (F13), and (F15) 0.72

Degree of polygonal Output value of the ANN by use of (F1), (F3), (F4), (F6), (F7), (F8), (F9), (F11), (F12),
(F13), (F14), and (F15)

0.88

Degree of lobulated Output value of the ANN by use of (F3), (F4), (F5), (F6), (F7), (F8), (F11), (F13), (F14),
and (F15)

0.74

Degree of irregular Output value of the ANN by use of (F1), (F3), (F5), (F7), (F8), (F9), (F10), (F11), (F13),
(F14), and (F15)

0.73
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the p value for the degree of polygonal shape reached the level
of statistical significance (p<0.05). Thus, these nine objective
features were statistically useful for determining four histo-
logical classifications of breast masses.

Table 5 shows the determination results of four histolog-
ical classifications by use of the multiple discriminant anal-
ysis. The classification accuracies of the proposed method
were 88.4 % (76/86) for invasive carcinomas, 80.6 %
(29/36) for noninvasive carcinomas, 86.0 % (92/107) for
fibroadenomas, and 84.1 % (58/69) for cysts, respectively.
The sensitivity, specificity, PPV, and NPV based on the

classification results of histological classifications were
89.3 (109/122), 96.0 (169/176), 94.0 (109/116), and
92.9 % (169/182), respectively.

Discussion

To investigate the usefulness of the nine objective features
in terms of classification accuracies, we compared the pro-
posed method with a previous method for determining his-
tological classifications of masses [30, 31]. In this previous

Fig. 10 Distributions of the nine objective features between a depth–
width ratio and degree of indistinctness in margin, b homogeneity in
internal echoes and echo level in internal echoes, c echo level in

posterior echoes and degree of round, d degree of polygonal
and degree of lobulated, and e degree of irregular and degree of
lobulated

Table 3 Mean values and standard deviations of each objective feature for the four different types of histological classifications

Objective feature Histological classification

Invasive carcinoma Noninvasive carcinoma Fibroadenoma Cyst

Depth–width ratio 0.71±0.94 −0.48±0.99 −0.50±0.68 0.14±0.91

Degree of indistinctness in margin −0.75±0.73 −0.17±0.93 0.19±0.89 0.72±0.84

Homogeneity in internal echoes 0.16±0.98 −0.58±0.81 −0.38±0.71 0.70±1.05

Echo level in internal echoes −0.47±0.71 1.05±0.96 0.38±0.77 −0.56±0.97

Echo level in posterior echoes −0.18±0.98 −0.54±0.89 0.04±0.89 0.44±1.06

Degree of round −0.98±0.41 −0.70±0.57 0.48±0.72 0.85±0.77

Degree of polygonal −0.25±0.76 −0.24±0.76 0.08±1.17 0.31±1.00

Degree of lobulated 0.25±1.07 −0.13±0.81 0.18±1.07 −0.52±0.62

Degree of irregular 0.89±0.96 0.85±1.06 −0.57±0.38 −0.67±0.20
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method, nine objective features were extracted: (1) degree of
circularity; (2) degree of shape irregularity; (3) depth–width
ratio; (4) degree of indistinctness in margin; (5) degree of
irregularity in margin; (6) homogeneity in internal echoes;
(7) echo level in internal echoes; (8) echo level in posterior
echoes; and (9) degree of lateral shadows. The p value for
the nine objective features in the previous method reached
the level of statistical significance (p<0.05). We employed
the multiple discriminant analysis using the nine objective
features for determining histological classifications of
masses. The classification accuracies of the previous meth-
od were 80.2 % (69/86) for invasive carcinomas, 63.9 %
(23/36) for noninvasive carcinomas, 77.6 % (83/107) for
fibroadenomas, and 81.2 % (56/69) for cysts, respectively.
The sensitivity, specificity, PPV, and NPV of the previous
method were 85.2 (104/122), 95.5 (168/176), 92.9
(104/112), and 90.3 % (168/186), respectively. Thus, the
proposed method was higher classification accuracies than
the previous method. Echo level in internal echoes for
noninvasive carcinoma included in our database tended to
be higher than for other histological classifications. The
echo level in posterior echoes for noninvasive carcinoma
included in our database also tended to be lower than for
other histological classifications. The previous method was
not adequate to evaluate the echo level in internal echoes
and the echo level in posterior echoes for the masses. There-
fore, the classification accuracy of the previous method for
noninvasive carcinoma was lower than that of other histo-
logical classifications.

We considered that the likelihood of malignancy for mass
may be helpful to clinicians for their decisions on clinical
practice. Thus, we applied the results of the histological clas-
sifications in the proposed method to distinguish between
malignant and benign masses. Here, a malignant mass was
defined as amass that our histological method classified as any
malignant mass, whereas a benign mass corresponded to a
mass our histological method classified as any benign mass.
The classification accuracies of this computerized method
based on histological classifications were 89.3 % (109/122)
for malignant masses and 96.0% (169/176) for benignmasses.
We also investigated the performance of distinguishing be-
tween malignant and benign masses using multiple discrimi-
nant analysis with nine objective features. The classification
accuracies were 87.7 % (107/122) for malignant masses and
94.9 % (167/176) for benign masses. The classification accu-
racies of the computerized method based on histological clas-
sifications were higher than those of the computerized method
for distinction between benign and malignant masses. We also
compared the computerized method based on histological
classifications with two previous methods, here denoted as
method1 [10] and method2 [7], used to distinguish between
benign and malignant masses on ultrasonographic images. In
the previous method1, we extracted four objective features of
masses on ultrasonographic images. These four objective fea-
tures were lesion shape, margin definition, echogenic texture,
and posterior acoustic enhancement or shadowing. The
p value for the four objective features in the previous method1
reached the level of statistical significance (p<0.05). We

Table 4 Tests for univariate
equality of group means Wilk’s lambda F value p value

Depth–width ratio 0.777 34.4 <0.05

Degree of indistinctness in margin 0.779 34.0 <0.05

Homogeneity in internal echoes 0.837 23.4 <0.05

Echo level in internal echoes 0.774 34.8 <0.05

Echo level in posterior echoes 0.941 7.5 <0.05

Degree of round 0.467 136.4 <0.05

Degree of polygonal 0.956 5.5 <0.05

Degree of lobulated 0.931 8.9 <0.05

Degree of irregular 0.566 91.7 <0.05

Table 5 Determination results of four histological classifications by use of the multiple discriminant analysis

Pathological diagnosis Classification accuracy

Invasive carcinoma (%) Noninvasive carcinoma (%) Fibroadenoma (%) Cyst (%)

Invasive carcinoma (86) 76 (88.4 %) 2 (2.3 %) 8 (9.3 %) 0 (0.0 %)

Noninvasive carcinoma (36) 2 (5.6 %) 29 (80.6 %) 5 (13.9 %) 0 (0.0 %)

Fibroadenoma (107) 4 (3.7 %) 2 (1.9 %) 92 (86.0 %) 9 (8.4 %)

Cyst (69) 1 (1.4 %) 0 (0.0 %) 10 (14.5 %) 58 (84.1 %)
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employed the multiple discriminant analysis using the four
objective features to distinguish between malignant and be-
nign masses on ultrasonographic images. In the previous
method2, we extracted 15 objective features which were block
difference of inverse probabilities, block variation of local
correlation coefficients, 2D normalized auto-covariance co-
efficients, five objective features based on a spatial gray-
level dependence matrices, five objective features based on a
gray-level difference matrix, and two objective features based
on a neighborhood gray-tone difference matrix. The p value
for the 15 objective features in the previous method2 reached
the level of statistical significance (p<0.05). We employed the
multiple discriminant analysis using the 15 objective features
for distinguishing between malignant and benign masses on
ultrasonographic images. Table 6 shows the results of classi-
fication accuracies for the computerized method based on
histological classifications and the two previous methods.
The computerizedmethod based on histological classifications
was slightly lower classification accuracy for malignant
masses than that of the previous method1. However, it was
higher classification accuracy for benign masses than the
previous method1 and the previous method2. Therefore, we
believe that classifier based on the histological classifications
would be useful for distinguishing between malignant and
benign masses.

In order to evaluate the usefulness of evaluating each
shape, the proposedmethod using the degrees of four different
types of the shape (total, nine features) was compared with a

computerized method using directly 15 objective features to
evaluate the degrees of four shapes (total, 19 features). The
p values for the 19 objective features reached the level of
statistical significance (p<0.05). Amultiple discriminant anal-
ysis with the 19 objective features was employed to distin-
guish among four different types of histological classifications
of masses. The classification accuracies of this computerized
method were 80.2 % (69/86) for invasive carcinomas, 69.4 %
(25/36) for noninvasive carcinomas, 88.8 % (95/107) for
fibroadenomas, and 85.5 % (59/69) for cysts, respectively.
The sensitivity, specificity, PPV, and NPV were 87.7
(107/122), 98.9 (174/176), 98.2 (107/109), and 92.1 %
(174/189), respectively. Thus, the classification accuracies
by the proposed method were higher than those by the com-
puterized method using 19 objective features.

In order to discuss the necessity of the nine objective
features, we calculated classification accuracies using vari-
ous combinations of these objective features. Table 7 sum-
marizes our results. The first column displays the subsets of
features selected using the stepwise method. Each row
shows the classification accuracies achieved by multiple
discriminant analysis with the selected features. The classi-
fication accuracies of the multiple discriminant analysis
with the nine objective features were the highest. Therefore,
the nine objective features would be useful for determining
the histological classification of masses.

Many investigators have been conducted observer studies
to evaluate the usefulness of a computerized scheme for

Table 6 Result of classification accuracies for proposed method and two previous methods

Classification Accuracy

Previous method 1 Previous method 2 Proposed method

Malignant (122; invasive carcinoma and noninvasive carcinoma) 111 (91.0 %) 108 (88.5 %) 109 (89.3 %)

Bening (176; fibroadenoma and cyst) 147 (83.5 %) 144 (81.8 %) 169 (96.0 %)

Table 7 Classification accuracies of the multiple discriminant analysis with various combinations of objective features

Selected features Classification accuracies

Invasive carcinoma Noninvasive carcinoma Fibroadenoma Cyst

SF6 and SF4 80.2 % (69/86) 72.2 % (26/36) 54.2 % (58/107) 72.5 % (50/69)

SF6, SF4, and SF9 75.6 % (65/86) 72.2 % (26/36) 65.4 % (70/107) 78.3 % (54/69)

SF6, SF4, SF9, and SF5 82.6 % (71/86) 75.0 % (27/36) 73.8 % (79/107) 76.8 % (53/69)

SF6, SF4, SF9, SF5, and SF3 76.7 % (66/86) 75.0 % (27/36) 79.4 % (85/107) 78.3 % (54/69)

SF6, SF4, SF9, SF5, SF3, and SF1 83.7 % (72/86) 75.0 % (27/36) 81.3 % (87/107) 76.8 % (53/69)

SF6, SF4, SF9, SF5, SF3, SF1, and SF8 84.9 % (73/86) 75.0 % (27/36) 81.3 % (87/107) 81.2 % (56/69)

SF6, SF4, SF9, SF5, SF3, SF1, SF8, and SF2 88.4 % (76/86) 80.6 % (29/36) 82.2 % (88/107) 84.1 % (58/69)

SF6, SF4, SF9, SF5, SF3, SF1, SF8, SF2, and SF7 88.4 % (76/86) 80.6 % (29/36) 86.0 % (92/107) 84.1 % (58/69)

SF1 depth–width ratio, SF2 degree of indistincness in the margin, SF3 homogeneity in internal echoes, SF4 echo level in internal echoes, SF5 echo
level in posterior echoes, SF6 degree of round, SF7 degree of polygonal, SF8 degree of lobulated, SF9 degree of irregular
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distinguishing between benign and malignant lesions on cli-
nicians’ performance. Those studied showed that the likeli-
hood of malignancy evaluated by a computerized scheme
improved clinicians’ performance in differential diagnosis.
However, clinicians’ performances with a computerized
scheme were lower than the accuracy of the computerized
scheme [32, 33]. This would because clinicians were not able
to trust a computerized scheme enough because clinicians’
subjective impression was sometimes different from objective
features extracted in the computerized scheme. Therefore, we
believed that it was important to extract objective features
reflecting to clinicians’ subjective impression based on clinical
experience. We would investigate the influence on clinicians
of using the objective features reflecting to clinicians’ subjec-
tive impression in the further study.

There were several limitations in this study. One limita-
tion was that masses were manually traced. It would be
boring for clinicians to manually trace masses in clinical
practice. Therefore, we have to develop a segmentation
method for mass. On the other hand, we classified only four
different types of histological classifications in this study. In
the further study, we need to deal with more kinds of
histological classifications.

Conclusions

In this study, we developed a computerized determination
scheme for histological classification of mass by objective
features based on clinicians’ subjective impressions on ultra-
sonographic images. Our computerized scheme was shown to
have high classification accuracies for histological classifica-
tion, would be useful in the differential diagnosis of breast
masses on ultrasonographic images as diagnosis aid.
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