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Abstract The attractions of virtual computing are many:
reduced costs, reduced resources and simplified mainte-
nance. Any one of these would be compelling for a
medical imaging professional attempting to support a
complex practice on limited resources in an era of ever
tightened reimbursement. In particular, the ability to run
multiple operating systems optimized for different tasks
(computational image processing on Linux versus office
tasks on Microsoft operating systems) on a single
physical machine is compelling. However, there are also
potential drawbacks. High performance requirements
need to be carefully considered if they are to be executed
in an environment where the running software has to
execute through multiple layers of device drivers before
reaching the real disk or network interface. Our lab has
attempted to gain insight into the impact of virtualization
on performance by benchmarking the following metrics
on both physical and virtual platforms: local memory and
disk bandwidth, network bandwidth, and integer and
floating point performance. The virtual performance
metrics are compared to baseline performance on “bare
metal.” The results are complex, and indeed somewhat
surprising.
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Background

Virtual computing is a term that describes the concept of
running one or more virtual computers (aka machines) on
top of a single physical computer; the virtual machines
(VMs) do not interface directly with any real hardware, but
rather software mimics the real hardware that the virtual
host provides [1, 2]. The attractions of virtual computing
are many: reduced costs, reduced resources, and simplified
maintenance. However, there are potential areas where
virtual computers may not be advisable. High performance/
speed requirements will have to be carefully considered if
they are to be executed in an environment where the
running software has to go through multiple layers of
device drivers before reaching the real disk or network
interface.

Why would the readers of this journal be interested
in virtual computing? In the current economic environ-
ment, it can be challenging to obtain new physical
resources. A department administrator may find it easy
to deny a researcher a new physical server if the request
competes with more clinically related funding requests.
Perhaps an investigator has to choose between a
desktop system that will be needed for office-related
tasks (grant writing, reports, etc.) or a computer server
on a different operating system to do the actual work.
Alternatively, a given laboratory may face space and
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electric power constraints; in our case, the mission
assigned to our lab includes maintaining test systems
for change management of all our clinical viewing
systems. This task alone translates to over 20 servers
and does not address the research and development
work we do. Our lab has neither the space nor power
for 20 physical servers, but we did have the space for
two 12 processor servers with 32 GB of memory each
and separate redundant storage. However, the decision
of how to use those resources is not at all obvious;
certainly all VMs could be hosted on one platform, but
will that one platform offer adequate performance for all
the VMs?

To quantify the extent to which virtualization harms
performance, it is useful to break down the constituents of
performance. Basically a physical computer program in the
midst of intense calculations makes use of at least local
memory and processor resources; it may also use local disk
and network resources. A VM has the same resources,
except they are software “devices” that in turn may be
layered on top of:

a) A “thin” hypervisor (VM host environment) that lies
directly on the physical hardware (i.e., bare metal)
or

b) A “thick” hypervisor that lies on top of a host operating
system that lies on the physical hardware

The figure makes this clearer; the first shows a classic
physical computer with the OS residing directly on the
physical hardware (i.e., “bare metal”), the second shows
a thin hypervisor which in turn hosts the user OS’, and
finally, shows a physical machine hosting a common OS
which then hosts the hypervisor which then hosts the
VM.

In this work, we endeavor to measure the following
metrics across various combinations of virtual machine
environments and host operating systems: local memory
and disk bandwidth, network bandwidth, and integer and
floating point performance.

Methods

The measurement hardware consisted of two identical
Dell 690 workstations: 1 Gbit network interface, 8 GB of
RAM, 15,000 RPM SCSI disks, and a 2.3-GHz quad-
core processor (Dell Corporation, Round Rock TX). For
the file server, we chose FreeNAS Version 7 (http://

freenas.org), which is an optimized open source file server
appliance based on 64-bit FreeBSD (http://freebsd.org).
The two computers shared a private Gbit switch (Cisco
Systems, San Jose CA). The computer in the client role
ran various host operating system configurations as
follows:

a) Windows7, 32 bit (Microsoft Corporation, Redmond,
WA)

b) Windows7, 64 bit (Microsoft op cit)
c) Windows 2008 Server, 64 bit (Microsoft op cit)
d) Redhat Enterprise Linux V5.4, 64 bit (Red Hat

Corporation, Raleigh, NC)
e) OpenSolaris V2009.06 (Sun Microsystems, Santa

Clara, CA).
f) Fedora Core Linux V13.0, 64 bit (http://fedoraproject.

org/)

The virtualization products trialed included:

a) VMWare Player 7 (VM Ware Inc., Palo Alto CA)
b) VMWare ESXi Server V 4.0 (VM Ware op cit)
c) Sun Virtual Box V3.1.2 (Sun Microsystems, op cit).
d) Red Hat KVM V5.4 (Red Hat op cit)
e) Xen (Citrix Systems, Fort Lauderdale, FL).

To standardize the measurement procedure, we built a
suite of measurement tools on top of a minimalist
instantiation of RedHat V5.5 32 bit. A 32-bit VM was
chosen as the benchmark platform for portability, a 32-bit
VM can run on either a 32- or 64-bit host OS while the
converse is not true. This is important because a cost-
sensitive user running a virtual environment on Microsoft
tools may not be able to afford the additional charges that
are incurred for that company’s 64-bit high performance
products. Using this base “appliance,” we crafted a suite of
tests that measures:

a) Local memory bandwidth
b) Local disk bandwidth
c) Network disk bandwidth over the commonly used (in

Microsoft Windows) Common Internet File System
protocol

d) Network web interface bandwidth over the Hypertext
Transfer Protocol

e) Local central processing unit (CPU) integer performance
f) Local CPU floating point performance

Figure 2 in the Appendix shows the script that
automated all the tests and reported the results to a file.
File Input/Output performance was measured using the
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“dd” command that is standard in Linux. Integer
performance was measured using the Dhrystone-2 bench-
mark compiled with the following “sh dry.c” [3, 4].
Floating point performance was measured using the
Whetstone benchmark compiled with the following
switches “cc whets.c –o whets -02 –fomit-frame-pointer
of –ffast-math –fforce-addr –lm -DUNIX” and activating
the setting for double precision [5, 6]. More modern
benchmarks exist; the reader may be familiar with
“SPECInt,” the newer “SPEC CPU,” or other offerings
from Standard Performance Evaluation Corporation
(Warrenton, VA) [7]. However, these tools are not free,
while the source code for the older Dhrystone and
Whetstone metrics is.

Having built the appliance, we installed it on a flash
drive to measure “bare metal” performance; the client
computer booted from the flash device and ran the test suite
completely in system random access memory (RAM). The
resulting performance figures represent the baseline perfor-
mance possible in the “bare metal” configuration of an
operating system running directly on top of the client
computer physical hardware. We then reconfigured the
client computer with various host operating systems, which
in turn hosted various vended virtual computer environ-
ments. The base flash drive image was then used to create
VMs in each of the virtual computing products. In all cases,
the VM implementations consisted of:

& Single 32-bit CPU

& 2 GB virtual SATA disk
& Virtual network card interface with 1 Gbit bandwidth to

the physical router
& 1,024 MB of RAM

The physical image was similar with the exception that
the total system RAM was available to the 32 bit appliance
kernel running on the native processor. The results are
compiled in the next section.

Results

As suggested by Fig. 1, the results can be broken out into
three groups based on whether the test appliance was
operated on bare metal, a thin hypervisor, or a thick
hypervisor residing on a host OS. The accumulated results
are tabulated in Table 1.

The following discussion summarizes key points. For
example, read/write (R/W) performance in RAM, local
disk, and network disk comprise three distinct areas, and
the winner is not consistent.

RAM Performance

Write winner: Virtual Box on Windows7, 64 bit (127%
of bare metal performance)
Read winner: Virtual Box on Windows7, 32 bit (86%
of bare metal)

Real Operating System 

Hardware 

Hypervisor 

Hardware 

VM1  VM2  VM3  

Host OS 

Hardware

Hypervisor

VM2 VM3VM1

a

b

c

Fig. 1 a Conceptual view of a real physical computer, showing the
real operating system directly on top of the physical computer
hardware. Nominally, this should provide the best possible
performance because the Operating System software is in direct
control of the hardware without any software intermediaries. b In
this figure, the virtual machine environment (hypervisor) lies
directly on the physical hardware. The purpose of the hypervisor
is to provide virtual resources to the virtual machines (built on
familiar operating systems such as Windows). Because it is not
meant to be used by humans directly, the hypervisor can be very

lean and ignore aspects like a graphical user interface. However, the
hosted virtual machines (VM1-3) now have an intermediate
software layer between themselves and the physical hardware. c
Finally, some hypervisors (i.e., VMWare Workstation or Sun Virtual
Box) are meant to be used on top of other popular operating
systems. This is obviously the most complex arrangement and may
challenge performance in the VM that lives on top of the stack, as it
has to traverse several layers of device drivers to reach physical
hardware
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Local Disk Performance

Write winner: Virtual Box on Windows7, 32 bit (192%
of bare metal)
Read winner: Virtual Box on Red Hat Linux (93% of
bare metal)

Network Performance

Write winner: Virtual Box on Red Hat (112% bare metal)
Read winner: VM Ware Player on Red Hat Linux (17%
of bare metal)

Web Read Performance:

Read winner: VM Ware Player on Windows Server
2008 64 bit (22% of bare metal)

CPU Integer Performance

Winner is Virtual Box on Windows7, 32 bit (175% of
bare metal)

CPU Float Performance

Virtual Box on Solaris 64 bit (79% of bare metal)

Discussion

The experimental outline pursued herein is aligned with
the needs of our lab and the various customers we
serve. It is often the case that the lab serves as an
“incubator” for departmental projects, and those that
prove themselves are promoted to clinical applications
that move to the official hospital data center. Because
the data center has standardized on VMWare ESXi, we
have found it most efficacious to perform our base
development in that arena. However, one can also see
that VMWare is not often the performance winner.
Fortunately, free tools from VMWare (i.e., Convertor

Table 1 The results are grouped by coupling a single virtual environment (e.g. Sun Virtual Box) with a cluster of host OS environments

VM environment Host OS RAM W RAM R Local W Local R Net W Net R Web R Dhrystone
2 (Billions of
operations/s)

Whetstone
(Millions of
operations/s)

Mb/s Mb/s Mb/s Mb/s Mb/s Mb/s Mb/s

Bare metal rhel-32 641 532 519 536 10.3 54 80.2 6.0 1,085

Thin hypervisor Xen 541 370 231 385 5.8 7.3 10.8 5.7 537

ESXi 148 217 134 210 8.3 5.4 6.8 5.2 518

kvm_redhat64 282 368 272 346 11.1 5.7 15.2 5.7 530

VMWare player Win7-32 135 194 134 195 8.2 7 10.7 5.3 535

Win7-64 152 180 144 175 9.1 7.8 15 5.7 518

Win08 64 149 201 164 198 7.1 4.9 17.5 5.6 518

redhat-64 60 265 76.4 278 9.5 9 13 5.3 524

fedora13-64 169 203 150 188 9.3 8.1 15.8 5.6 510

Virtual box Win7-32 634 461 1000 295 8.9 5.1 5.4 10.6 535

Win7-64 814 438 524 350 9.7 7.9 19 8.8 518

Win08 64 595 321 699 227 7.5 5.3 16.7 8.7 518

redhat-64 629 416 232 496 11.6 3.7 4 9.1 821

Solaris 64 bit 346 319 326 206 9 7 7.9 8.5 852

fedora13-64 542 329 716 206 9.9 8.2 15.8 10.1 518

The remaining columns specify a particular performance aspect (e.g., read and write performance in MB/s, etc.). The Drhystone 2
benchmark is a measure of how many billion integer operations can be performed per second, the Whetstone is a similar metric for floating
point performance in millions of operations per second. The values in bold are the peak performance value among the virtual environments
for that metric
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Standalone Client) make it trivial to convert VMWare
machines to Open Virtual Format which can be read by
Virtual Box and Xen.

It is also a frequent requirement of our work to share our
results with outside labs which are vey cost sensitive. For
this reason, we chose to perform this analysis with products
that may not be Free Open Source Software (FOSS), but are
at least available without cost. Since we share the resulting
VMs with third parties, it is also axiomatic that we must
create them on platforms that are based on FOSS licenses;
hence, the benchmark VM used here was based on Linux.
Others could obviously replicate the current work on using
a Windows VM benchmark platform; indeed, it would be
interesting to see if the noted trends are reproduced.

One would expect, and indeed we certainly did, that the
thin hypervisor group would be closest to bare metal results.
However, the results are more complex than that, and as one
can see from the preceding data, one can see that selecting the
“best” VM environment depends on the target application’s
behavior; is it compute limited, R/W limited, or a combination
of both? It was also somewhat puzzling that sometimes the
Write performance (be it on RAM, local disk, or network disk)
was sometimes faster on a VM then on bare metal (note the
performance of Virtual Box in this regard). In retrospect,
however, this should not have been so surprising. In an OS on
bare metal, theWrite performance is totally gated by the input/
output (I/O) performance of the real OS, whereas in a VM the
VM memory manager may employ newer and more efficient
buffering algorithms then the real OS can when writing to a
slower physical I/O system. However, this cannot be done in
the case of reads; the entire path to the physical layer has to be
traversed and one notes in no case does VM read performance
beat that of bare metal.

Another surprising result is the Integer and Floating
point performance of the Virtual Box VM verses bare
metal. One may expect that a virtual environment could
largely expose the CPU directly to the VM client
(without the overhead of virtual device drivers inherent
in disk and other I/O operations), and thus that client
could approach bare metal speeds. But it is difficult to
comprehend how the VM could actually best the bare
metal Dhrystone 2 results—clearly there is some very
clever engineering in play in the Virtual Box.

One final observation is the relatively poor across the
board performance of the VMWare ESXi server compared
to the other thin platforms (Xen and KVM). This may be
due to ignorance of tuning on our part; but as all platforms
were used “out of the box,” we believe this experience

would be observed by others. Another possible explanation
is the difference in VM architecture. Both Xen and KVM
rely on and use dedicated features in both the physical CPU
and the guest OS being virtualized. This is called “para-
virtualization” meaning that the VM environment performs
some, but not all of the work, some of it is relegated to the
physical CPU [8–12]. Obviously hardware runs faster than
software, but the downside is that only newer hardware and
modified OS’ can be used. On the other hand, the full
virtualization approach used by ESXi can run older
hardware and support an unmodified OS (i.e., Windows
NT and 2000), but apparently at a performance cost.

Based on the preceding one can deduce the following
recommendations:

a) For applications that are highly integer compute
sensitive, the best choice is Virtual Box on Windows7,
32 bit (unless longer 64 bit math is required in which
case Fedora 64 bit is the winner).

b) For floating point sensitive applications, Virtual Box
on either Solaris or Redhat 64 bit OS offer similar
performance at about 80% of bare metal speed. The
20% penalty may be considered worthwhile, howev-
er, given the maintenance advantages that virtual
machines have. Given the type of operations most
often encountered in medical imaging processing
(image registration, segmentation, etc.) this is the
most common scenario [13].

c) For high speed network file or web serving needs, no
VM result is better than about 25% of bare metal
performance. Hence, VM methods cannot be recom-
mended as a competitive replacement for physical
network file servers at this time.

Conclusions

For various reasons we have found it very productive to
adopt virtualization in our practice, but this direction is not
without its drawbacks. In particular, read performance on
local and network disk is negatively impacted as is floating
point performance. Applications that are very sensitive to
these requirements may not provide satisfactory perfor-
mance in a network environment. Also, in contrast to
expectations the best performance was often seen from a
thick virtualization tool (Virtual Box) rather than the thin
hypervisor environment.
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Appendix

#!/usr/bin/perl 

# benchmark.pl 
############################################### 
# Purpose: for benchmarking HW I/O performance 
# Author:  
# Usage: 
# mount a local disk in /mnt/local 
# mount a network CIFS share in /mnt/netshare 
# mount a local RAMDISK in /mnt/ram1 
# Then run it as  
# benchmark.pl /path/resultfile 
# 
# Note: to automate the making of a RAMDISK and populate it,  
#  include the below in /etc/rc.d/rc.local 
# 
# /sbin/mke2fs -q -m 0 /dev/ramdisk 
# /bin/mount /dev/ramdisk /mnt/ram1 
# /bin/cp /mnt/local/test_write2 /mnt/ram1 
# 

# clear out previous runs 
qx {mkdir /mnt/ram1}; 
qx {mkdir /mnt/local}; 
qx {mkdir /mnt/netshare }; 
qx {rm /root/*ppt*}; 
qx {rm /mnt/ram1/test_write}; 
qx {rm /mnt/local/test_write}; 
qx {rm /mnt/netshare/test_write}; 
system (clear) ; 

# Init for this run 
# qx {mount -t cifs //strider-m/physics /mnt/netshare -o username=physics -o 
password=*******}; 
$resultFile = @ARGV[0]; 
open (OUTPUT, ">$resultFile") || die "Can't make result file"; 

print OUTPUT "***** Local RAM write \n"; 
# dd writes to stderr, need to redirect to stdout 
$a = qx {(dd if=/dev/zero  of=/mnt/ram1/test_write bs=1024k count=1) 2>&1}; 
print OUTPUT "$a\n"; 

print OUTPUT  "***** Local RAM read \n" ; 
$a = qx {(dd if=/mnt/ram1/test_write2 of=/dev/null) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT  "***** Local DIsk CIFS write \n"; 
$a = qx {(dd if=/dev/zero of=/mnt/local/test_write bs=1024k count=1) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT  "***** Local DIsk CIFS read \n"; 
$a = qx {(dd if=/mnt/local/test_write2 of=/dev/null) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT  "***** Network CIFS write \n" ; 
$a = qx{(dd if=/dev/zero of=/mnt/netshare/test_write bs=1024k count=1) 2>&1}; 

print OUTPUT  "$a\n"; 

print OUTPUT  "***** Network CIFS read\n"; 
$a = qx {(dd if=/mnt/netshare/test_write2 of=/dev/null) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT   "***** remote Web Read\n"; 
$a = qx {(wget http://rilcloud1:82/mayo-talk2.ppt) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT  "****** Dhrystone ******\n"; 
print "****** Dhrystone ******\n"; 
$a = qx {(dry2-wor) 2>&1}; 
print OUTPUT  "$a\n"; 

print OUTPUT  " ***** Whetstone ******"; 
print " ***** Whetstone ******\n"; 
qx {whets}; 
$a = qx {(cat /root/whets.res) 2>&1}; 
print OUTPUT  "$a\n"; 

print " ***** DONE \n"; 
close (OUTPUT); 
# qx {umount /mnt/netshare}; 
exit (0); 

Fig. 2 The program “bench-
mark.pl” coordinates the tests
and reporting of our Linux test-
ing appliance. The “dd” com-
mand is used to measure Input/
Output performance of files
write to memory, local or re-
motely network disks. The
Dhrystone2 and Whetstone
metrics measure integer (billions
of operations per second) and
floating point performance
(millions of operations per sec-
ond), respectively
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