
Automatic Detection of Pectoral Muscle Using Average
Gradient and Shape Based Feature

Jayasree Chakraborty & Sudipta Mukhopadhyay &

Veenu Singla & Niranjan Khandelwal &
Pinakpani Bhattacharyya

Published online: 18 October 2011
# Society for Imaging Informatics in Medicine 2011

Abstract In medio-lateral oblique view of mammogram,
pectoral muscle may sometimes affect the detection of breast
cancer due to their similar characteristics with abnormal
tissues. As a result pectoral muscle should be handled
separately while detecting the breast cancer. In this paper, a
novel approach for the detection of pectoral muscle using
average gradient- and shape-based feature is proposed. The
process first approximates the pectoral muscle boundary as a
straight line using average gradient-, position-, and shape-
based features of the pectoral muscle. Straight line is then
tuned to a smooth curve which represents the pectoral margin
more accurately. Finally, an enclosed region is generated which
represents the pectoral muscle as a segmentation mask. The
main advantage of the method is its’ simplicity as well as
accuracy. The method is applied on 200 mammographic
images consisting 80 randomly selected scanned film images
from Mammographic Image Analysis Society (mini-MIAS)
database, 80 direct radiography (DR) images, and 40
computed radiography (CR) images from local database. The
performance is evaluated based upon the false positive (FP),
false negative (FN) pixel percentage, and mean distance

closest point (MDCP). Taking all the images into consider-
ation, the average FP and FN pixel percentages are 4.22%,
3.93%, 18.81%, and 6.71%, 6.28%, 5.12% for mini-MIAS,
DR, and CR images, respectively. ObtainedMDCP values for
the same set of database are 3.34, 3.33, and 10.41 respectively.
The method is also compared with two well-known pectoral
muscle detection techniques and in most of the cases, it
outperforms the other two approaches.

Keywords Adaptive band division . Biomedical image
analysis . Breast cancer .Mammography . Pectoral muscle .

Segmentation

Introduction

Cancer is the second (after heart disease) and third
(following heart and diarrhoeal diseases) leading cause of
death in economically developed countries and in developing
countries, respectively [1]. According to American cancer
society [1], in 2007, worldwide new breast cancer cases were
1,301,867 (women), and deaths due to this disease were
464,854. In 2011, in the USA, estimated new breast cancer
cases are 230,480 and estimated deaths due to this disease
are 39,520 among women [2].

Early detection can prevent breast cancer and X-ray
mammography is the most effective clinical choice for early
detection [1]. For automatic identification of breast cancer
from mammogram, pectoral muscle plays an important role
in a negative sense. Normally, in medio-lateral oblique
(MLO) view of mammogram, pectoral muscle appears as a
triangular, high-density region at the posterior corner of the
image. The presence of pectoral muscle can affect the
automatic detection of suspicious regions such as mass [3,
4], or automatic identification of breast tissue density [5, 6];
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as the pectoral muscle approximately have the same
density, so is the dense tissues of interest in the image.

In recent past, several works were proposed on auto-
matic identification of pectoral muscle. Some papers used
straight line to fit the pectoral muscle boundary. Such as
Karssemeijer [5] and Ferrari et al. [7] used Hough
transform and Kinoshita et al. [8] applied Radon transfor-
mation to approximate pectoral edge by a straight line.
These types of straight line representation may create
massive error when the pectoral muscle boundary is curve.
Yam et al. [9] tried to solve this problem by refining the
straight line obtained by Hough transform into a curved
pectoral edge using dynamic programming. In 2004, Ferrari
et al. [10] employed an efficient detection algorithm based
on Gabor wavelet to obtain a smooth pectoral edge. Use of
48 Gabor filters with 12 orientations and 4 scales to detect
edge points is a very time-consuming method. Kwok et al.
[11] in their work used an iterative thresholding method to
detect pectoral muscle approximately and then applied a
gradient-based searching on the roughly obtained edge to
find the final boundary points. Two graph-based detection
methods were realized by Bajger et al. [12] and Ma et al.
[13]. A discrete time Markov chain was applied by Wang et
al. [14] for rough pectoral muscle boundary detection and
an active contour model for refining it.

The aim of the proposed work is to develop a new technique
for the detection of pectoral muscle, in MLO view of the
mammographic image, more accurately than the existing
techniques, in terms of low false positive and false negative
rates. The technique does not consider the craniocaudal (CC)
views, since only 30–40% CC view images contain pectoral
muscle [15]. The proposed method first approximates the
boundary by a straight line. Within a selected region,
maximum discontinuity points are determined along each
horizontal line, based upon the weighted average gradient. An
adaptive shape-based method is then applied to divide these
points into a number of bands. The band with maximum
number of points is considered as the most probable band
containing probable pectoral edge points. A straight line is
then estimated based upon the probable pectoral edge points.
To determine pectoral muscle boundary more accurately,
obtained straight line is then fine tuned to a smooth curve by
taking a small region around the line and finding out more
accurate points. The final segmented pectoral muscle region is
assessed by one radiologist and compared with two well-
known pectoral muscle detection algorithms.

The remaining paper is organized as follows: “Method”
section discusses the method used for detection of pectoral
muscle. Experimental setup and evaluation metrics for
performance analysis are presented in “Experimental Setup
and Evaluation Metrics”. The next section is the “Results
and Discussion” section. Conclusions are drawn in the
“Conclusion” section.

Method

This section describes the method used to detect pectoral
muscle. Steps of which are given in Fig. 1. Basic building
block of the algorithm is based on the following character-
istics of pectoral muscle.

Pectoral Muscle Characteristics

1. It is a high-intensity region than the surrounding
background.

2. At the edge of the pectoral muscle, there is a sharp
change in intensity.

3. Pectoral muscle is roughly triangular in shape.
4. It is visible in the upper posterior position of the MLO

view of the breast image.
5. Two edges of pectoral muscle are the part of breast

image boundary.

Before the detection step, image is preprocessed for
orientation fixing, and breast border extraction. For simplicity
of the algorithm, the mammographic image is oriented in such
a way that the pectoral muscle is located at the top-left corner of
the image, i.e., the right breast image is mirrored vertically and
if required, image is shifted. Then the breast region segmen-
tation is executed automatically by using SBS method [16].

As the two edges of pectoral muscle are part of image
boundary (top and left boundary), it is only required to find
out the third edge which cut the other two boundaries and
forms approximately a triangular shape (Fig. 2a). At the
first step of detection, the third edge is approximated by a
straight line. A region of interest (ROI) is selected which
may not always contain whole pectoral muscle region, but
is adequate to find out a straight line representing the
approximate pectoral muscle boundary. The straight line
approximation creates immense error when pectoral muscle
boundary is a curve. After the first step of straight line
approximation, obtained straight line is fine-tuned to a
smooth curve to represent the pectoral muscle boundary
more accurately, by searching maximum gradient points
within a limited band around the approximated boundary.

Straight Line Approximation

1. ROI selection: In this method, the top-left point of the
image is considered as the origin of the image
coordinate system and horizontal and vertical directions
are defined as x- and y-axis, respectively (Fig. 2a). A
rectangular area (ABCD) is selected as an ROI as
shown in Fig. 2a, where A (0,0), top-left pixel on the
breast boundary, B (0,ye), middle point between top-left
and bottom-left point, D(xe,0) top-right point which
covers 80% of the top-breast boundary (AM), and C
(xe,ye) that completes rectangle with A, B, and D.
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2. Weighted average gradient calculation: Pectoral mus-
cle is generally a high-intensity region with sharp
intensity change at the boundary. To detect edge points
of the pectoral muscle, a weighted average gradient is
proposed here. For each point within the ROI, average
gradient is calculated by taking average of intensity
differences along x-axis, which can be defined as,

Average gradient ðx; yÞ ¼ 1

N

XN

i¼1

Iðx� i; yÞ � Iðxþ i; yÞ
2i

ð1Þ

where, (x, y)=coordinate of the pixel where gradient is
calculated,

N number of pixel pairs used for average gradient
computation

I(x, y) intensity of the pixel at (x, y) position.

Use of average gradient reduces the effect of high
intensity variation of noise spike and curvilinear structure

as shown in Fig. 3. Sometime, right side breast boundary,
glandular tissues, and mass in ROI may have high average
gradient. To suppress them and emphasize pectoral muscle,
a weight function is introduced. For the orientation fixing,
pectoral muscle is always closer to the left boundary of the
breast than the right boundary and the third edge can be
considered as a decreasing function of y. So, to highlight
desired edge points, a monotonically decreasing function of
both x and y is chosen as weight function (Fig. 4), which
can be represented by,

weightðx; yÞ ¼ wminðyÞ � wmaxðyÞ
xe

� xþ wmaxðyÞ ð2Þ

where, wmin(y)=weight at (xe, y) and wmax(y)=weight at
(0, y) here, wmax(y)=Wmax, 8y

wminðyÞ ¼ Wmin � Wmin

ye
y; 8y

Fig. 1 Block diagram of
proposed pectoral muscle
detection technique

Fig. 2 a Original mammogram
image mdb001 from mini-MIAS
database, with region of interest
ABCD, after breast region
segmentation and orientation
fixing; b ROI with band of
maximum gradient pixels,
different symbols represent dif-
ferent band; c straight line
approximation of the pectoral
muscle
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3. Division of maximum gradient points into bands:
Generally, maximum-weighted gradient point on each
horizontal line should be the member of pectoral
muscle boundary. But due to artifacts and noisy effects
some points may not represent edge points, though
most of them characterize pectoral muscle boundary
which are sufficient for the straight line approximation.
Due to the noisy edge points, line drawn using least
square error criterion is not always successful. Use of
RANdom SAmple Consensus method may help to
eliminate the noisy edge points but being iterative in
nature the processing is computation intensive and
slow. To find those desired points, all maximum
gradient points are then divided into a number of
bands. Pectoral muscle edge points maintain a partic-
ular arrangement. Successive points on the edge are
close to each other and the edge curve is right-slanted.
So, the edge can be considered as a function of y with
an overall negative slope, though in small part of the
edge it may have positive or zero slopes. Bands are
formed in such a way that elements of a band conform
to these constrains. Process starts from top to bottom.
Initially, the maximum gradient point on the topmost
horizontal axis (y=0) forms the first element of the first
band. Then successive points are checked. At each
horizontal line, expected position of the band is
estimated. As, in a small region edge can be considered

as a straight line, expected next position is calcu-
lated using the average rate of change of previous
positions (n points) within the band. If the next point
is within a small range (δ) of expected value, it is
considered as a point of same band otherwise a new
band is created. The process is followed for all the
probable edge points. After checking the range criteria
for each band, the pectoral edge pixel is added to all
the bands where the criterion is satisfied. In this way,
maximum gradient points are divided into a number of
bands as shown in Fig. 2b. Algorithm for the

Fig. 4 Weight function

Fig. 3 For mdb001, y=144,
gradient along x-axis, a normal
gradient using Sobel operator,
b average gradient with N=10,
c weighted average gradient
with N=10, Wmax=1 and
Wmin=1/4
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aforementioned band division technique is given
below:
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4. Selection of bands: Band with maximum points is
selected as the most probable band.

5. Straight line approximation: Straight line fitting using
least square error is then applied and straight line
approximation (LN) is found out for the pectoral
muscle boundary as shown in Fig. 2c.

Smooth Boundary Detection

1. Local gradient search: A local edge searching process is
proposed for refining the boundary. The basic idea of this
step is similar to [11]. At each point on LN, a
perpendicular line segment, equal in both side (say d), is
defined for searching the edge point. The points for which
part of the search line segment stretched beyond the breast
region is rotated to accommodate the search line within
the breast image boundary (Fig. 5a). In the proposed
searching method, edge points are determined by calcu-
lating average gradient along each search line and finding

out maximum gradient point. In comparison, Kwok et al.
[11] used a sigmoid function to represent the intensity
profile of points on search line and considered inflection
point as an edge point. Sometime, it is observed that the
lower part of the pectoral muscle deviate from the straight
line. In those cases, searching over a constant search path
around the straight line may not contain the original edge
point. To avoid this, instead of fixing the reference point
on the straight line, we have added some flexibility to
change that reference point. An expected position of the
edge point is calculated for the next row, based on the
average rate of change of the previous rows. If the
expected position belongs outside the search line segment,
line segment is shifted in such a way that it covers the
expected position. This dynamic adjustment of search line
increase chances of detection of true edge points (Fig. 6).

2. Remove and fill points along y-axis: For each point on
LN (Fig. 5a), the search for maximum average gradient is
conducted along the perpendicular line. In this process,
for each row (y-position), the number of detected pectoral
edge pixel could be 0, 1 or more than 1. If more than 1
pectoral edge pixel is detected in a row, the point having
maximum gradient value is chosen. For no edge pixel in a
row, the pectoral edge pixel is estimated by linear
interpolation at the adjacent edge points (Fig. 5b).

3. Trimming of phantom pectoral edge: If the pectoral
muscle region ends before the approximated straight line,
the local searching gives rise to some extra points, which
are called as phantom edge points. To remove these points,
we find the first edge point which is close to the left
boundary (within β1) of the breast image. This may be the
end point or noisy point. To checkwhether points following
this one are real edge point; mean intensity of the row
within pectoral muscle edge is calculated. If the computed
mean intensity deviate far from the upper part of pectoral
muscle, it is clear that this is a phantom pectoral edge.
Phantom pectoral edge beyond the end point is deleted.

4. Smoothing: To smooth the boundary obtained in the
previous step, two-step averaging is applied in this
method. First, a moving window averaging filter is

Fig. 6 Dynamic adjustment of search line while expected position is
outside the reference search line segment

Fig. 5 Smooth boundary detection steps, a mdb001 with perpendicular
search path on which maximum gradient is calculated, b pectoral edge
after local gradient search and removal and fill up steps, c edge after
selective averaging, d edge after final smoothing and region closing
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selectively applied. Edge pixels which deviate much from
the average value within a window are only replaced by
the average. This selective averaging is used to avoid the
effect of noisy points on accurate points while averaging.
After selective averaging, the same averaging filter is
applied to smooth the obtained edge curve.

5. Region closing: After moving average filter with kernel
length 2w+1, we have w points left at both the ends
without filtering. These points are replaced by extrap-
olating the line using local gradient.

Experimental Setup and Evaluation Metrics

Database To test the algorithm, three different types of
database are used

1. Scanned film images: The experiment was conducted
on 80 images of the Mammographic Image Analysis

Society, London, UK (mini-MIAS). All the images are
MLO views with 200 μm sampling interval and 8 bit
gray-level quantization. The images were down sam-
pled by a factor of 2 for reduction of processing time,
which changed the size from 1,024×1,024 pixels to
512×512 pixels and pixel resolution to 400 μm.

2. Direct radiography images (DR): DR images are
collected from local medical institute, which maintain
70 μm sampling interval and 12 bit gray-level quantiza-
tion. All the images were first anonymized and a total of
80 MLO view images were taken for the experiment. The
images were reduced in size by a factor of 8 in each
dimension, which transform the size from 2,560×3,328 to
320×416 and pixel resolution to 560 μm.

3. Computed radiography images (CR): CR images are
also collected from a local institute. These images are
of 4 megapixels (spatial resolution 1792×2,392) with
12-bit intensity resolution and pixel resolution of
97 μm. A total of 40 images were taken for this

Fig. 7 Segmentation results
obtained by the proposed pecto-
ral muscle detection algorithm
for some mini-MIAS images a
mdb013, b mdb015, c mdb025,
d mdb058, e mdb059, f
mdb080, g mdb110, h mdb121,
i mdb123, j mdb124, k mdb125,
l mdb130, m mdb150, n
mdb179, o mdb227, and p
mdb240
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experiment. They were anonymized first and then
reduced by a factor of 4 in each dimension (converted
size=448×598 and pixel resolution=388 μm).

Experimental Setup The algorithm is implemented in
Matlab 7.9 version on Intel Core Duo processor having
operating system windows XP, frequency 2.80 GHz and
memory of 1.98 GB. Performance of the method is
measured for all the aforementioned database. The key
parameters are selected by analyzing the images as well as
by verifying it experimentally. It is observed that average
gradient gives better result than normal gradient operators
(viz. Sobel). But number of pixel pairs on which gradient

will be averaged should not be so high that it suffers from
the effect of dense glandular tissues of breast region. In the
experiment, N in Eq. 1 is kept as 10 pixels. In the band
division, algorithm tolerance δ1 and δ2 are introduced. Any
small positive integer in the range [3–12] and [1–5] may be
used for them. Small variations of these parameter values
do not affect the performance. In the present work, δ1 and
δ2 are taken as10 and 5, respectively.

Reference pectoral muscle edges are drawn manually
by one of the author in consultation with an experi-
enced radiologist. Before this, contrast and brightness
of images were enhanced manually by using Adobe
Photoshop to visualize edges more prominently.

Fig. 8 Segmentation results
obtained by proposed pectoral
muscle detection algorithm for
some DR images (a–p)
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Performance Metrics To evaluate the proposed method, the
following five performance metrics were used:

1. False positive (FP) pixel percentage: FP pixel can be
defined as the pixels inside the obtained pectoral
muscle boundary but outside the reference pectoral

muscle boundary. Mathematically, false positive pixel
percentage can be defined as,

FP pixel percentage ¼ A [ Bj j � Bj j
Bj j � 100%

Fig. 9 Segmentation results
obtained by proposed pectoral
muscle detection algorithm for
some CR images (a–l)

Table 1 Mean and standard deviation of FP, FN, total mismatched pixel percentage, Hausdorff distance, and MDCP for mini-MIAS database

Performance metrics Proposed method Ferrari et. al. [10] Kwok et. al [11]

FP excluding inaccurate images 1.84±2.83 4.64±5.03 1.42±2.91

FP including inaccurate images 4.22±17.02 10.05±38 8.21±41.44

FN excluding inaccurate images 6.56±5.87 3.93±4.32 8.36±6.54

FN including inaccurate images 6.71±6.48 4.33±5.63 8.51±7.88

Total mismatched pixel percentage excluding inaccurate images 8.4±6 8.57±5.48 9.78±6.67

Total mismatched pixel percentage including inaccurate images 10.92±17.07 14.38±37.74 16.73±40.67

Number of images with (FP and FN) <5% 38 37 24

Number of images with (FP and FN) <10% 62 53 50

Total mismatched pixel percentage <5% 29 28 18

Total mismatched pixel percentage <10% 54 48 49

Hausdorff distance 19.28±20.86 22.69±27.38 26.25±29.06

MDCP 3.34±7.16 4.56±9.79 5.14±6.42
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where,

A {(x,y) ∈ obtained pectoral muscle region}
B {(x, y) ∈ reference pectoral muscle region}

2. False negative (FN) pixel percentage: the pixels inside
the reference pectoral muscle boundary but outside the
obtained pectoral muscle boundary normalized by the
total pixel of the reference pectoral muscle region.

FN pixel percentage ¼ A[Bj j� Aj j
Bj j � 100%

3. Total mismatched pixel percentage: It is obtained from
FP and FN pixels and can be defined as,

Total mismatched pixel percentage ¼ 2» A[Bj j� Aj jþ Bj jð Þ
Bj j � 100%

4. Hausdorff distance: It is defined as,

H C;Dð Þ ¼ max h C;Dð Þ; h D;Cð Þf g

where, hðC;DÞ ¼ max
c2C

min
d2D

c� dk k

C {(x, y) ∈ reference pectoral muscle boundary points}
D {(x, y) ∈ obtained pectoral muscle boundary points}

5. Mean distance closest point (MDCP): MDCP is
another metric used to evaluate the closeness between
the reference edge and obtained edge,

MDCPðC;DÞ ¼ 1

N

XN

i¼1

min
c2C

di � ck k

Results and Discussion

The proposed algorithm is applied on three different types
of database. To evaluate the efficiency of this method,

Table 2 Mean and standard deviation of FP, FN, total mismatched pixel percentage, Hausdorff distance, and MDCP for DR images

Performance metrics Proposed method Ferrari et. al. [10] Kwok et. al [11]

FP excluding inaccurate images 1.9±2.52 1.94±2.93 3.7±6.67

FP including inaccurate images 3.93±9.51 5.71±13.14 4.7±15.47

FN excluding inaccurate images 5.51±5.38 5.68±4.39 11.29±7.58

FN including inaccurate images 6.28±11.72 10.23±16.03 17.28±18.27

Total mismatched pixel percentage excluding inaccurate images 7.41±5.48 7.62±4.45 12.32±5.34

Total mismatched pixel percentage including inaccurate images 10.75±14.20 15.94±23.51 21.98±26.97

Number of images with (FP and FN) <5% 38 29 20

Number of images with (FP and FN) <10% 60 58 39

Total mismatched pixel percentage <5% 31 22 18

Total mismatched pixel <10% 55 53 33

Hausdorff distance 13.56±14.04 29.27±32.16 35.18±38.71

MDCP 3.33±4.16 8.17±15.73 13.43±16.41

Table 3 Mean and standard deviation of FP, FN, total mismatched pixel percentage, Hausdorff distance, and MDCP for CR images

Performance metrics Proposed method Ferrari et. al. [10] Kwok et. al [11]

FP excluding inaccurate images 5.42±6.44 4.76±5.87 3.54±4.21

FP including inaccurate images 18.81±42.32 17.13±39.03 5.76±6.12

FN excluding inaccurate images 5.08±5.76 7.31±9.97 3.19±3.76

FN including inaccurate images 5.12±5.81 9.32±10.61 32.62±51.19

Total mismatched pixel percentage excluding inaccurate images 10.5±6.87 12.07±8.43 6.95±4.54

Total mismatched pixel percentage including inaccurate images 23.38±40.92 27.45±37.99 38.38±46.98

Number of images with (FP and FN) <5% 9 7 4

Number of images with (FP and FN) <10% 20 17 8

Total mismatched pixel percentage <5% 7 6 3

Total mismatched pixel percentage <10% 19 16 7

Hausdorff distance 37.83±62.82 39.43±54.64 42.45±61.12

MDCP 10.41±23.12 12.04±21.89 19.35±29.41
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previously mentioned performance evaluation metrics are
used. Some of the results are shown in Figs. 7, 8, and 9.
The proposed method is compared with two well-known
pectoral muscle detection algorithm proposed by Ferrari et
al. [10] and Kwok et al. [11]. Till now, these are the best
among the methods reported in literature to detect pectoral
muscle. Both these methods were implemented on the same
platform. If any one of the FP pixel percentage or FN pixel
percentage is greater than 30%, we consider that the
detection has failed. Tables 1, 2, and 3 summarizes the
comparative results of all these methods for mini-MIAS
database, DR images, and CR images, respectively.

Tables contain FP, FN, and total mismatched pixel average
percentages and their corresponding standard deviation, calcu-
lated over all the images as well as excluding images for which
method has failed. Tables also include the mean and standard
deviation of Hausdorff and MDCP calculated over all the
images. It can be observed from tables that for all types of
database proposed method outperforms Ferrari’s method and
Kwok’s method in terms of total mismatched pixel percentage,
Hausdorff distance and MDCP. For mini-MIAS database, FN
pixel percentage is higher for the proposed method compared
to that of Ferrari’s method and for CR images FP pixel
percentage is higher for the proposed method than that of the
Kwok’smethod. Among the 80 images of mini-MIAS database
proposed pectoral muscle detection method, Ferrari’s method
[10], and Kwok’s [11] method has failed in three (3.75%),
four (5%), and six (7.5%) cases, respectively. For DR images,
failed cases were four (5%), six (7.5%), and ten (12.5%),
respectively, for the proposed, Ferrari’s [10] and Kwok’s [11]
methods. For CR images, insignificant difference is found in
between proposed method and Ferrari’s method, they both
failed in 5 cases (12.5%) each, whereas Kwok’s method failed
to detect in 14 cases (35%). Above results also show that the
number of failed cases for DR images is lower than that of
CR images by all the three methods. Not only the failed cases
but also the total mismatched pixel percentage excluding the
failed cases is lower for DR images than for CR images by
the proposed method and Ferrari’s method (Tables 2 and 3).
Better performance of all the three methods for DR images
may be due to their high contrast and low acquisition noise
compared to CR images.

Pectoral Muscle Segmentation Results for Some
Complicated Images

Images having pectoral muscle region with adjacent dense
tissue are one of the most challenging images for pectoral
muscle detection. Figure 10 shows one of such image with
the segmented pectoral muscle region obtained by the
proposed method, Ferrari’s method, and Kwok’s method.

Pectoral muscle detection in dense breast is also a
difficult job as the desired region and surrounding region

have almost similar densities. Figure 11 demonstrates that
the segmentation with the proposed method is better than
the other two approaches. Segmentation failed for the other
two methods.

It is observed from the experiment that irrespective of
the pectoral muscle segmentation techniques, CR images
are the most difficult among all the three types of

Fig. 10 Image mdb199 with pectoral muscle edge drawn a manually,
b by proposed method, c by Ferrari’s method, and d by Kwok’s
method

Fig. 11 Image mdb053 with pectoral muscle edge drawn a manually,
b by proposed method, c by Ferrari’s method, and d by Kwok’s
method. No segmented region is obtained by Ferrari’s and Kwok’s
method
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mammograms due to the similar intensity profile of the
pectoral muscle region and the surrounding region. For
these types of images, edge-based techniques like the
proposed method and Ferrari’s method work better than
threshold-based Kwok’s method as shown in Fig. 12.

In general, for MLO view, the pectoral muscle
should be seen to the level of the nipple [17]. So,
muscle should not contain a very small region. But in few
cases, due to improper positioning of the breast, excep-
tion occurs. For images with small pectoral muscle,
Kwok’s method detect them accurately, whereas, the
proposed method and Ferrari’s method sometime fail in
detection (Fig. 13).

As mentioned previously, CR images are the most
challenging type among the mammograms irrespective of
the pectoral muscle detection method used. One of such
images is shown in Fig. 14 where all the methods have
failed to detect pectoral muscle region. However, the
number of such images is small (4 out of 40 CR images).

Conclusion

This paper presents a new algorithm for automatic
identification of pectoral muscle. The method first approx-
imates the pectoral muscle boundary as a straight line using
largest (pectoral) edge segment followed by smooth curve
approximation using adaptive local search. Both of the
steps are mainly based on sharp intensity variation at the
pectoral muscle edge. Proposed algorithm is tested over

three different types of mammogram images viz. scanned
film (mini-MIAS), DR, and CR and compared with two
well-known pectoral muscle detection algorithm proposed
by Ferrari et al. [10] and Kwok et al. [11]. Results show
proposed method outperforms the other two algorithms in
terms of total mismatched pixel percentage, Housdorff
distance, and MDCP. Experiment also confirms that among

Fig. 14 CR image with pectoral muscle edge drawn a manually, b by
proposed method, c by Ferrari’s method, and d by Kwok’s method

Fig. 13 Image mdb031 with pectoral muscle edge drawn a manually,
b by proposed method, c by Ferrari’s method, and d by Kwok’s
method

Fig. 12 CR image with pectoral muscle edge drawn a manually, b by
proposed method, c by Ferrari’s method, and d by Kwok’s method
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the three types of database, CR images are the most
difficult irrespective of all the three methods. It is noted that
the accuracy of the present pectoral muscle detection
algorithms leave room for improvement.
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