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Malignant breast tumors and benign masses appear in
mammograms with different shape characteristics: the
former usually have rough, spiculated, or microlobulated
contours, whereas the latter commonly have smooth,
round, oval, or macrolobulated contours. Features that
characterize shape roughness and complexity can assist
in distinguishing between malignant tumors and benign
masses. Signatures of contours may be used to analyze
their shapes. We propose to use a signature based on
the turning angle function of contours of breast masses
to derive features that capture the characteristics of
shape roughness as described above. We propose
methods to derive an index of the presence of convex
regions (XRTA), an index of the presence of concave
regions (VRTA), an index of convexity (CXTA), and two
measures of fractal dimension (FDTA and FDdTA) from
the turning angle function. The methods were tested
with a set of 111 contours of 65 benign masses and 46
malignant tumors with different parameters. The best
classification accuracies in discriminating between be-
nign masses and malignant tumors, obtained for XRTA,
VRTA, CXTA, FDTA, and FDdTA in terms of the area under
the receiver operating characteristics curve, were 0.92,
0.92, 0.93, 0.93, and, 0.92, respectively.
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ANALYSIS OF CONTOURS AND SIGNATURES

Shape Analysis of Breast Tumors

B reast tumors and masses appear in mammo-
grams with different shape characteristics:

malignant tumors usually have rough, spiculated,
or microlobulated contours, whereas benign
masses commonly have smooth, round, oval, or
macrolobulated contours.1,2 Measures that can
quantitatively represent shape roughness and com-
plexity can assist in the classification of malignant

tumors and benign masses.3,4 Objective features of
shape complexity such as compactness, fractional
concavity (Fcc), spiculation index (SI), a Fourier-
descriptor-based factor (FF), fractal dimension
(FD), moments, chord-length statistics, and wavelet
transform modulus-maxima have been developed to
distinguish benign masses from malignant tumors
using pattern recognition methods for computer-
aided diagnosis (CADx) of breast cancer.3–10

However, atypical cases of macrolobulated or
spiculated benign masses, as well as microlobulated
or well-circumscribed malignant tumors, create
difficulties in pattern classification.3,4 Regardless,
in comparative analysis of several features of
shape, edge-sharpness, and texture for the classi-
fication of breast masses and tumors, shape factors
such as Fcc, FF, and SI have been observed to lead
to higher classification accuracies than measures
related to texture and density variation.5,7,11

Notwithstanding the relative success of measures
of shape in the classification of breast tumors and
masses, obtaining precise and artifact-free bound-
aries of masses from mammograms remains to be a
difficult problem.7,12,13 Computer-detected con-
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tours may be expected to contain inaccuracies and
artifacts due to the limitations of the procedures for
the detection and segmentation of masses in
mammograms; contours of masses drawn manual-
ly on mammograms by radiologists may contain
noise related to hand tremor.
In this work, we propose a novel approach to

obtain signatures of contours based on the turning
angle function that takes into account reduction of
noise and artifacts. We also propose the develop-
ment of methods based on the signature to extract
shape descriptors with the aim of classifying the
contours of breast masses and tumors.14 Different
from our previous work15 where the turning angle
function was used to derive a polygonal model of a
given contour, the signature of the contour being
proposed in the present work, while retaining
relevant characteristics of the contour, does not
facilitate the derivation of a polygonal model of
the original contour. In other related works,16,17 we
have proposed a different procedure to derive a
polygonal model of a given contour that preserves
spicules and details of diagnostic importance. We
have also proposed a method to derive a spicula-
tion index from the turning angle function obtained
from a polygonal model of a given contour.16,17 In
the present work, we present new methods to
derive shape factors that represent the presence of
convex and concave regions in the contour, to
compute an index of convexity, and to estimate the
fractal dimension obtained from the signature
derived from the turning angle function of the
original contour.
To evaluate the performance of the proposed

shape descriptors in terms of the efficiency in the
classification of breast masses, we compare the
results with those provided by fractional concavity
(Fcc) using the method of Rangayyan et al.4 and
FD as obtained by Rangayyan and Nguyen8 in
terms of the area Az under the receiver operating
characteristics (ROC) curve.

Signatures of Contours

Signatures of contours may be used to analyze
their shapes. The most commonly used method
to transform a two-dimensional (2D) contour
into a one-dimensional (1D) signature is in terms
of the radial distance from each contour point
to the centroid of the contour expressed as a

function of the index of the contour point. Given
a contour with N points {x(n), y(n)}, n=1,2,...,N,
the signature Sd(n) is defined as Sd nð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x nð Þ � x½ �2 þ y nð Þ � y½ �2
q

. Here, x; yð Þ is the cen-
troid of the contour, with the coordinates given by
the averages of the corresponding coordinates of
all of the contour points. A benign mass that is
round or macrolobulated will have a smooth
signature; on the contrary, a malignant tumor that
is spiculated or microlobulated will have a rough
and jagged signature.18 The 1D signature of a
contour as above may be used to derive the fractal
dimension (FD) to represent the complexity of the
contour.8

Another type of signature Sd(n) may be defined
as the complex number Sd nð Þ ¼ x nð Þ þ jy nð Þ
where j ¼ ffiffiffiffiffiffiffi�1

p
. Fourier descriptors and normal-

ized shape factors to characterize roughness may
be derived from Sd(n).

3,18

Pohlman et al.19 defined the signature of a given
contour of a breast mass as the radial distance to
the contour from its centroid expressed as a
function of the angle of the radial line in the
interval (0°, 360°). Such a function could be
multivalued for an irregular or spiculated contour.
The signature computed in this manner would also
be undefined, in certain ranges of the angle, for a
contour for which the centroid falls outside the
region enclosed by the contour.
A major advantage with the use of 1D signa-

tures is the reduction in dimensionality from the
corresponding 2D contours. Signatures may be
filtered or processed for the reduction of noise and
artifacts in the contour. Furthermore, shape factors
may be derived more easily from 1D signatures
than from the corresponding 2D contours.

THE TURNING ANGLE FUNCTION

The turning angle function TC(Sn) of the contour
C is the cumulative function of turning angles and
may be obtained by deriving the counterclockwise
angle between the tangent at the segment sn and
the x-axis and expressing it as a function of the arc
length of Sn. The turning angle function is also
known as the tangent function and has been used
as a signature to represent the shape of a given
contour (or its polygonal model) and used in
applications related to shape retrieval20–27. The
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turning angle function keeps track of the turning
angle of the contour, increasing with convex
regions and decreasing with concave regions. The
turning angle of a segment Si is the difference or
step between TC(Si+1) and TC(Si). The turning
angle ranges in the interval (−180°, 180°). Nega-
tive values represent concave regions and positive
values represent convex regions. For a convex
contour, TC(Sn) is a monotonic function, starting at
some value φ and increasing to φ+2π. For a non-
convex polygon, TC(Sn) can become arbitrarily

large, as it accumulates the total amount of turning
angles, obeying the range of 2π between the
starting point and the final point.27

Figures 1 and 2 show the turning angle functions
of the contours of a benign mass and a malignant
tumor, respectively. It is evident that the turning
angle function of the malignant tumor is more
complex and rough than that of the benign mass.
However, the turning angle functions include noise
due to artifacts in the contours and need to be
filtered before further analysis.
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Fig 1. a A manually drawn contour of a benign mass with a relatively smooth and convex contour with 916 points (pixels) and
resolution of 50 2m per pixel. b Turning angle function of the contour with TC(Sl)=0° and TC(S916)=360°.
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SIGNATURE BASED ON THE TURNING ANGLE
FUNCTION

Figures 1b and 2b illustrate the turning angle
functions of the contours of a benign mass and a
malignant tumor, respectively. It is readily seen
that while the former is a nearly monotonically
increasing function (except for the effects of noise
or minor variations), the latter has many decreas-
ing and increasing segments related to the concave
and convex regions present in the contour of the
tumor. The examples indicate that the turning
angle function may be used to represent the

complexity as well as the variations present in
the shapes of breast masses and tumors.
However, computer-detected contours and hand-

drawn contours, such as those shown in Figures 1a
and 2a, could contain artifacts and noise related to
hand tremor and other limitations. As a conse-
quence, the turning angle function could be
expected to contain several small segments that
are insignificant in the representation of the
contours for further analysis, as highlighted in
Figure 3. For this reason, we propose to filter the
turning angle function in a selective manner so as
to remove the artifacts and noise while preserving

Fig 2. a A manually drawn contour of a malignant tumor with a spiculated contour including concave and convex segments with
2,478 points (pixels) and resolution of 50 2m per pixel. b Turning angle function of the contour with TC(Sl)=315° and TC(S2478)=675°.
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the significant details.14 The proposed filtering
procedure is an iterative process controlled by the
size of the segments and the turning angle between
adjacent segments. Two rules are applied to every
linear segment Si identified from the turning angle
function in each iteration:

Rule 1 if the current segment Si and the next
segment Si+1 are both shorter than a
threshold Smin, then join Si and Si+1. The
length of the combined segment is equal
to the length of the straight line connect-

ing the starting point of Si and the ending
point of Si+1 in the original contour
domain. The turning angle of the com-
bined segment is derived as described in
Section 2.

Rule 2 if the length of Si or Si+1 is greater than the
threshold Smin, then analyze the turning
angle between Si and Si+1: if (180°−abs
(TC(Si+1)−TC(Si)))≥θmax, then join Si and
Si+1; else retain Si and Si+1. The procedure
for joining two segments is described
under Rule 1.

Fig 3. A manually drawn contour of a malignant tumor: a Adjacent segments within the dashed ellipse possess high internal angles
and are small (caused by hand tremor or other limitations). Some adjacent segments within the solid ellipse present relevant internal
angles. b The respective artifacts of the highlighted regions on the contour represented in the turning angle function. The region inside
the dashed ellipse is represented in the turning angle function as the region between the dashed lines with a sequence of small segments
with different directions. The region inside the solid ellipse is represented in the turning angle function as a sequence of segments of
different sizes with large changes in direction.
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The threshold Smin represents the relevance of a
segment and θmax indicates the relevance of the
turning angle between two adjacent segments of
the contour being analyzed. The relevance of the
segment is related to the resolution of the image
and the requirements of the application. A high
value for θmax means that when the internal angle
between two adjacent segments is large, then the
segments should be joined. The procedure stops
when no segments are joined in an iteration.
Figure 4 illustrates the filtering procedure applied
to the turning angle function in Figure 3. Note that
small segments with no relevant angles have been
joined, resulting in a smoother turning angle

function. Figures 5 and 6 illustrate the filtered
versions of the turning angle functions and the
contours corresponding to those in Figures 1 and
2, with Smin=10 pixels (equivalent to 0.5 mm
according to the image resolution) and θmax=170°.
The filtered turning angle function maintains all
the relevant information to reconstruct a polygonal
model of a given contour.14,15 The resulting polyg-
onal model is free of major artifacts and noise,
while preserving important spicules and lobules in
the given contour.
Although the filtered turning angle function

preserves only the significant angles and segments
of the original contour, the successive increasing

Fig 4. a Filtered version of the contour in Figure 3a with reduction of artifacts. b Filtered version of the turning angle function in
Figure 3b with Smin=10 pixels and θmax=170°.
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or decreasing sections (see Figs. 5 and 6) do not
give any extra information to derive shape factors
related to the complexity of the contour, such as
fractal dimension and index of convexity. For this
reason, we propose to further smooth the filtered
turning angle function with the aim of retaining
information only about the presence of concave
and convex regions in the original contour.
The smoothed filtered turning angle function,

which will be referred to in the rest of this paper as
the signature based on the turning angle function
(or STAF for short), is obtained by replacing each
monotonically increasing or decreasing section of

the filtered turning angle function by a representative
segment and its corresponding turning angle. The
new segment length is obtained by summing all
related individual segment lengths in the increasing
or decreasing section, and the new turning angle is
obtained by computing the average of the relative
turning angles of the corresponding segments. The
STAFs of the benign mass in Figure 1 and the
malignant tumor in Figure 2 are shown in Figure 7.
Note that the STAF of a nearly convex contour is
almost constant, as illustrated in Figure 7a; on the
other hand, the STAF of a contour with concavities
possesses several variations, as shown in Figure 7b.

Fig 5. a Filtered version of the contour in Figure 1a with reduction of artifacts. b Filtered version of the turning angle function in
Figure 1b with Smin=10 pixels and θmax=170°.
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The STAF, as computed above, does not permit the
reconstruction of the original contour or any filtered
version thereof.

FEATURE EXTRACTION FROM THE STAF

In this section, we present a set of feature
descriptors derived from the STAF of the given
contour. The proposed feature descriptors include
two different measures of fractal dimension,
indices that represent the presence of concave
and convex regions in the contour, and an index of
convexity.

Fractal Dimension

Fractal analysis may be used to study the
complexity and roughness of 1D functions, 2D
contours, and images.8,28–33 Fractal analysis may
be applied to classify breast masses based on the
complexity of their contours.8 Matsubara et al.34

obtained 100% accuracy in the classification of 13
breast masses using FD. The method required the
computation of a series of FD values for several
contours of a given mass obtained by thresholding
the mass at many levels; the variation in FD was
used to categorize a given mass as benign or
malignant. Pohlman et al.19 obtained a classifica-
tion accuracy of more than 80% with fractal

Fig 6. a Filtered version of the contour in Figure 2a with reduction of artifacts. b Filtered version of the turning angle function in
Figure 2b with Smin=10 pixels and θmax=170°.
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analysis of signatures of contours of masses based
on the radial distance as described in Section 1.2.
Rangayyan and Nguyen8 estimated the FD of a set
of 111 contours of breast masses and tumors using
the ruler and the box-counting methods applied to
the 2D contours as well as their 1D signatures
[Sd(n) as described in Sect. 1.2]. The best
classification performance with Az=0.89 was
obtained with the ruler method applied to the 1D
signatures of the contours.
In the present work, the ruler method is applied

to the STAFs of the contours of breast masses
(referred to as FDTA) and to the first derivatives of
the STAF (FDdTA). See Rangayyan and Nguyen8

for details on the ruler method. Each STAF is
normalized along both axes to the interval [0,1].
The slope of the curve log(r) vs log(N*r), that is,
the log of the size of the ruler (r) vs the log of the
number of rulers (N) times the ruler size, is
obtained as an estimate of FDTA or FDdTA.

Index of the Presence of Concave Regions
and Index of the Presence of Convex Regions

A study of the presence of concave or convex
regions may be used to characterize a given contour
according to relevant changes in the direction.
Related features may be used to classify contours of

Fig 7. Signatures based on the turning angle function with Smin=10 pixels and θmax=170° of: a The benign mass with a nearly
convex contour shown in Figure 1; b The malignant tumor with a spiculated contour shown in Figure 2. See also Figures 5 and 6.
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breast masses as benign or malignant.2,4 Such
information could be used to discriminate between
lobulated or spiculated contours and relatively
smooth or convex contours. To characterize the
roughness of a contour, we propose the indices
VRTA and XRTA to measure the presence of concave
regions and convex regions in a given contour,
respectively. Both indices are normalized to the
interval [0,1].
VRTA is defined as

VRTA ¼
PNd

i¼1 1þ cos � ið Þð Þð ÞLa ið Þ
2
PNd

i¼1 La ið Þ ð1Þ

where La(i) is the sum of the lengths of two
adjacent segments Si and Si+1, joined by a drop in
the turning angle θ(i), obtained from the STAF,
and Nd is the number of drops in angle in the
STAF. For a convex contour, the value for VRTA is
equal to zero.
XRTA is defined as

XRTA ¼ 1�
PNi

j¼1 1þ cos � jð Þð Þð ÞLb jð Þ
2
PNi

j¼1 Lb jð Þ

 !
ð2Þ

where Lb(j) is the sum of the lengths of two
adjacent segments Sj and Sj+1, joined by an
increase in the turning angle ϕ(j), obtained from

Fig 8. a A manually drawn contour of a circumscribed benign mass. FDTA=0.0, FDTA=0.0, VRTA=0.0, XRTA=1.0, and CXTA=1.0.
b The signature based on the turning angle function with Smin=10 pixels and θmax=170°.
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the STAF, and Ni is the number of steps with
increasing angles in the STAF. For a convex
contour, the value for XRTA is equal to 1.

Index of Convexity

The index of convexity CXTA combines infor-
mation regarding the presence of concave regions
and convex regions in the contour.
CXTA is defined as

CXTA ¼ 1� VRTA

2
þ 1� XRTA

2

� �
ð3Þ

CXTA is normalized to the interval [0,1]. For a
convex contour, the value for CXTA is equal to 1.
The index decreases as the presence of concave
regions increases.

DATA USED: CONTOURS OF BREAST MASSES

Mammograms of 20 cases were obtained from
Screen Test: the Alberta Program for the Early
Detection of Breast Cancer.5,35,36 The mammo-
grams were digitized using the Lumiscan 85
scanner at a resolution of 50 μm with 12 b/pixel.
Fifty-seven regions of interest, of which 37 are

Fig 9. a A manually drawn contour of a macrolobulated malignant tumor. FDTA=0.14, FDdTA=0.11, VRTA=0.45, XRTA=0.98, and
CXTA=0.76. b The signature based on the turning angle function with Smin=10 pixels and θmax=170°.
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related to benign masses and 20 are related to
malignant tumors, were obtained.5 The sizes of the
benign masses vary in the range 39–437 mm2,
with an average of 163 mm2 and a standard
deviation of 87 mm2. The sizes of the malignant
tumors vary in the range 34–1,122 mm2, with an
average of 265 mm2 and a standard deviation of
283 mm2. Most of the benign masses in this
dataset are smooth or macrolobulated, whereas

most of the malignant tumors are spiculated or
microlobulated.
Mammograms containing masses were also

obtained from the Mammographic Image Analysis
Society (MIAS, UK) database37,38 and the teaching
library of the Foothills Hospital (Calgary)3,4. The
MIAS images were digitized at a resolution of
50 μm with 8 b/pixel. The Foothills Hospital
images were digitized at 62 μm per pixel with 8 b/

Fig 10. a A manually drawn contour of a microlobulated malignant tumor. FDTA=0.32, FDdTA=0.30, VRTA=0.24, XRTA=0.78, and
CXTA=0.77. b The signature based on the turning angle function with Smin=10 pixels and θmax=170°.
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pixel. This set includes 28 benign masses and 26
malignant tumors with smooth, lobulated, and
spiculated contours in both the benign and malig-
nant categories. The sizes of the benign masses
vary in the range 32–1,207 mm2, with an average
of 281 mm2 and a standard deviation of 288 mm2.
The sizes of the malignant tumors vary in the
range 46–1,244 mm2, with an average of 286 mm2

and a standard deviation of 292 mm2.
Contours of the masses in the images described

above were drawn by an expert radiologist
specialized in mammography. The combined data-
set used in the present study include 111 contours,
with typical and atypical shapes of 65 benign
masses and 46 malignant tumors. The diagnostic
classification was based upon biopsy (the present

work employs the same dataset as that used by
Rangayyan and Nguyen8).

RESULTS AND DISCUSSION

The methods were tested with a set of 111
contours of breast masses; see Section 5 for details
regarding the dataset used. Figures 8, 9, 10 and 11
present a set of contours of breast masses and
tumors with different shapes, and the respective
STAF with Smin=10 pixels and θmax=170°. It is
worth noting that a convex contour, as shown in
Figure 8a, possesses a STAF represented by a
constant, resulting in a value equal to zero for

Fig 11. a A manually drawn contour of a spiculated malignant tumor. FDTA=0.61, FDdTA=0.57, VRTA=0.42, XRTA=0.64, and
CXTA=0.61. b The signature based on the turning angle function with Smin=10 pixels and θmax=170°.
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FDTA, FDdTA, and VRTA, and a value equal to 1 for
XRTA and CXTA.
To evaluate the proposed methods, the STAF of

the 111 contours in the dataset were obtained with
several sets of parameters. The shape descriptors
VRTA, XRTA, CXTA, FDTA, and FDdTA were derived
for each STAF. A sliding threshold was applied to
each feature descriptor directly to classify the
corresponding mass as benign or malignant. This
classification strategy was used because in each
experiment, each contour is represented by only
one feature; consequently, the classifier does not
require any training step. The diagnosis of each
mass, as provided by biopsy, was used to validate
the classification. The true-positive fraction (TPF)
and false-positive fraction (FPF) were computed
for each threshold using the results for all of the
111 contours. To evaluate the classification per-
formance of each feature, an ROC curve39 was
generated for each experiment, with the sensitivity
given by the TPF and the specificity given as 1-
FPF.

To evaluate the impact of the choice of Smin on
the final results, we tested the features with three
different values of Smin (5, 10, and 20 pixels), with
θmax set at 170°. The area Az under the ROC curve
was computed for each case to serve as a measure
of the classification performance of the
corresponding feature, as summarized in Table 1.
Note that when the indices are applied to charac-
terize contours of lesions in mammograms, with
the pixel resolution being 50 or 62 μm, the best
results were obtained with Smin set at 10 pixels,
which is equivalent to 0.5 or 0.6 mm. The
parameters need to be adjusted according to the
requirements of the application. Because the per-
formance of the classifier changes when different
parameters are used in deriving the polygonal
models, we analyzed the statistical significance of
the difference between the features for each set of
feature descriptors. Considering the parameter
Smin=10 pixels as the reference, the results obtained
using FDdTA with all the different combinations of
the parameters and FDTA and VRTA with Smin=20
pixels do not present differences that are statisti-
cally significant with p≤0.05.
To compare the performance of the results

obtained with the proposed features with the
results of other features, we computed the Az value
for the shape factor Fcc

4 as well as FD obtained
using the ruler method applied to 1D signatures of
contours as reported by Rangayyan and Nguyen.8

The results are also shown in Table 1. The table
also lists, for comparison, the Az values for a
spiculation index, compactness, and a Fourier-
descriptor-based shape factors as obtained by
Rangayyan and Nguyen.8 It is seen that the shape
features proposed in the present paper have
provided the best results. Further studies are
required to evaluate the classification performance
of various combinations of the shape features
proposed in the present work and previous related
works.
The shape factors proposed in this work

could also be used to classify breast masses
and tumors in terms of margins that are circum-
scribed, macrolobulated, microlobulated, or
spiculated. Such categorization could assist in
the preparation of reports in accordance with
the terminology used in BI-RADS.2 Further
work is in progress to derive fuzzy rules to
classify breast mass using various combinations
of the proposed shape factors.

Table 1. Comparison of the Classification Performance of the
Proposed Indices with Different Values for Smin, and θmax set at

170°

Method AZ

Fcc from Rangayyan and Nguyen8 0.88
FD from Rangayyan and Nguyen8 0.89
Compactness from Rangayyan and Nguyen8 0.87
Fourier factor from Rangayyan and Nguyen8 0.77
FDTA

Smin=5 pixels 0.86
Smin=10 pixels 0.93
Smin=20 pixels 0.91

FDdTA
Smin=5 pixels 0.86
Smin=10 pixels 0.92
Smin=20 pixels 0.91

VRTA

Smin=5 pixels 0.87
Smin=10 pixels 0.92
Smin=20 pixels 0.90

XRTA

Smin=5 pixels 0.88
Smin=10 pixels 0.92
Smin=20 pixels 0.91

CXTA

Smin=5 pixels 0.89
Smin=10 pixels 0.93
Smin=20 pixels 0.92

AZ Area under the ROC curve
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CONCLUSION

We have proposed methods to obtain shape
features from signatures based on filtered turning
angle functions of contours. The features have
been shown to be useful in the analysis of contours
of breast masses and tumors because of their
ability to capture diagnostically important details
of shape related to spicules and lobulations. The
proposed features have provided high classifica-
tion accuracies in discriminating between benign
breast masses and malignant tumors. The methods
should be useful in computer-aided diagnosis of
breast cancer.
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