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Abstract Segmentation of the left ventricle in MRI images is
a task with important diagnostic power. Currently, the
evaluation of cardiac function involves the global measure-
ment of volumes and ejection fraction. This evaluation
requires the segmentation of the left ventricle contour. In this
paper, we propose a new method for automatic detection of the
endocardial border in cardiac magnetic resonance images, by
using a level set segmentation-based approach. To initialize
this level set segmentation algorithm, we propose to threshold
the original image and to use the binary image obtained as
initial mask for the level set segmentation method. For the
localization of the left ventricular cavity, used to pose the
initial binary mask, we propose an automatic approach to
detect this spatial position by the evaluation of a metric
indicating object’s roundness. The segmentation process starts
by the initialization of the level set algorithm and ended up
through a level set segmentation. The validation process is
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achieved by comparing the segmentation results, obtained by
the automated proposed segmentation process, to manual
contours traced by tow experts. The database used was
containing one automated and two manual segmentations for
each sequence of images. This comparison showed good
results with an overall average similarity area of 97.89%.

Keywords Left ventricle - MRI image - Cardiac function -
Contours - Segmentation - Level set

Introduction

Magnetic resonance imaging (MRI) is a noninvasive medical
test that helps physicians to diagnose and treat medical
conditions. MRI images of the heart are generally clearer and
more detailed than some other imaging methods such as X-
ray, ultrasound, or computed tomography. This detail makes
MRI an invaluable tool in early diagnosis and evaluation of
cardiac abnormalities, especially those involving the heart
muscle. The left ventricle and in particular the endocardium
are a structure of particular interest, since it performs the task
of pumping oxygenated blood to the entire body [1].
Therefore, the segmentation of the left ventricle is a task
with important diagnostic power. At present, the estimation
of the left ventricular (LV) volumes and ejection fraction
from cine MR images requires manual tracings of the LV
cavity. This manual process introduces considerable latitude
for the observer to include varying amounts of endocardial
trabeculae and papillary muscles as part of the LV cavity,
both at end-diastole as well as end-systole.

This paper is, thus, addressed to the elimination of the
observer’s uncertainty. This is achieved by automating the
whole segmentation process. We aim to carry out an
approximation of the left ventricle’s contours through a
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level set segmentation algorithm. This algorithm is efficient
at finding object edges, from the left ventricle in this case.
The major inconvenient of the level set segmentation
approach is that the initial points must be introduced
manually. In this work, we propose to solve this problem
by using an initialization process based on a thresholding
operation applied to the original image and, after this, using
the obtained binary image as initial mask for the level set
method.

The remaining of this paper is organized as follows: We
present some related work in left ventricle segmentation in
“Related Works in Left Ventricle Segmentation” section. In
“Proposed Method” section, we describe and detail the
segmentation approach that we propose in this paper.
Finally, the database used and the experimental results are
given in “Experimental Results” section.

Related Works in Left Ventricle Segmentation

Recently, a number of automatic segmentation algorithms
have been developed to detect LV in MRI or echocardio-
graphic images. Some automatic approaches were based on
the concept of conserved myocardial volume [2]. In [3], the
authors use a complex border detection process, followed
by the application of a generalized Hough transform to
detect curves and ended up through an active-contour
algorithm.

Many algorithms have been proposed for the segmenta-
tion of the LV in MRI images. Some methods are based on
classification techniques using the grayscale level informa-
tion [4], in order to segment the endocardium. However, the
inclusion of the papillary muscles in the cavity of the mid-
ventricular sections remains an open problem [5]. This is
due to the fact that the methods using grayscale or gradient
information do not make distinction between papillary
muscles and myocardium. Indeed, the papillary muscles
are areas of low gray level (close to the myocardium
intensity), in contrast to the cavity which presents a high
gray level value. Furthermore, the methods based on
mathematical morphology [6] for segmenting the ventricle
reduce the manual intervention but still suffer from
parameters adjustment. Some other techniques incorporat-
ing prior information in the segmentation process of the left
ventricle are also used. A fully automated deformable
model technique for myocardium segmentation in 3D MRI
technique is presented in [7]. In this work, the authors
integrate various sources of prior knowledge learned from
annotated image data into a deformable model. Inter-
individual shape variation is represented by a statistical
point distribution model, and the spatial relationship of the
epi- and endocardium is modeled by adapting two coupled
triangular surface meshes. To robustly accommodate the

variation of gray value appearance around the myocardiac
surface, a prior parametric spatially varying feature model
is established by using a classification of the gray value
surface profiles.

Another automatic atlas-based segmentation algorithm
for 4D cardiac MR images is proposed in [8]. This
algorithm is based on the 4D extension of the expectation
maximization (EM) algorithm. The EM algorithm uses a
4D probabilistic cardiac atlas to estimate the initial model
parameters and to integrate prior information into the
classification process. The probabilistic cardiac atlas has
been constructed from the manual segmentations of 3D
cardiac image sequences of 14 subjects. In [9], the authors
proposed an improved Markov random field segmentation
model, which integrates region prior knowledge and
boundary information of the image and this for segmenting
LV boundary from cardiac MR image.

The active-contour algorithms are also widely used for
the segmentation of cardiac images. However, using these
approaches presents some problems associated to the lack
of contrast between the myocardium and the cavity, the
inclusion of pillars, and the heterogeneity of the cavity due
to flow artifacts. On the other hand, the contour initializa-
tion is the key to its success. Bad initialization can draw the
curve away from the left ventricle to edges that best fit its
predefined parameters. To solve this problem, some alter-
natives approaches have been proposed. As presented in
[10], a new approach to magnetic resonance image
segmentation with a gradient-vector-flow (GVF)-based
approach, applied to selective smoothing filtered images,
was developed using non-linear anisotropic diffusion
filtering. The system allows automated image segmentation
in the presence of gray scale inhomogeneity, as in cardiac
magnetic resonance imaging.

Another approach to detect endocardial border on cardiac
magnetic resonance images was presented in [11]. This
method consists on filtering the short-axis CMR images
using connected operators (area-open and area-close filters)
to homogenize the cavity, prior to the segmentation which is
performed using GVF-snake algorithm.

Proposed Method

In this paper, we propose an automatic method for
endocardial border detection using a level set formulation.
As mentioned above, the initialization of the active contour
and level set algorithms is a very important task. Bad
initialization can draw the segmentation resulted curve away
from the left ventricle. That is why an automatic initialization
is required. To this aim and in order to automate the
initialization of the segmentation process, we propose a
method based on a thresholding operation of the original
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image and using the binary image obtained as initial mask
for the level set method. This initialization process is based
on two steps. First, the image is thresholded using the Otsu
filter method. Second, we propose an automatic approach
to detect the spatial position corresponding to the region of
left ventricular cavity by the evaluation of a metric that
indicate object’s roundness. The binary mask is used for
initialization of the level set algorithm. For this task, this
mask is posed on the circular region detected, in order to
initiate the segmentation process.

Initialization with Binary Mask

The method that we propose in this paper is based on the
initialization of the level set algorithm by using the binary
image obtained from the thresholding operation. For the
localization of the left ventricular cavity, we use a method
based on the evaluation of a simple metric indicating the
roundness of an object because we approximate that the
left ventricular cavity has a round shape. To determine if
an object is round, we estimate each object area and
perimeter and this for all unconnected regions on the

Fig. 1 a A cardiac MR image.
b The binary image of the input
image. ¢ Labeling of the left
ventricular cavity and the other
regions. d The input image after
smoothing. e The binary image
of the smoothing image

(Fig. 1d). (f) Labeling of the left
ventricular cavity and the other
regions

@ Springer

image. The metric roundness was defined by the following
equation:

. 4 x pi x area
metric = ——————

perimeter? (m
This metric is equal to one only for a circle and is less than
one for any other shape.

On the short-axis images, the LV endocardial border is
not always defined at locations with maximum intensity
gradients. That is why we have proposed to smooth the
input image with a Gaussian kernel filter to homogenate the
LV endocardial border. In Fig. 1, we show an example that
illustrates the difference between the left ventricular cavity
detected from the original image and from the smoothing
image.

We can clearly notice that the LV metric obtained before
smoothing (0.6478) is less than the LV metric obtained after
smoothing (0.8638). Figure 2 shows the metric of the LV
for 18 images before and after smoothing. The proposed
segmentation method in this paper starts by thresholding
the input image using OTSU method. After this step, we
eliminate the smallest regions (see Fig. 3).
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Fig. 2 The metric evaluated for 18 images before and after smoothing

Image Segmentation

In image segmentation, the methods based on active
contours present dynamic curves that move toward object’s

Fig. 3 a A cardiac MR image.
b The input image after
smoothing. ¢ The binary image
of the smoothing image. d The
binary image after elimination
of the smallest regions. f Label-
ing of the left ventricular cavity
and the other regions

boundaries. To achieve this goal, these approaches explic-
itly define an external energy that can move the zero-level
curve toward the object’s boundaries [12].

For our segmentation process, we propose to use a
variational level set formulation of active contours
without re-initialization. We describe here this method
[12]. Let / be an image and g be the edge indicator function
defined by:

1

_ B 2
1+ |VGy x I @)

g

where G, is the Gaussian kernel with standard deviation o.
We define an external energy for a function ¢(x,y) as
below:

5g,/1.,v(¢) = }“Lg(q)) + VAg(¢) (3)

where A>0 and v are constants and the terms L,(¢) and
Ag(¢) are defined by

Le(6) = / 25(6)|Vo|dxdy (4)

]
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Fig. 4 a A cardiac MR image.
b Image with final contour. ¢
Segmentation result without
convolution. d Segmentation
result after convolution

Fig. 5 a A cardiac MR image.
b Segmentation result expertl. ¢
Segmentation result expert2. d
Segmentation result proposed
method
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@w=/ywwM@ (5)
02

where ¢ is the univariate Dirac function and H is the
Heaviside function. Now, we define the following total
energy functional

£(0) = HP(9) + 244(0) (©
Po) = [ 31v0l - 1V axey 7
N

The external energy drives the zero-level set toward the
object boundaries, while the internal energy pP(¢) penal-
izes the deviation of ¢ from a signed distance function
during its evolution. By variations calculating, the gateaux
[13] derivative (first variation) of the functional ¢ in Eq. 6

Fig. 6 a A cardiac MR image.
b Image with initial contour. ¢
Image with final contour. d
Segmentation result

can be written as:

S_Z, _— l:Aq) — div <%>] — 28(9)div (g%)
—vgd(9) )

where A is the Laplacian operator. Therefore, the function ¢
that minimizes this functional satisfies the Euler—Lagrange
equation g—; = 0. The steepest descent process for minimi-

zation of the functional ¢ is the following gradient flow:

% y {A(p — div (%)] + A5(g)div (g gm
+ vgd(9) v

This gradient flow is the evolution equation of the level set
function in the proposed method. The second and the third
term in the right-hand side of Eq. 9 correspond to the
gradient flows of the energy functional ALy(¢) and vAg(¢),
respectively, and are responsible of driving the zero-level
curve toward the object boundaries. To explain the effect of
the first term, which is associated to the internal energy uP
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(#), we notice that the gradient flow Eq. 10 has the factor

(1 — ﬁ as diffusion rate.
IVeN [ 1

If |[A¢| >1, the diffusion rate is positive and the effect of this
term is the usual diffusion, i.e., making ¢ more even and
therefore reduce the gradient |A¢|. If [A¢| <1, the term has
effect of reverse diffusion and therefore increases the gradient.

Experimental Results

We present here the results given by the implementation of
the left ventricular segmentation algorithm proposed in this

Fig. 7 Segmentation results for
different MRI images
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paper. This segmentation approach is summarized as
follows:

+ First, we threshold the original image by an automatic
thresholding algorithm (Otsu algorithm [14]). We obtain
a binary image that we use as initial mask for the level
set formulation used in our work.

* On the second step, we apply the level set algorithm to
find the final endocardiel border.

Image Acquisition

For our experiments, we used a free database available for
research purposes [15]. The original images in this database
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Table 1 The error metric for the

proposed method at the Patient E1 (%) E2 (%)

end-diastole phase
PATO1 96.31 96.65
PATO02 99.62 96.60
PATO03 96.29 95.45
PAT04 96.46 96.82
PATOS 93.98 98.81
PAT06 99.12 97.02
PATO07 95.44 99.65
PATO08 99.67 99.33
PAT09 98.06 99.45
PAT10 95.04 94.86
PATI11 98.38 99.95
PAT12 99.95 98.61
PAT13 97.87 98.51
PAT14 98.05 97.47
PAT15 99.16 99.20
PAT16 94.51 98.94
PAT17 98.99 98.42
PAT18 99.69 99.96

consist of short-axis 2D sequences (between eight and 13
sequences of 25 images per patient), with breath-held, ECG-
gated acquisitions from base to apex. The most basal slices
included in the analysis were located just above mitral valve
within LVC. To be included, the basal myocardium had to be
visible in the entire circumference at end-systole. The most
apical slice was chosen as the one with the smallest visible
LVC at end-systole. The sequences were registered on the
heart cycle, and thus, they can be stacked to construct 3D

Table 2 The error metric for the

watershed algorithm at the Patient El E2
end-diastole phase
PATO1 94.96 95.30
PAT02 98.72 94.94
PATO03 88.40 96.62
PAT04 94.82 95.19
PATO05 95.02 99.85
PATO06 98.20 99.69
PATO07 94.05 98.25
PATO08 98.64 98.98
PAT09 96.94 98.32
PAT10 93.17 92.99
PATI11 97.04 98.70
PAT12 96.09 97.42
PAT13 94.25 93.61
PAT14 98.16 97.36
PAT15 97.87 99.51
PAT16 98.40 95.04
PAT17 98.91 96.33
PAT18 93.10 93.36
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Fig. 8 a Bland—Altman plot for expertl and the proposed method. b
Bland—Altman plot for expert2 and the proposed method. ¢ Bland—
Altman plot for expertl and expert2. All area units are in number of
pixels
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sequences. Each 3D sequence is made of 25 volumes and
covers a complete heart cycle. A conventional 2D manual
segmentation of the LV myocardium was performed by two
independent and blinded expert cardiologists. They used a
software package that is well established for the post-
processing of medical images (Analyze R, Biomedical
Imaging Resource, Mayo Clinic Foundation, Rochester,
MN, USA). These two experts are called E1 and E2 in the
sequel. The cine MR dataset was analyzed as a succession of
2D LV short-axis planes. For each slice location, the experts
manually overlaid the endocardial and epicardial contours
both at end-diastolic and end-systolic times. During manual
tracing, papillary muscles and LV trabeculae were included

within the LV myocardium. Then, the segmented slices were
stacked to rebuild a 3D object for quantification. The time
spent by the experts to manually segment one volume of a
3D+t sequence ranged from 15 to 20 min. For this reason, a
manual segmentation is not available at every time-step.

Endocardial Border Detection

In this section, we present the results of endocardial border
detection in cardiac magnetic resonance images using our
segmentation approach. The proposed method produces good
results, but sometimes some intensity inhomogeneities often
occur in left ventricular MRI images and may cause

Fig. 9 Segmentation results for different MRI images
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considerable difficulties in image segmentation. As we show
in Fig. 4a, heterogeneities in discussion can appear inside of
the LVC or be attached with the myocardium muscle. In order
to overcome the difficulties caused by intensity heterogene-
ities, we convoluted the original image with a Gaussian
kernel filter. A typical example is given in Fig. 4 with (c=1).
We notice here that it is necessary to examine the influence of
the parameter sigma on the segmentation results.

For this purpose, we apply our method using different
sigma parameters. The most accurate segmentation result is
obtained with the parameter o=1.

Evaluation

The segmentation results were evaluated quantitatively

using an error metric [16, 17].

B Area(4 ® B)
~ Area(B)

_ (AUB)—(4NB)
B (AUB) (1)

Fig. 10 a A cardiac MR image.
b Image after thresholding. ¢
Image with final contour. d
Segmentation result

where 4 is a binary images such all pixels inside the curves
produced by a clinical expert and B is the set of all pixels
inside the curves produced by a segmentation algorithm.

€=3.5: the parameter in the definition of smoothed
Dirac function

1=0.1: coefficient of the internal (penalizing) energy
term P(¢)

A=1: coefficient of the weighted length term L,(¢)
v==0.5: coefficient of the weighted area term A,(¢)

The Fig. 5 shows the results of the two expert segmenta-
tion (b and c) and illustrates the method segmentation results
(d). The Fig. 6 shows the results of the segmentation method
(d) and illustrates the initial and the final contour (the
endocardial border) (b and c).

As shown in Fig. 6, the proposed method works
efficiently. Others segmentation results are given in Fig. 7.

Table 1 gives the error metric of 18 patient selected from
the data bases used in our study. The error metric was
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evaluated between the proposed method and the two
experts (E1 for expertl and E2 for expert2). As presented
in Table 1, we obtained an overall average similarity area of
97.85% (expertl) and 97.89% (expert2).

We have also evaluated this error for the automatic
algorithm proposed in [6], where the authors developed an
automatic algorithm based on watershed segmentation of
4D cardiac MR images. The automatic segmentation results
are available in the database used in this work. Table 2 gives
the results of the error metric for the same patients selected
in Table 1 at the end-diastole phase for this watershed
segmentation algorithm.

We notice also that we obtained an overall average
similarity area of 95.93% (expertl) for the automatic
method proposed in [6] (Table 2) and 96.75% for expert2.
The agreement between manual and the proposed method
was assessed on LV area measures, as reported in Table 1. In
order to gain a more meaningful data interpretation, the
Bland—Altman [18] plots for the expertl and the proposed
method (Fig. 8a) and the expert2 and the proposed method
(Fig. 8b) are shown in Fig. 8.

Fig. 11 MRI images with con-
trast enhancement segmentation
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The Bland—Altman plot, or difference plot, is a graphical
method used to compare two measurements techniques. In
this graphical method, the differences (or alternatively the
ratios) between the two techniques are plotted against the
averages of the two techniques. Horizontal lines are drawn
at the mean difference and at the limits of agreement, which
are defined as the mean difference plus and minus 2 times
the standard deviation of the differences [19].

We see clearly, from the tow plots, Fig. 8, the agreement
between the two experts and the proposed method. This
implies that the LV area measured with the new proposed
method is in agreement with the LV area obtained with the two
experts. The inter-observer variability was shown in Fig. 8c.

To show the robustness of our method, we illustrate
the examples presented in Fig. 9. For all the examples,
the inclusion of the left ventricular and the left myocar-
dium and pathologies in the myocardium makes the
separation of the two regions using any algorithms very
difficult.

Generally pathologies in the myocardium cause a non-
circular shape of the left ventricular. Meanwhile based on
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the metric used in this work, we can say that left ventricular
cavity has the biggest value. For more explication, we
illustrate the following example.

As shown in Fig. 10, the result of the thresholding
operation shows three regions: in the middle the left
(0.46) and the right (0.37) ventricular and the other region
(0.13). So we see clearly that the left ventricular have not
exactly a circular shape but they have the biggest value.

We have test our algorithm using MRI images with
contrast enhancement and perfusion. Images were obtained
with sequences with considerable less S/N and more
inhomogeneities (Figs. 11 and 12). The results shown in
Figs. 11 and 12 prove that our algorithm can successfully
be implemented with this kind of image.

Conclusion

This paper describes a new automatic method to detect
the left ventricular chamber and the endocardial border

Fig. 12 MRI images perfusion
segmentation

in short-axis MRI view. This method takes into account
the intensity inhomogeneities which often occur in
left ventricular cavity and may cause considerable
difficulties in image segmentation. A Gaussian kernel
filter has been used to solve this problem. We proposed
to threshold the original image, and we used the
binary image obtained as initial mask for a level set
segmentation method. For the localization of the left
ventricular cavity, we use an approach based on the
evaluation of a metric that indicate the object’s
roundness.

In order to assess our method, an error metric was
evaluated between the proposed method and two
expert’s manual segmentation (expertl and expert2) for
18 end-diastole images. The results obtained prove that
the proposed approach is very promising. We have
obtained a mean of 97.78% for expertl and 97.89% for
expert2. These results are in the most cases more
precise than those obtained with another automated
segmentation approach presented in Table 2.

@ Springer



306

J Digit Imaging (2012) 25:294-306

References

. Paragios N, Jolly MP, Taron M, Ramaraj R: Active shape models

segmentation of the left ventricle in echocardiography. Lecture
Notes in Computer Science 3459:131-142, 2005

. Garson CD, Li B, Acton ST, Hossack JA: Guiding automated left

ventricular chamber segmentation in cardiac imaging using the
concept of conserved myocardial volume. Comput Med Imaging
Graph 32:321-330, 2008

. Fernandez-Caballero A, Vega-Riesco JM: Determining heart

parameters through left ventricular automatic segmentation for
heart disease diagnosis. Expert Systems with Applications
36:2234-2249, 2009

. Lynch M, Ghita O, Whelan PF: Automatic segmentation of the

left ventricle cavity and myocardium in MRI data. Comput Biol
Med 36(4):389-407, 2006

. Monitillo A, Metaxas D, Axel L: Automated segmentation of the

left and right ventricles in 4D cardiac, SPAMM images. MICCAI,
LNCS 2488:620—-633, 2002

. Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen

T, Garot J: Automated accurate and fast segmentation of 4D
cardiac MR image. In: Procs of Functional Imaging an Modeling
of the Heart, LNCS 4466, 2007, pp 474483

. Kausa MR, von Berga J, Weesea J, Niessenb W, Pekar V:

Automated segmentation of the left ventricle in cardiac MRI.
Medical Image Analysis 8(3):245-254, 2004

. Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D:

Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas
and the EM Algorithm, vol. 2878. Springer, Berlin, 2003, pp 440450

. Wang G, Guo Y, Zhangk S, Ma Y: A novel segmentation method

for left ventricular from cardiac MR images based on improved
Markov random field model. In: Image and Signal Processing,
CISP’09, 2009, pp 1-5

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Santarelli MF, Positano V, Michelassi C, Lombardi M, Landini
L: Automated cardiac MR image segmentation: theory and
measurement evaluation. Medical Engineering Physics 25:149—
159, 2003

ElBerbari R, Frouin F, Redheuil A, Angelinic E-D, Mousseaux
E, Bloch I, Herment A: Development and evaluation of an
automatic segmentation method of endocardial border in
cardiac magnetic resonance images. ITBM-RBM 28:117-123,
2007

Li C, Xu C, Gui C, Fox MD: Level set evolution without
reinitialization: A new variational formulation. In: Proceedings of
CVPR’05 1, 2005, pp 430436

Evans L: Partial Differential Equations. American Mathematical
Society, Providence, 1998

Otsu N: A threshold selection method from gray-level histograms.
IEEE Trans Syst Man Cybern 9(1):62—-66, 1979

Najman L, Cousty J, Coupriec M, Talbot H, Guinaudeau S,
Goissen T, Garot J: An open, clinically validated database of 3D+t
cine-MR images of the left ventricle with associated manual and
automated segmentations. In: Insight Journal, 2007 special issue
entitled ISC/NA-MIC Workshop on Open Science at MICCALI,
2007

Hammoude A: Computer-assisted endocardial border identifica-
tion from a sequence of two-dimensional echocardiographic
images. Ph.D. dissertation, Univ. Washington, Seattle, WA, 1988
Mendonc T, Andre RS, et al: Comparison of segmentation
methods for automatic diagnosis of dermoscopy images. In: IEEE
EMBS, France, 1-4244-0788-5, 2007

Altman DG, Bland JM: Measurement in medicine: the analysis of
method comparison studies. Statistician 32:307-317, 1983
Thunberg P, Emilsson K, Rask P, Kdhdri A: Separating the left
cardiac ventricle from the atrium in short axis MR images using
the equation of the atrioventricular plane. Clin Physiol Funct
Imaging 28(4):222-228, 2008



	Endocardial Border Detection in Cardiac Magnetic Resonance Images Using Level Set Method
	Abstract
	Introduction
	Related Works in Left Ventricle Segmentation
	Proposed Method
	Initialization with Binary Mask
	Image Segmentation

	Experimental Results
	Image Acquisition
	Endocardial Border Detection
	Evaluation

	Conclusion
	References




